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Abstract

This work explores CNNs for the recognition of novel categories from few exam-
ples. Inspired by the transferability properties of CNNs, we introduce an additional
unsupervised meta-training stage that exposes multiple top layer units to a large
amount of unlabeled real-world images. By encouraging these units to learn diverse
sets of low-density separators across the unlabeled data, we capture a more generic,
richer description of the visual world, which decouples these units from ties to a
specific set of categories. We propose an unsupervised margin maximization that
jointly estimates compact high-density regions and infers low-density separators.
The low-density separator (LDS) modules can be plugged into any or all of the
top layers of a standard CNN architecture. The resulting CNNs significantly im-
prove the performance in scene classification, fine-grained recognition, and action
recognition with small training samples.

1 Motivation

To successfully learn a deep convolutional neural network (CNN) model, hundreds of millions of
parameters need to be inferred from millions of labeled examples on thousands of image categories 1}
2, 13]. In practice, however, for novel categories/tasks of interest, collecting a large corpus of annotated
data to train CNNs from scratch is typically unrealistic, such as in robotics applications [4] and for
customized categories [5]. Fortunately, although trained on particular categories, CNNs exhibit certain
attractive transferability properties [0, [7]]. This suggests that they could serve as universal feature
extractors for novel categories, either as off-the-shelf features or through fine-tuning [[7} 18, 9} [10]].

Such transferability is promising but still restrictive, especially for novel-category recognition from
few examples [[11} 12,13} 14} [15, 116} (17, [18]. The overall generality of CNNss is negatively affected
by the specialization of top layer units to their original task. Recent analysis shows that from bottom,
middle, to top layers of the network, features make a transition from general to specific [6}8]. While
features in the bottom and middle layers are fairly generic to many categories (i.e., low-level features
of Gabor filters or color blobs and mid-level features of object parts), high-level features in the top
layers eventually become specific and biased to best discriminate between a particular set of chosen
categories. With limited samples from target tasks, fine-tuning cannot effectively adjust the units and
would result in over-fitting, since it typically requires a significant amount of labeled data. Using
off-the-shelf CNNs becomes the best strategy, despite the specialization and reduced performance.

In this work we investigate how to improve pre-trained CNNs for the learning from few examples.
Our key insight is to expose multiple top layer units to a massive set of unlabeled images, as shown
in Figure [T which decouples these units from ties to the original specific set of categories. This
additional stage is called unsupervised meta-training to distinguish this phase from the conventional
unsupervised pre-training phase [19] and the training phase on the target tasks. Based on the above
transferability analysis, intuitively, bottom and middle layers construct a feature space with high-
density regions corresponding to potential latent categories. Top layer units in the pre-trained CNN,
however, only have access to those regions associated with the original, observed categories. The
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Figure 1: We aim to improve the transferability of pre-trained CNNs for the recognition of novel
categories from few labeled examples. We perform a multi-stage training procedure: 1) We first
pre-train a CNN that recognizes a specific set of categories on a large-scale labeled dataset (e.g.,
ImageNet 1.2M), which provides fairly generic bottom and middle layer units; 2) We then meta-train
the top layers as low-density separators on a far larger set of unlabeled data (e.g., Flickr 100M), which
further improves the generality of multiple top layer units; 3) Finally, we use our modified CNN
on new categories/tasks (e.g., scene classification, fine-grained recognition, and action recognition),
either as off-the-shelf features or as initialization of fine-tuning that allows for end-to-end training.

units are then tuned to discriminate between these regions by separating the regions while pushing
them further away from each other. To tackle this limitation, our unsupervised meta-training provides
a far larger pool of unlabeled images as a much less biased sampling in the feature space. Now,
instead of producing separations tied to the original categories, we generate diverse sets of separations
across the unlabeled data. Since the unit “tries to discriminate the data manifold from its surroundings,
in all non-manifold directions’ﬂ we capture a more generic and richer description of the visual world.

How can we generate these separations in an unsupervised manner? Inspired by the structure/manifold
assumption in shallow semi-supervised and unsupervised learning (i.e., the decision boundary should
not cross high-density regions, but instead lie in low-density regions) [20} 21]], we introduce a low-
density separator (LDS) module that can be plugged into any (or all) top layers of a standard CNN
architecture. More precisely, the vector of weights connecting a unit to its previous layer (together
with the non-linearity) can be viewed as a separator or decision boundary in the activation space of
the previous layer. LDS then generates connection weights (decision boundaries) between successive
layers that traverse regions of as low density as possible and avoid intersecting high-density regions in
the activation space. Many LDS methods typically infer a probability distribution, for example through
densest region detection, lowest-density hyperplane estimation [21]], and clustering [22]. However,
exact clustering or density estimation is known to be notoriously difficult in high-dimensional spaces.

We instead adopt a discriminative paradigm 24] [14] to circumvent the aforementioned
difficulties. Using a max-margin framework, we propose an unsupervised, scalable, coarse-to-fine
approach that jointly estimates compact, distinct high-density quasi-classes (HDQC), i.e., sets of data
points sampled in high-density regions, as stand-ins for plausible high-density regions and infers low-
density hyperplanes (separators). Our decoupled formulations generalize those in supervised binary
code discovery and semi-supervised learning [24]], respectively; and more crucially, we propose
a novel combined optimization to jointly estimate HDQC and learn LDS in large-scale unsupervised
scenarios, from the labeled ImageNet 1.2M [25] to the unlabeled Flickr 100M dataset [26]].

Our approach of exploiting unsupervised learning on top of CNN transfer learning is unique as op-
posed to other recent work on unsupervised, weakly-supervised, and semi-supervised deep learning.
Most existing unsupervised deep learning approaches focus on unsupervised learning of visual repre-
sentations that are both sparse and allow image reconstruction [19], including deep belief networks
(DBN), convolutional sparse coding, and (denoising) auto-encoders (DAE). Our unsupervised LDS
meta-training is different from conventional unsupervised pre-training as in DBN and DAE in two
important ways: 1) our meta-training “post-arranges” the network that has undergone supervised
training on a labeled dataset and then serves as a kind of network “pre-conditioner” [[19] for the target
tasks; and 2) our meta-training phase is not necessarily followed by fine-tuning and the features
obtained by meta-training could be used off the shelf.

Other types of supervisory information (by creating auxiliary tasks), such as clustering, surrogate
classes 1], spatial context, temporal consistency, web supervision, and image captions [28]], have
been explored to train CNNSs in an unsupervised (or weakly-supervised) manner. Although showing
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initial promise, the performance of these unsupervised (or weakly-supervised) deep models is still
not on par with that of their supervised counterparts, partially due to noisy or biased external informa-
tion [28]. In addition, our LDS, if viewed as an auxiliary task, is directly related to discriminative
classification, which results in more desirable and consistent features for the final novel-category
recognition tasks. Unlike using a single image and its pre-defined transformations [27] or other
labeled multi-view object [4]] to simulate a surrogate class, our quasi-classes capture a more natural
representation of realistic images. Finally, while we boost the overall generality of CNNs for a wide
spectrum of unseen categories, semi-supervised deep learning approaches typically improve the
model generalization for specific tasks, with both labeled and unlabeled data coming from the tasks
of interest [29, 30]].

Our contribution is three-fold: First, we show how LDS, based on an unsupervised margin maxi-
mization, is generated without a bias to a particular set of categories (Section[2). Second, we detail
how to use LDS modules in CNNs by plugging them into any (or all) top layers of the architecture,
leading to single-scale (or multi-scale) low-density separator networks (Section [3). Finally, we show
how such modified CNNs, with enhanced generality, are used to facilitate the recognition of novel
categories from few examples and significantly improve the performance in scene classification,
fine-grained recognition, and action recognition (Section[d). The general setup is depicted in Figure|T]

2 Pre-trained low-density separators from unsupervised data

Given a CNN architecture pre-trained on a specific set of categories, such as the ImageNet (ILSVRC)
1,000 categories, we aim to improve the generality of one of its top layers, e.g., the k-th layer. We
fix the structures and weights of the layers from 1 to k—1, and view the activation of layer k—1 as
a feature space. A unit s in layer k is fully connected to all the units in layer k—1 via a vector of
weights w®. Each w® corresponds to a particular decision boundary (partition) of the feature space.
Intuitively, all the w*’s then jointly further discriminate between these 1,000 categories, enforcing that
the new activations in layer k£ are more similar within classes and more dissimilar between classes.

To make w*’s and the associated units in layer & unspecific to the ImageNet 1,000 categories, we use
a large amount of unlabeled images at the unsupervised meta-training stage. The layers from 1 to
k—1 remain unchanged, which means that we still tackle the same feature space. The new unlabeled
images now constitute a less biased sampling of the feature space in layer £k —1. We introduce a
new k-th layer with more units and encourage their unbiased exploration of the feature space. More
precisely, we enforce that the units learn many diverse decision boundaries w*’s that traverse different
low-density regions while avoiding intersecting high-density regions of the unsupervised data (untied
to the original ImageNet categories). The set of possible arrangements of such decision boundaries is
rich, meaning that we can potentially generalize to a broad range of categories.

2.1 Approach overview

We denote column vectors and matrices with italic bold letters. For each unlabeled image Z;, where
i€ {1,2,...,N}, let z; € R” and ¢; € R® be the vectorized activations in layers k—1 and k,
respectively. Let W be the weights between the two layers, where w? is the weight vector associated
with the unit s in layer k. For notational simplicity, «; already includes a constant 1 as the last element
and w® includes the bias term. We then have ¢ = f (wSTwi), where f(-) is a non-linear function,
such as sigmoid or ReLU. The resulting activation spaces of layers k—1 and k are denoted as X and

F, respectively.

To learn w*’s as low-density separators, we are supposed to have certain high-density regions which
w?’s separate. However, accurate estimation of high-density regions is difficult. We instead generate
quasi-classes as stand-ins for plausible high-density regions. We want samples with the same quasi-
labels to be similar in activation spaces (constraint within quasi-classes), while those with different
quasi-labels should be very dissimilar in activation spaces (constraints between quasi-classes). Note
that in contrast to clustering, generating quasi-classes does not require inferring membership for each
data point. Formally, assuming that there are C' desired quasi-classes, we introduce a sample selection
vector T.. € {0,1}" for each quasi-class c. T.; = 1if Z; is selected for assignment to quasi-class ¢
and zero otherwise. As illustrated in Figure@ the optimization for seeking low-density separators
(LDS) while identifying high-density quasi-classes (HDQC) can be framed as

find W € LDS, T € HDQC )

subject to W separate T .

This optimization problem enforces that each unit s learns a partition w?® lying across the low-density
region among certain salient high-density quasi-classes discovered by T'. This leads to a difficult
joint optimization problem in theory, because W and T are interdependent.



In practice, however, it may be unnecessary to find the global optimum. Reasonable local optima are
sufficient in our case to describe the feature space, as shown by the empirical results in Section 4]
We use an iterative approach that obtains salient high-density quasi-classes from coarse to fine
(Section [2.3)) and produces promising discriminative low-density partitions among them (Section [2.2)).
We found that the optimization procedures converge in our experiments.

2.2 Learning low-density separators

Assume that T' is known, which means that we have already defined C high-density quasi-classes
by T.. We then use a max-margin formulation to learn W. Each unit s in layer k£ corresponds to a
low-density hyperplane w® that separates positive and negative examples in a max-margin fashion.
To train w®, we need to generate label variables 1° € {—1, 1} for each w®, which label the samples in
the quasi-classes either as positive (1) or negative (—1) training examples. We can stack all the labels
for learning w*’s to form L = [I',...,1°]. Moreover, in the activation space F of layer k, which is
induced by the activation space X of layer k—1 and w?, it would be beneficial to further push for large
inter-quasi-class and small intra-quasi—class distances. We achieve such properties by optimizing
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where d is a distance metric (e.g., square of Euclidean distance) in the activation space F of layer
k. [x], = max (0,z) represents the hinge loss. Here we introduce an additional indicator vector

I € {0,1}" for all the quasi-classes. I; = 0 if Z; is not selected for assignment to any quasi-class (i.e.,

¢ |T.: = 0) and one otherwise. Note that I is actually sparse, since only a portion of unlabeled
samples are selected as quasi-classes and only their memberships are estimated in 7T'.

The new objective is much easier to optimize compared to Eqn. (I)), as it only requires producing
the low-density separators w® from known quasi-classes given T.. We then derive an algorithm to
optimize problem (2)) using block coordinate descent. Specifically, problem (2)) can be viewed as a
generalization of predictable discriminative binary codes in [23[]: 1) compared with the fully labeled
case in [23]], Eqn. (2) introduces additional quasi-class indicator variables to handle the unsupervised
scenario; 2) Eqn. (2) extends the specific binary-valued hash functions in [23] to general real-valued
non-linear activation functions in neural networks.

We adopt a similar iterative optimization strategy as in [23]]. To achieve a good local minimum, our
insight is that there should be diversity in w*®’s and we thus initialize w*®’s as the top-S orthogonal
directions of PCA on data points belonging to the quasi-classes. We found that this initialization
yields promising results that work better than random initialization and do not contaminate the
pre-trained CNNSs. For fixed W, we update & using stochastic gradient descent to achieve improved
separation in the activation space F of layer k. This optimization is efficient if using ReLU as
non-linearity. We use & to update L. I = 1if ¢{ > 0 and zero otherwise. Using L as training labels,
we then train S linear SVMs to update W. We iterate this process a fixed number of times—2 ~ 4 in
practice, and we thus obtain the low-density separator w® for each unit and construct the activation
space F of layer k.

2.3 Generating high-density quasi-classes

In the previous section, we assumed 7' known and learned low-density separators between high-
density quasi-classes. Now we explain how to find these quasi-classes. Given the activation space
X of layer k—1 and the activation space F of layer k (linked by the low-density separators W as
weights), we need to generate C high-density quasi-classes from the unlabeled data selected by T,
We hope that the quasi-classes are distinct and compact in the activation spaces. That is, we want
samples belonging to the same quasi-classes to be close to each other in the activation spaces, while
samples from different quasi-classes should be far from each other in the activation spaces. To this
end, we propose a coarse-to-fine procedure that combines the seeding heuristics of K-means++ [31]]
and a max-margin formulation [24] to gradually augment confident samples into the quasi-classes.
We suppose that each quasi-class contains at least 7y images and at most 7 images. Learning T
includes the following steps:

Skeleton Generation. We first choose a single seed point 7, ;, = 1 for each quasi-class using the
K-means++ heuristics in the activation space X of layer k—1. All the seed points are now spread out
as the skeleton of the quasi-classes.
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Figure 2: We use our LDS to revisit CNN architectures. In Figure we embed LDS learned from
a large collection of unlabeled data as a new top layer into a standard CNN structure pre-trained
on a specific set of categories (left), leading to single-scale LDS+CNN (middle). LDS could be
also embedded into different layers, resulting multi-scale LDS+CNN (right). More specifically in
Figure [2b] our multi-scale LDS+CNN architecture is constructed by introducing LDS layers into
multi-scale DAG-CNN [10]. For each scale (level), we spatially (average) pool activations, learn and
plug in LDS in this activation space, add fully-connected layers FCa and FCb (with K outputs), and
finally add the scores across all layers as predictions for K output classes (that are finally soft-maxed
together) on the target task. We show that the resulting LDS+CNNs can be either used as off-the-shelf
features or discriminatively trained in an end-to-end fashion to facilitate novel category recognition.

Quasi-Class Initialization. We extend each single skeletal point to an initial quasi-class by adding
its nearest neighbors [31] in the activation space X’ of layer k—1. Each of the resulting quasi-classes
thus contains 7o images, which satisfies the constraint for the minimum number of selected samples.

Augmentation and Refinement. In the above two steps, we select samples for quasi-classes based
on the similarity in the activation space of layer £—1. Given this initial estimate of quasi-classes,
we select additional samples using joint similarity in both activation spaces of layers k—1 and & by
leveraging a max-margin formulation. For each quasi-class ¢, we construct quasi-class classifiers A

and h in the two activation spaces. Note that h* and h are different from the low-density separator
w®. We use SVM responses to select additional samples, leading to the following optimization:
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where y.; is the corresponding binary label used for one-vs.-all multi-quasi-class classification:
ye,i = 1if T, ; = 1 and —1 otherwise. The first and second terms denote a max-margin classifier in
the activation space X, and the fourth and fifth terms denote a max-margin classifier in the activation
space F. The third term ensures that the same unlabeled sample is not shared by multiple quasi-
classes. The last term is a sample selection criterion that chooses those unlabeled samples with high
classifier responses in the activation space F.

This formulation is inspired by the approach to selecting unlabeled images using joint visual features
and attributes [24]]. We view our activation space X of layer k¥ —1 as the feature space, and the
activation space F of layer k as the learned attribute space. However, different from the semi-
supervised scenario in [24]], which provides an initially labeled training images, our problem (3)) is
entirely unsupervised. To solve it, we use initial T' corresponding to the quasi-classes obtained in
the first two steps to train hY and h? . After obtaining these two sets of SVMs in both activation
spaces, we update T'. Following a similar block coordinate descent procedure as in [24], we iteratively
re-train both A and h? and update T until we obtain the desired 7 number of samples.

3 Low-density separator networks
3.1 Single-scale layer-wise training

We start from how to embed our LDS as a new top layer into a standard CNN structure, leading to
single-scale network. To improve the generality of the learned units in layer k, we need to prevent
co-adaptation and enforce diversity between these units |6, |19]. We adopt a simple random sampling
strategy to train the entire LDS layer. We break the units in layer & into (disjoint) blocks, as shown



in Figure ] We encourage each block of units to explore different regions of the activation space
described by a random subset of unlabeled samples. This sampling strategy also makes LDS learning
scalable since direct LDS learning from the entire dataset is computationally infeasible.

Specifically, from an original selection matrix T, € {0,1}"*“ of all zeros, we first obtain a random
sub-matrix T € {0,1}*“. Using this subset of M samples, we then generate C' high-density
quasi-classes by solving the problem (3) and learn S corresponding low-density separator weights by
solving the problem (2)), yielding a block of S units in layer k. We randomly produce J sub-matrices
T, repeat the procedure, and obtain S x .J units (J blocks) in total. This thus constitutes layer k, the
low-density separator layer. The entire single-scale structure is shown in Figure [2a]

3.2 Multi-scale structure

For a convolutional layer of size H1 x H2 x F', where H; is the height, H, is the width, and F is the
number of filter channels, we first compute a 1 x 1 x F' pooled feature by averaging across spatial
dimensions as in [10]], and then learn LDS in this activation space as before. Note that our approach
applies to other types of pooling operation as well. Given the benefit of complementary features, LDS
could also be operationalized on several different layers, leading to multi-scale/level representations.
We thus modify the multi-scale DAG-CNN architecture [10] by introducing LDS on top of the ReLU
layers, leading to multi-scale LDS+CNN, as shown in Figure [2b] We add two additional layers on
top of LDS: FCa (with F outputs) that selects discriminative units for target tasks, and FCb (with K
outputs) that learns K-way classifier for target tasks. The output of the LDS layers could be used
as off-the-shelf multi-scale features. If using LDS weights as initialization, the entire structure in
Figure [2b|could also be fine-tuned in a similar fashion as DAG-CNN [10].

4 Experimental evaluation

In this section, we explore the use of low-density separator networks (LDS+CNNs) on a number of
supervised learning tasks with limited data, including scene classification, fine-grained recognition,
and action recognition. We use two powerful CNN models—AlexNet [1]] and VGG19 [3] pre-trained
on ILSVRC 2012 [25]], as our reference networks. We implement the unsupervised meta-training
on Yahoo! Flickr Creative Commons100M dataset (YFCC100M) [26], which is the largest single
publicly available image and video database. We begin with plugging LDS into a single layer, and
then introduce LDS into several top layers, leading to a multi-scale model. We consider using
LDS+CNNs as off-the-shelf features in the small sample size regime, as well as through fine-tuning
when enough data is available in the target task.

Implementation Details. During unsupervised meta-training, we use 99.2 million unlabeled images
on YFCC100M [26]. After resizing the smallest side of each image to be 256, we generate the
standard 10 crops (4 corners plus one center and their flips) of size 224 x 224 as implemented in
Caffe [32]. For single-scale structures, we learn LDS in the fc7 activation space of dimension
4,096. For multi-scale structures, following [[10] we learn LDS in activation spaces of Conv3, Conv4,
Convb, fc6, and fc7 for AlexNet, and we learn LDS in activation spaces of Conv43, Convd4, Conv51,
Conv52, and fc6 for VGG19. We use the same sets of parameters to learn LDS in these activation
spaces without further tuning. In the LDS layer, each block has S = 10 units, which separate across
M = 20,000 randomly sub-sampled data points. Repeating J = 2,000 sub-sampling, we then have
20,000 units in total. Notably, each block of units in the LDS layer can be learned independently,
making feasible for parallelization. For learning LDS in Eqn. 2)), n and A; are set to 1 and ) is set to
normalize for the size of quasi-classes, which is the same setup and default parameters as in [23]].
For generating high-density quasi-classes in Eqn. (3), following [31} [24]], we set the minimum and
maximum number of selected samples per quasi-classes to be 7o =6 and 7=>56, and produce C =30
quasi-classes in total. We use the same setup and parameters as in [24], where a=1, 3=1. While
using only the center crops to infer quasi-classes, we use all 10 crops to learn more accurate LDS.

Tasks and Datasets. We evaluate on standard benchmark datasets for scene classification: SUN-
397 [33] and MIT-67 [34], fine-grained recognition: Oxford 102 Flowers [35]], and action recognition
(compositional semantic recognition): Stanford-40 actions [36]]. These datasets are widely used
for evaluating the CNN transferability [8]], and we consider their diversity and coverage of novel
categories. We follow the standard experimental setup (e.g., the train/test splits) for these datasets.

4.1 Learning from few examples

The first question to answer is whether the LDS layers improve the transferability of the original
pre-trained CNNs and facilitate the recognition of novel categories from few examples. To answer this
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Figure 3: Performance comparisons between our single-scale LDS+CNN (SS-LDS+CNN), multi-
scale LDS+CNN (MS-LDS+CNN) and the pre-trained single-scale CNN (SS-CNN), multi-scale
DAG-CNN (MS-DAG-CNN) baselines for scene classification, fine-grained recognition, and action
recognition from few labeled examples on four benchmark datasets. VGG19 [3] is used as the
CNN model for its demonstrated superior performance. For SUN-397, we also include a publicly
available strong baseline, Places-CNN, which trained a CNN (AlexNet architecture) from scratch
using a scene-centric database with over 7 million annotated images from 400 scene categories, and
which achieved state-of-the-art performance for scene classification [2]. X-axis: number of training
examples per class. Y-axis: average multi-class classification accuracy. With improved transferability
gained from a large set of unlabeled data, our LDS+CNNs with simple linear SVMs significantly
outperform the vanilla pre-trained CNN and powerful DAG-CNN for small sample learning.

Type Approach SUN-397 | MIT-67 | 102 Flowers | Stanford-40
Flickr-AlexNet 42.7 55.8 74.2 53.0
Weakly-supervised | Flickr-GooglLeNet 44.4 55.6 65.8 52.8
CNNs Combined-AlexNet 473 58.8 83.3 56.4
Combined-GoogLeNet 55.0 67.9 83.7 69.2
Ours SS-LDS+CNN 55.4 73.6 87.5 70.5
MS-LDS+CNN 59.9 80.2 95.4 72.6

Table 1: Performance comparisons of classification accuracy (%) between our LDS+CNNs and
weakly-supervised CNNs [28]] on the four datasets when using the entire training sets. In contrast to
our approach that uses the Flickr dataset for unsupervised meta-training, Flickr-AlexNet/GoogLeNet
train CNNs from scratch on the Flickr dataset by using associated captions as weak supervisory
information. Combined-AlexNet/GooglLeNet concatenate features from supervised ImageNet CNNs
and weakly-supervised Flickr CNNs. Despite the same amount of data used for pre-training, ours
outperform the weakly-supervised CNNs by a significant margin due to their noisy captions and tags.

question, we evaluate both LDS+CNN and CNN as off-the-shelf features without fine-tuning on the
target datasets. This is the standard way to use pre-trained CNNss [[7]. We test how performance varies
with the number of training samples per category as in [16]]. To compare with the state-of-the-art
performance, we use VGG19 in this set of experiments. Following the standard practice, we train
simple linear SVMs in one-vs.-all fashion on L2-normalized features [7,[10]] in Liblinear [137]].

Single-Scale Features. We begin by evaluating single-scale features on theses datasets. For a
fair comparison, we first reduce the dimensionality of LDS+CNN from 20,000 to 4,096, the same
dimensionality as CNN, followed by linear SVMs. This is achieved by selecting from LDS+CNN
the 4,096 most active features according to the standard criterion of multi-class recursive feature
elimination (RFE) [38] using the target dataset. We also tested PCA. The performance drops, but it is
still significantly better than the pre-trained CNN. Figure [3]summarizes the average performance over
10 random splits on these datasets. When used as off-the-shelf features for small-sample learning,
our single-scale LDS+CNN significantly outperforms the vanilla pre-trained CNN, which is already a
strong baseline. Our results are particularly impressive for the big performance boost, for example
nearly 20% on MIT-67, in the one-shot learning scenario. This verifies the effectiveness of the
layer-wise LDS, which leads to a more generic representation for a broad range of novel categories.
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Figure 4: Illustration of learning low-density

separators between successive layers on a large Figure 5: Effect of fine-tuning (FT) on SUN-397
amount of unlabeled data. Note the color cor- (purple bars) and MIT-67 (blue bars). Fine-tuning
respondence between the decision boundaries LDS+CNNs (AlexNet) further improves the per-
across the unlabeled data and the connection formance over the off-the-shelf (OTS) features for
weights in the network. novel category recognition.

Multi-Scale Features. Given the promise of single-scale LDS+CNN, we now evaluate multi-scale
off-the-shelf features. After learning LDS in each activation space separately, we reduce their
dimensionality to that of the corresponding activation space via RFE for a fair comparison with DAG-
CNN [10]. We train linear SVMs on these LDS+CNNs, and then average their predictions. Figure 3]
summarizes the average performance over different splits for multi-scale features. Consistent with
the single-scale results, our multi-scale LDS+CNN outperforms the powerful multi-scale DAG-CNN.
LDS+CNN is especially beneficial to fine-grained recognition, since there is typically limited data
per class for fine-grained categories. Figure [3|also validates that multi-scale LDS+CNN allows for
transfer at different levels, thus leading to better generalization to novel recognition tasks compared
to its single-scale counterpart. In addition, Table[T|further shows that our LDS+CNNs outperform
weakly-supervised CNNs [28] that are directly trained on Flickr using external caption information.

4.2 Fine-tuning

With more training data available in the target task, our LDS+CNNs could be fine-tuned to further
improve the performance. For efficient and easy fine-tuning, we use AlexNet in this set of experiments
as in [[10]. We evaluate the effect of fine-tuning of our single-scale and multi-scale LDS+CNNs in
the scene classification tasks, due to their relatively large number of training samples. We compare
against the fine-tuned single-scale CNN and multi-scale DAG-CNN [10], as shown in Figure [3]
For completeness, we also include their off-the-shelf performance. As expected, fine-tuned models
consistently outperform their off-the-shelf counterparts. Importantly, Figure[5|shows that our approach
is not limited to small-sample learning and is still effective even in the many training examples regime.

5 Conclusions

Even though current large-scale annotated datasets are comprehensive, they are only a tiny sampling
of the full visual world biased to a selection of categories. It is still not clear how to take advantage
of truly large sets of unlabeled real-world images, which constitute a much less biased sampling
of the visual world. In this work we proposed an approach to leveraging such unsupervised data
sources to improve the overall transferability of supervised CNNs and thus to facilitate the recognition
of novel categories from few examples. This is achieved by encouraging multiple top layer units
to generate diverse sets of low-density separations across the unlabeled data in activation spaces,
which decouples these units from ties to a specific set of categories. The resulting modified CNNs
(single-scale and multi-scale low-density separator networks) are fairly generic to a wide spectrum of
novel categories, leading to significant improvement for scene classification, fine-grained recognition,
and action recognition. The specific implementation described here is a first step. While we used
certain max-margin optimization to train low-density separators, it would be interesting to integrate
into the current CNN backpropagation framework both learning low-density separators and gradually
estimating high-density quasi-classes.
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