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Abstract

Recently, a new document metric called the word mover’s distance (WMD) has
been proposed with unprecedented results on kNN-based document classification.
The WMD elevates high-quality word embeddings to a document metric by for-
mulating the distance between two documents as an optimal transport problem
between the embedded words. However, the document distances are entirely un-
supervised and lack a mechanism to incorporate supervision when available. In
this paper we propose an efficient technique to learn a supervised metric, which
we call the Supervised-WMD (S-WMD) metric. The supervised training mini-
mizes the stochastic leave-one-out nearest neighbor classification error on a per-
document level by updating an affine transformation of the underlying word em-
bedding space and a word-imporance weight vector. As the gradient of the origi-
nal WMD distance would result in an inefficient nested optimization problem, we
provide an arbitrarily close approximation that results in a practical and efficient
update rule. We evaluate S-WMD on eight real-world text classification tasks on
which it consistently outperforms almost all of our 26 competitive baselines.

1 Introduction

Document distances are a key component of many text retrieval tasks such as web-search ranking
[24], book recommendation [16], and news categorization [25]. Because of the variety of poten-
tial applications, there has been a wealth of work towards developing accurate document distances
[2, 4, 11, 27]. In large part, prior work focused on extracting meaningful document representations,
starting with the classical bag of words (BOW) and term frequency-inverse document frequency
(TF-IDF) representations [30]. These sparse, high-dimensional representations are frequently nearly
orthogonal [17] and a pair of similar documents may therefore have nearly the same distance as a
pair that are very different. It is possible to design more meaningful representations through eigen-
decomposing the BOW space with Latent Semantic Indexing (LSI) [11], or learning a probabilistic
clustering of BOW vectors with Latent Dirichlet Allocation (LDA) [2]. Other work generalizes LDA
[27] or uses denoising autoencoders [4] to learn a suitable document representation.

Recently, Kusner et al. [19] proposed the Word Mover’s Distance (WMD), a new distance for text
documents that leverages word embeddings [22]. Given these high-quality embeddings, the WMD
defines the distances between two documents as the optimal transport cost of moving all words from
one document to another within the word embedding space. This approach was shown to lead to
state-of-the-art error rates in k-nearest neighbor (kNN) document classification.
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Importantly, these prior works are entirely unsupervised and not learned explicitly for any particular
task. For example, text documents could be classified by topic or by author, which would lead to
very different measures of dissimilarity. Lately, there has been a vast amount of work on metric
learning [10, 15, 36, 37], most of which focuses on learning a generalized linear Euclidean metric.
These methods often scale quadratically with the input dimensionality, and can only be applied to
high-dimensional text documents after dimensionality reduction techniques such as PCA [36].

In this paper we propose an algorithm for learning a metric to improve the Word Mover’s Distance.
WMD stands out from prior work in that it computes distances between documents without ever
learning a new document representation. Instead, it leverages low-dimensional word representations,
for example word2vec, to compute distances. This allows us to transform the word embedding
instead of the documents, and remain in a low-dimensional space throughout. At the same time we
propose to learn word-specific ‘importance’ weights, to emphasize the usefulness of certain words
for distinguishing the document class.

At first glance, incorporating supervision into the WMD appears computationally prohibitive, as
each individual WMD computation scales cubically with respect to the (sparse) dimensionality of
the documents. However, we devise an efficient technique that exploits a relaxed version of the
underlying optimal transport problem, called the Sinkhorn distance [6]. This, combined with a
probabilistic filtering of the training set, reduces the computation time significantly.

Our metric learning algorithm, Supervised Word Mover’s Distance (S-WMD), directly minimizes a
stochastic version of the leave-one-out classification error under the WMD metric. Different from
classic metric learning, we learn a linear transformation of the word representations while also learn-
ing re-weighted word frequencies. These transformations are learned to make the WMD distances
match the semantic meaning of similarity encoded in the labels. We show across 8 datasets and 26
baseline methods the superiority of our method.

2 Background
Here we describe the word embedding technique we use (word2vec) and the recently introduced
Word Mover’s Distance. We then detail the setting of linear metric learning and the solution pro-
posed by Neighborhood Components Analysis (NCA) [15], which inspires our method.

word2vec may be the most popular technique for learning a word embedding over billions of words
and was introduced by Mikolov et al. [22]. Each word in the training corpus is associated with
an initial word vector, which is then optimized so that if two words w1 and w2 frequently occur
together, they have high conditional probability p(w2|w1). This probability is the hierarchical soft-
max of the word vectors vw1

and vw2
[22], an easily-computed quantity which allows a simplified

neural language model (the word2vec model) to be trained efficiently on desktop computers. Train-
ing an embedding over billions of words allows word2vec to capture surprisingly accurate word
relationships [23]. Word embeddings can learn hundreds of millions of parameters and are typically
by design unsupervised, allowing them to be trained on large unlabeled text corpora ahead of time.
Throughout this paper we use word2vec, although many word embeddings could be used [5, 21? ].

Word Mover’s Distance. Leveraging the compelling word vector relationships of word embed-
dings, Kusner et al. [19] introduced the Word Mover’s Distance (WMD) as a distance between text
documents. At a high level, the WMD is the minimum distance required to transport the words
from one document to another. We assume that we are given a word embedding matrix X∈Rd×n
for a vocabulary of n words. Let xi ∈Rd be the representation of the ith word, as defined by this
embedding. Additionally, let da,db be the n-dimensional normalized bag-of-words (BOW) vectors
for two documents, where dai is the number of times word i occurs in da (normalized over all words
in da). The WMD introduces an auxiliary ‘transport’ matrix T ∈ Rn×n, such that Tij describes
how much of dai should be transported to dbj . Formally, the WMD learns T to minimize

D(xi,xj) = min
T≥0

n∑
i,j=1

Tij‖xi − xj‖p2, subject to,
n∑
j=1

Tij = dai ,

n∑
i=1

Tij = dbj ∀i, j, (1)

where p is usually set to 1 or 2. In this way, documents that share many words (or even related ones)
should have smaller distances than documents with very dissimilar words. It was noted in Kusner
et al. [19] that the WMD is a special case of the Earth Mover’s Distance (EMD) [29], also known
more generally as the Wasserstein distance [20]. The authors also introduce the word centroid dis-
tance (WCD), which uses a fast approximation first described by Rubner et al. [29]: ‖Xd−Xd′‖2.
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It can be shown that the WCD always lower bounds the WMD. Intuitively the WCD represents each
document by the weighted average word vector, where the weights are the normalized BOW counts.
The time complexity of solving the WMD optimization problem is O(q3 log q) [26], where q is the
maximum number of unique words in either d or d′. The WCD scales asymptotically by O(dq).

Regularized Transport Problem. To alleviate the cubic time complexity of the Wasserstein dis-
tance computation, Cuturi [6] formulated a smoothed version of the underlying transport problem by
adding an entropy regularizer to the transport objective. This makes the objective function strictly
convex, and efficient algorithms can be adopted to solve it. In particular, given a transport matrix
T, let h(T) = −

∑n
i,j=1 Tij log(Tij) be the entropy of T. For any λ>0, the regularized (primal)

transport problem is defined as

min
T≥0

n∑
i,j=1

Tij‖xi − xj‖p2 −
1

λ
h(T) subject to,

n∑
j=1

Tij = dai ,

n∑
i=1

Tij = dbj ∀i, j. (2)

The larger λ is, the closer this relaxation is to the original Wasserstein distance. Cuturi [6] propose
an efficient algorithm to solve for the optimal transport T∗λ using a clever matrix-scaling algorithm.
Specifically, we may define the matrix Kij = exp(−λ‖xi− xj‖2) and solve for the scaling vectors
u,v to a fixed-point by computing u = da./(Kv), v = db./(K>u) in an alternating fashion.
These yield the relaxed transport T∗λ = diag(u)K diag(v). This algorithm can be shown to have
empirical time complexity O(q2) [6], which is significantly faster than solving the WMD problem
exactly.

Linear Metric Learning. Assume that we have access to a training set {x1, . . . ,xn} ⊂ Rd, ar-
ranged as columns in matrix X ∈ Rd×n, and corresponding labels {y1, . . . , yn} ⊆ Yn, where Y
contains some finite number of classes C = |Y|. Linear metric learning learns a matrix A∈Rr×d,
where r≤ d, and defines the generalized Euclidean distance between two documents xi and xj as
dA(xi,xj) = ‖A(xi−xj)‖2. Popular linear metric learning algorithms are NCA [15], LMNN [36],
and ITML [10] amongst others [37]. These methods learn a matrix A to minimize a loss function
that is often an approximation of the leave-one-out (LOO) classification error of the kNN classifier.

Neighborhood Components Analysis (NCA) was introduced by Goldberger et al. [15] to learn
a generalized Euclidean metric. Here, the authors approximate the non-continuous leave-one-out
kNN error by defining a stochastic neighborhood process. An input xi is assigned input xj as its
nearest neighbor with probability

pij =
exp(−d2A(xi,xj))∑
k 6=i exp (−d2A(xi,xk))

, (3)

where we define pii = 0. Under this stochastic neighborhood assignment, an input xi with label
yi is classified correctly if its nearest neighbor is any xj 6= xi from the same class (yj = yi). The
probability of this event can be stated as pi =

∑
j:yj=yi

pij . NCA learns A by maximizing the
expected LOO accuracy

∑
i pi, or equivalently by minimizing −

∑
i log(pi), the KL-divergence

from a perfect classification distribution (pi = 1 for all xi).

3 Learning a Word Embedding Metric
In this section we propose a method for learning a supervised document distance, by way of learn-
ing a generalized Euclidean metric within the word embedding space and a word importance vec-
tor. We will refer to the learned document distance as the Supervised Word Mover’s Distance (S-
WMD). To learn such a metric we assume we have a training dataset consisting of m documents
{d1, . . . ,dm} ⊂ Σn, where Σn is the (n−1)-dimensional simplex (thus each document is repre-
sented as a normalized histogram over the words in the vocabulary, of size n). For each document
we are given a label out of C possible classes, i.e. {y1, . . . , ym} ⊆ {1, . . . , C}m. Additionally,
we are given a word embedding matrix X ∈ Rd×n (e.g., the word2vec embedding) which defines a
d-dimensional word vector for each of the words in the vocabulary.

Supervised WMD. As described in the previous section, it is possible to define a distance between
any two documents da and db as the minimum cumulative word distance of moving da to db in
word embedding space, as is done in the WMD. Given a labeled training set we would like to
improve the distance so that documents that share the same labels are close, and those with different
labels are far apart. We capture this notion of similarity in two ways: First we transform the word
embedding, which captures a latent representation of words. We adapt this representation with a
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linear transformation xi→Axi, where xi represents the embedding of the ith word. Second, as
different classification tasks and data sets may value words differently, we also introduce a histogram
importance vector w that re-weighs the word histogram values to reflect the importance of words
for distinguishing the classes:

d̃a = (w ◦ da)/(w>da), (4)
where “◦” denotes the element-wise Hadamard product. After applying the vector w and the linear
mapping A, the WMD distance between documents da and db becomes

DA,w(da,db) , min
T≥0

n∑
i,j=1

Tij‖A(xi − xj)‖22 s.t.
n∑
j=1

Tij= d̃ai and
n∑
i=1

Tij= d̃bj ∀i, j. (5)

Loss Function. Our goal is to learn the matrix A and vector w to make the distance DA,w reflect
the semantic definition of similarity encoded in the labeled data. Similar to prior work on metric
learning [10, 15, 36] we achieve this by minimizing the kNN-LOO error with the distance DA,w

in the document space. As the LOO error is non-differentiable, we use the stochastic neighborhood
relaxation proposed by Hinton & Roweis [18], which is also used for NCA. Similar to prior work
we use the squared Euclidean word distance in Eq. (5). We use the KL-divergence loss proposed in
NCA alongside the definition of neighborhood probability in (3) which yields,

`(A,w) = −
m∑
a=1

log

 m∑
b:yb=ya

exp(−DA,w(da,db))∑
c 6=a exp (−DA,w(da,dc))

 . (6)

Gradient. We can compute the gradient of the loss `(A,w) with respect to A and w as follows,

∂

∂(A,w)
`(A,w) =

m∑
a=1

∑
b6=a

pab
pa

(δab − pa)
∂

∂(A,w)
DA,w(da,db), (7)

where δab=1 if and only if ya=yb, and δab=0 otherwise.

3.1 Fast computation of ∂DA,w(da,db)/∂(A,w)

Notice that the remaining gradient term above ∂DA,w(da,db)/∂(A,w) contains the nested linear
program defined in (5). In fact, computing this gradient just for a single pair of documents will
require time complexity O(q3 log q), where q is the largest set of unique words in either document
[8]. This quickly becomes prohibitively slow as the document size becomes large and the number
of documents increase. Further, the gradient is not always guaranteed to exist [1, 7] (instead we
must resort to subgradient descent). Motivated by the recent works on fast Wasserstein distance
computation [6, 8, 12], we propose to relax the modified linear program in eq. (5) using the entropy
as in eq. (2). As described in Section 2, this allows us to approximately solve eq. (5) in O(q2) time
via T∗λ=diag(u)K diag(v). We will use this approximate solution in the following gradients.

Gradient w.r.t. A. It can be shown that,

∂

∂A
DA,w(da,db) = 2A

n∑
i,j=1

Tab
ij (xi − xj)(xi − xj)

>, (8)

where Tab is the optimizer of (5), so long as it is unique (otherwise it is a subgradient) [1]. We
replace Tab by T∗λ which is always unique as the relaxed transport is strongly convex [9].

Gradient w.r.t. w. To obtain the gradient with respect to w, we need the optimal solution to the
dual transport problem:

D∗A,w(da,db) , max
(α,β)

α>d̃a + β>d̃b; s.t. αi + βj ≤ ‖A(xi − xj)‖22 ∀i, j. (9)

Given that both d̃a and d̃b are functions of w, we have

∂

∂w
DA,w(da,db)=

∂D∗A,w

∂d̃a
∂d̃a

∂w
+
∂D∗A,w

∂d̃b
∂d̃b

∂w
=

α∗◦da−(α∗>d̃a)da

w>da
+
β∗◦db−(β∗

>
d̃b)db

w>db
.

(10)
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Instead of solving the dual directly, we obtain the relaxed optimal dual variables α∗λ,β
∗
λ via the

vectors u,v that were used to derive our relaxed transport T∗λ. Specifically, we can solve for the

dual variables as such: α∗λ = log(u)
λ − log(u)>1

p 1 and β∗λ = log(v)
λ − log(v)>1

p 1, where 1 is the
p-dimensional all ones vector. In general, we can observe from eq. (2) that the above approximation
process becomes more accurate as λ grows. However, setting λ too large can make the algorithm
converges slower. In our experiments, we use λ = 10, which leads to a nice trade-off between speed
and approximation accuracy.

3.2 Optimization

Algorithm 1 S-WMD
1: Input: word embedding: X,
2: dataset: {(d1, y1), . . . , (dm, ym)}
3: ca = Xda, ∀a∈{1, . . . ,m}
4: A = NCA((c1, y1), . . . , (cm, ym))
5: w = 1
6: while loop until convergence do
7: Randomly select B ⊆ {1, . . . ,m}
8: Compute gradients using eq. (11)
9: A← A− ηAgA

10: w← w − ηwgw

11: end while

Alongside the fast gradient computation process in-
troduced above, we can further speed up the train-
ing with a clever initialization and batch gradient de-
scent.

Initialization. The loss function in eq. (6) is non-
convex and is thus highly dependent on the initial
setting of A and w. A good initialization also dras-
tically reduces the number of gradient steps required.
For w, we initialize all its entries to 1, i.e., all words
are assigned with the same weights at the begin-
ning. For A, we propose to learn an initial projection
within the word centroid distance (WCD), defined
as D′(da,db) = ‖Xda −Xdb‖2, described in Sec-
tion 2. The WCD should be a reasonable approximation to the WMD. Kusner et al. [19] point out
that the WCD is a lower bound on the WMD, which holds true after the transformation with A.
We obtain our initialization by applying NCA in word embedding space using the WCD distance
between documents. This is to say that we can construct the WCD dataset: {c1, . . . , cm} ⊂ Rd,
representing each text document as its word centroid, and apply NCA in the usual way as described
in Section 2. We call this learned word distance Supervised Word Centroid Distance (S-WCD).

Batch Gradient Descent. Once the initial matrix A is obtained, we minimize the loss `(A,w) in
(6) with batch gradient descent. At each iteration, instead of optimizing over the full training set,
we randomly pick a batch of documents B from the training set, and compute the gradient for these
documents. We can further speed up training by observing that the vast majority of NCA probabil-
ities pab near zero. This is because most documents are far away from any given document. Thus,
for a document da we can use the WCD to get a cheap neighbor ordering and only compute the
NCA probabilities for the closest set of documents Na, based on the WCD. When we compute the
gradient for each of the selected documents, we only use the document’s M nearest neighbor doc-
uments (defined by WCD distance) to compute the NCA neighborhood probabilities. In particular,
the gradient is computed as follows,

gA,w =
∑
a∈B

∑
b∈Na

(pab/pa)(δab − pa)
∂

∂(A,w)
D(A,w)(d

a,db), (11)

where again Na is the set of nearest neighbors of document a. With the gradient, we update A and
w with learning rates ηA and ηw, respectively. Algorithm 1 summarizes S-WMD in pseudo code.

Complexity. The empirical time complexity of solving the dual transport problem scales quadrati-
cally with p [26]. Therefore, the complexity of our algorithm is O(TBN [p2 + d2(p + r)]), where
T denotes the number of batch gradient descent iterations, B = |B| the batch size, N = |Na| the
size of the nearest neighbor set, and p the maximum number of unique words in a document. This
is because computing T∗ij , α

∗ and β∗ using the alternating fixed point algorithm in Section 3.1
requires O(p2) time, while constructing the gradients from eqs. (8) and (10) takes O(d2(p + r))
time. The approximated gradient eq. (11) requires this computation to be repeated BN times. In
our experiments, we set B = 32 and N = 200, and computing the gradient at each iteration can be
done in seconds.

4 Results
We evaluate S-WMD on 8 different document corpora and compare the kNN error with unsupervised
WCD, WMD, and 6 document representations. In addition, all 6 document representation baselines
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Table 1: The document datasets (and their descriptions) used for visualization and evaluation.
BOW avg

name description C n ne dim. words
BBCSPORT BBC sports articles labeled by sport 5 517 220 13243 117

TWITTER tweets categorized by sentiment [31] 3 2176 932 6344 9.9
RECIPE recipe procedures labeled by origin 15 3059 1311 5708 48.5

OHSUMED medical abstracts (class subsampled) 10 3999 5153 31789 59.2
CLASSIC academic papers labeled by publisher 4 4965 2128 24277 38.6

REUTERS news dataset (train/test split [3]) 8 5485 2189 22425 37.1
AMAZON reviews labeled by product 4 5600 2400 42063 45.0
20NEWS canonical news article dataset [3] 20 11293 7528 29671 72

twitter recipe ohsumed classic amazonbbcsport reuters

W
M
D

S-
W
M
D

20news

Figure 1: t-SNE plots of WMD and S-WMD on all datasets.

are used with and without 3 leading supervised metric learning algorithms—resulting in an overall
total of 26 competitive baselines. Our code is implemented in Matlab and is freely available at
https://github.com/gaohuang/S-WMD.

Datasets and Baselines. We evaluate all approaches on 8 document datasets in the settings of
news categorization, sentiment analysis, and product identification, among others. Table 1 describes
the classification tasks as well as the size and number of classes C of each of the datasets. We
evaluate against the following document representation/distance methods: 1. bag-of-words (BOW):
a count of the number of word occurrences in a document, the length of the vector is the number
of unique words in the corpus; 2. term frequency-inverse document frequency (TF-IDF): the BOW
vector normalized by the document frequency of each word across the corpus; 3. Okapi BM25 [28]:
a TF-IDF-like ranking function, first used in search engines; 4. Latent Semantic Indexing (LSI)
[11]: projects the BOW vectors onto an orthogonal basis via singular value decomposition; 5. La-
tent Dirichlet Allocation (LDA) [2]: a generative probabilistic method that models documents as
mixtures of word ‘topics’. We train LDA transductively (i.e., on the combined collection of training
& testing words) and use the topic probabilities as the document representation ; 6. Marginalized
Stacked Denoising Autoencoders (mSDA) [4]: a fast method for training stacked denoising autoen-
coders, which have state-of-the-art error rates on sentiment analysis tasks [14]. For datasets larger
than RECIPE we use either a high-dimensional variant of mSDA or take 20% of the features that
occur most often, whichever has better performance.; 7. Word Centroid Distance (WCD), described
in Section 2; 8. Word Mover’s Distance (WMD), described in Section 2. For completeness, we
also show results for the Supervised Word Centroid Distance (S-WCD) and the initialization of S-
WMD (S-WMD init.), described in Section 3. For methods that propose a document representation
(as opposed to a distance), we use the Euclidean distance between these vector representations for
visualization and kNN classification. For the supervised metric learning results we first reduce the
dimensionality of each representation to 200 dimensions (if necessary) with PCA and then run ei-
ther NCA, ITML, or LMNN on the projected data. We tune all free hyperparameters in all compared
methods with Bayesian optimization (BO), using the implementation of Gardner et al. [13]3.

kNN classification. We show the kNN test error of all document representation and distance meth-
ods in Table 2. For datasets that do not have a predefined train/test split: BBCSPORT, TWITTER,
RECIPE, CLASSIC, and AMAZON we average results over five 70/30 train/test splits and report stan-
dard errors. For each dataset we highlight the best results in bold (and those whose standard error

3http://tinyurl.com/bayesopt
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Table 2: The kNN test error for all datasets and distances.
DATASET BBCSPORT TWITTER RECIPE OHSUMED CLASSIC REUTERS AMAZON 20NEWS AVERAGE-RANK

UNSUPERVISED
BOW 20.6± 1.2 43.6± 0.4 59.3± 1.0 61.1 36.0± 0.5 13.9 28.5± 0.5 57.8 26.1

TF-IDF 21.5± 2.8 33.2± 0.9 53.4± 1.0 62.7 35.0± 1.8 29.1 41.5± 1.2 54.4 25.0
OKAPI BM25 [28] 16.9± 1.5 42.7± 7.8 53.4± 1.9 66.2 40.6± 2.7 32.8 58.8± 2.6 55.9 26.1

LSI [11] 4.3± 0.6 31.7± 0.7 45.4± 0.5 44.2 6.7± 0.4 6.3 9.3± 0.4 28.9 12.0
LDA [2] 6.4± 0.7 33.8± 0.3 51.3± 0.6 51.0 5.0± 0.3 6.9 11.8± 0.6 31.5 16.6

MSDA [4] 8.4± 0.8 32.3± 0.7 48.0± 1.4 49.3 6.9± 0.4 8.1 17.1± 0.4 39.5 18.0
ITML [10]

BOW 7.4± 1.4 32.0± 0.4 63.1± 0.9 70.1 7.5± 0.5 7.3 20.5± 2.1 60.6 23.0
TF-IDF 1.8± 0.2 31.1± 0.3 51.0± 1.4 55.1 9.9± 1.0 6.6 11.1± 1.9 45.3 14.8

OKAPI BM25 [28] 3.7± 0.5 31.9± 0.3 53.8± 1.8 77.0 18.3± 4.5 20.7 11.4± 2.9 81.5 21.5
LSI [11] 5.0± 0.7 32.3± 0.4 55.7± 0.8 54.7 5.5± 0.7 6.9 10.6± 2.2 39.6 17.6
LDA [2] 6.5± 0.7 33.9± 0.9 59.3± 0.8 59.6 6.6± 0.5 9.2 15.7± 2.0 87.8 22.5

MSDA [4] 25.5± 9.4 43.7± 7.4 54.5± 1.3 61.8 14.9± 2.2 5.9 37.4± 4.0 47.7 23.9
LMNN [36]

BOW 2.4± 0.4 31.8± 0.3 48.4± 0.4 49.1 4.7± 0.3 3.9 10.7± 0.3 40.7 11.5
TF-IDF 4.0± 0.6 30.8± 0.3 43.7± 0.3 40.0 4.9± 0.3 5.8 6.8± 0.3 28.1 7.8

OKAPI BM25 [28] 1.9± 0.7 30.5± 0.4 41.7± 0.7 59.4 19.0± 9.3 9.2 6.9± 0.2 57.4 14.4
LSI [11] 2.4± 0.5 31.6± 0.2 44.8± 0.4 40.8 3.0± 0.1 3.2 6.6± 0.2 25.1 5.1
LDA [2] 4.5± 0.4 31.9± 0.6 51.4± 0.4 49.9 4.9± 0.4 5.6 12.1± 0.6 32.0 14.6

MSDA [4] 22.7± 10.0 50.3± 8.6 46.3± 1.2 41.6 11.1± 1.9 5.3 24.0± 3.6 27.1 17.3
NCA [15]

BOW 9.6± 0.6 31.1± 0.5 55.2± 0.6 57.4 4.0± 0.1 6.2 16.8± 0.3 46.4 17.5
TF-IDF 0.6± 0.3 30.6± 0.5 41.4± 0.4 35.8 5.5± 0.2 3.8 6.5± 0.2 29.3 5.4

OKAPI BM25 [28] 4.5± 0.5 31.8± 0.4 45.8± 0.5 56.6 20.6± 4.8 10.5 8.5± 0.4 55.9 17.9
LSI [11] 2.4± 0.7 31.1± 0.8 41.6± 0.5 37.5 3.1± 0.2 3.3 7.7± 0.4 30.7 6.3
LDA [2] 7.1± 0.9 32.7± 0.3 50.9± 0.4 50.7 5.0± 0.2 7.9 11.6± 0.8 30.9 16.5

MSDA [4] 21.8± 7.4 37.9± 2.8 48.0± 1.6 40.4 11.2± 1.8 5.2 23.6± 3.1 26.8 16.1
DISTANCES IN THE WORD MOVER’S FAMILY

WCD [19] 11.3± 1.1 30.7± 0.9 49.4± 0.3 48.9 6.6± 0.2 4.7 9.2± 0.2 36.2 13.5
WMD [19] 4.6± 0.7 28.7± 0.6 42.6± 0.3 44.5 2.8± 0.1 3.5 7.4± 0.3 26.8 6.1

S-WCD 4.6± 0.5 30.4± 0.5 51.3± 0.2 43.3 5.8± 0.2 3.9 7.6± 0.3 33.6 11.4
S-WMD INIT. 2.8± 0.3 28.2± 0.4 39.8± 0.4 38.0 3.3± 0.3 3.5 5.8± 0.2 28.4 4.3

S-WMD 2.1± 0.5 27.5± 0.5 39.2± 0.3 34.3 3.2± 0.2 3.2 5.8± 0.1 26.8 2.4

overlaps the mean of the best result). On the right we also show the average rank across datasets,
relative to unsupervised BOW (bold indicates the best method). We highlight the unsupervised
WMD in blue (WMD) and our new result in red (S-WMD). Despite the very large number of com-
petitive baselines, S-WMD achieves the lowest kNN test error on 5/8 datasets, with the exception
of BBCSPORT, CLASSIC and AMAZON. On these datasets it achieves the 4th lowest on BBCSPORT
and CLASSIC, and tied at 2nd on 20NEWS. On average across all datasets it outperforms all other
26 methods. Another observation is that S-WMD right after initialization (S-WMD init.) performs
quite well. However, as training S-WMD is efficient (shown in Table 3), it is often well worth the
training time.
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Figure 2: The Top-100 words upweighted by
S-WMD on 20NEWS.

For unsupervised baselines, on datasets BBCSPORT
and OHSUMED, where the previous state-of-the-art
WMD was beaten by LSI, S-WMD reduces the er-
ror of LSI relatively by 51% and 22%, respectively.
In general, supervision seems to help all methods
on average. One reason why NCA with a TF-IDF
document representation may be performing better
than S-WMD could be because of the long docu-
ment lengths in BBCSPORT and OHSUMED. Hav-
ing denser BOW vectors may improve the inverse
document frequency weights, which in turn may be
a good initialization for NCA to further fine-tune.
On datasets with smaller documents such as TWIT-
TER, CLASSIC, and REUTERS, S-WMD outperforms
NCA with TF-IDF relatively by 10%, 42%, and
15%, respectively. On CLASSIC WMD outperforms
S-WMD possibly because of a poor initialization
and that S-WMD uses the squared Euclidean dis-
tance between word vectors, which may be subop-
timal for this dataset. This however, does not occur
for any other dataset.

Visualization. Figure 1 shows a 2D embedding of the test split of each dataset by WMD and
S-WMD using t-Stochastic Neighbor Embedding (t-SNE) [33]. The quality of a distance can be
visualized by how clustered points in the same class are. Using this metric, S-WMD noticeably
improves upon WMD on almost all the 8 datasets. Figure 2 visualizes the top 100 words with

7



largest weights learned by S-WMD on the 20NEWS dataset. The size of each word is proportional
its learned weight. We can observe that these upweighted words are indeed most representative for
the true classes of this dataset. More detailed results and analysis can be found in the supplementary.

Table 3: Distance computation times.

FULL TRAINING TIMES
DATASET METRICS

S-WCD/S-WMD INIT. S-WMD
BBCSPORT 1M 25S 4M 56S
TWITTER 28M 59S 7M 53S

RECIPE 23M 21S 23M 58S
OHSUMED 46M 18S 29M 12S
CLASSIC 1H 18M 36M 22S
REUTERS 2H 7M 34M 56S
AMAZON 2H 15M 20M 10S
20NEWS 14M 42S 1H 55M

Training time. Table 3 shows the training
times for S-WMD. Note that the time to learn
the initial metric A is not included in time
shown in the second column. Relative to the
initialization, S-WMD is surprisingly fast. This
is due to the fast gradient approximation and
the batch gradient descent introduced in Sec-
tion 3.1 and 3.2. We note that these times are
comparable or even faster than the time it takes
to train a linear metric on the baseline methods
after PCA.

5 Related Work
Metric learning is a vast field that includes both
supervised and unsupervised techniques (see
Yang & Jin [37] for a large survey). Alongside NCA [15], described in Section 2, there are a num-
ber of popular methods for generalized Euclidean metric learning. Large Margin Nearest Neighbors
(LMNN) [36] learns a metric that encourages inputs with similar labels to be close in a local region,
while encouraging inputs with different labels to be farther by a large margin. Information-Theoretic
Metric Learning (ITML) [10] learns a metric by minimizing a KL-divergence subject to generalized
Euclidean distance constraints. Cuturi & Avis [7] was the first to consider learning the ground dis-
tance in the Earth Mover’s Distance (EMD). In a similar work, Wang & Guibas [34] learns a ground
distance that is not a metric, with good performance in certain vision tasks. Most similar to our
work Wang et al. [35] learn a metric within a generalized Euclidean EMD ground distance using
the framework of ITML for image classification. They do not, however, consider re-weighting the
histograms, which allows our method extra flexibility. Until recently, there has been relatively little
work towards learning supervised word embeddings, as state-of-the-art results rely on making use
of large unlabeled text corpora. Tang et al. [32] propose a neural language model that uses label
information from emoticons to learn sentiment-specific word embeddings.

6 Conclusion
We proposed a powerful method to learn a supervised word mover’s distance, and demonstrated
that it may well be the best performing distance metric for documents to date. Similar to WMD,
our S-WMD benefits from the large unsupervised corpus, which was used to learn the word2vec
embedding [22, 23]. The word embedding gives rise to a very good document distance, which
is particularly forgiving when two documents use syntactically different but conceptually similar
words. Two words may be similar in one sense but dissimilar in another, depending on the articles in
which they are contained. It is these differences that S-WMD manages to capture through supervised
training. By learning a linear metric and histogram re-weighting through the optimal transport of
the word mover’s distance, we are able to produce state-of-the-art classification results efficiently.
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