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Abstract

Even in state-spaces of modest size, planning is plagued by the “curse of dimen-
sionality”. This problem is particularly acute in human and animal cognition given
the limited capacity of working memory, and the time pressures under which plan-
ning often occurs in the natural environment. Hierarchically organized modular
representations have long been suggested to underlie the capacity of biological
systems1,2 to efficiently and flexibly plan in complex environments. However, the
principles underlying efficient modularization remain obscure, making it difficult to
identify its behavioral and neural signatures. Here, we develop a normative theory
of efficient state-space representations which partitions an environment into distinct
modules by minimizing the average (information theoretic) description length of
planning within the environment, thereby optimally trading off the complexity of
planning across and within modules. We show that such optimal representations
provide a unifying account for a diverse range of hitherto unrelated phenomena at
multiple levels of behavior and neural representation.

1 Introduction

In a large and complex environment, such as a city, we often need to be able to flexibly plan so that we
can reach a wide variety of goal locations from different start locations. How might this problem be
solved efficiently? Model-free decision making strategies3 would either require relearning a policy,
determining which actions (e.g. turn right or left) should be chosen in which state (e.g. locations in
the city), each time a new start or goal location is given – a very inefficient use of experience resulting
in prohibitively slow learning (but see Ref. 4). Alternatively, the state-space representation used for
determining the policy can be augmented with extra dimensions representing the current goal, such
that effectively multiple policies can be maintained5, or a large “look-up table” of action sequences
connecting any pair of start and goal locations can be represented – again leading to inefficient use of
experience and potentially excessive representational capacity requirements.

In contrast, model-based decision-making strategies rely on the ability to simulate future trajectories
in the state space and use this in order to flexibly plan in a goal-dependent manner. While such
strategies are data- and (long term) memory-efficient, they are computationally expensive, especially
in state-spaces for which the corresponding decision tree has a large branching factor and depth6.
Endowing state-space representations with a hierarchical structure is an attractive approach to
reducing the computational cost of model-based planning7–11 and has long been suggested to be
a cornerstone of human cognition1. Indeed, recent experiments in human decision-making have
gleaned evidence for the use and flexible combination of “decision fragments”12 while neuroimaging
work has identified hierarchical action-value reinforcement learning in humans13 and indicated that
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dorsolateral prefrontal cortex is involved in the passive clustering of sequentially presented stimuli
when transition probabilities obey a “community” structure14.

Despite such a strong theoretical rationale and empirical evidence for the existence of hierarchical
state-space representations, the computational principles underpinning their formation and utilization
remain obscure. In particular, previous approaches proposed algorithms in which the optimal state-
space decomposition was computed based on the optimal solution in the original (non-hierarchical)
representation15,16. Thus, the resulting state-space partition was designed for a specific (optimal)
environment solution rather than the dynamics of the planning algorithm itself, and also required a
priori knowledge of the optimal solution to the planning problem (which may be difficult to obtain in
general and renders the resulting hierarchy obsolete). Here, we compute a hierarchical modularization
optimized for planning directly from the transition structure of the environment, without assuming
any a priori knowledge of optimal behavior. Our approach is based on minimizing the average
information theoretic description length of planning trajectories in an environment, thus explicitly
optimizing representations for minimal working memory requirements. The resulting representation
are hierarchically modular, such that planning can first operate at a global level across modules
acquiring a high-level “rough picture” of the trajectory to the goal and, subsequently, locally within
each module to “fill in the details”.

The structure of the paper is as follows. We first describe the mathematical framework for optimizing
modular state-space representations (Section 2), and also develop an efficient coding-based approach
to neural representations of modularised state spaces (Section 2.6). We then test some of the key
predictions of the theory in human behavioral and neural data (Section 3), and also describe how this
framework can explain several temporal and representational characteristics of “task-bracketing” and
motor chunking in rodent electrophysiology (Section 4). We end by discussing future extensions and
applications of the theory (Section 5).

2 Theory

2.1 Basic definitions

In order to focus on situations which require flexible policy development based on dynamic goal
requirements, we primarily consider discrete “multiple-goal” Markov decision processes (MDPs).
Such an MDP, M := {S,A, T ,G}, is composed of a set of states S, a set of actions A (a subset
As of which is associated with each state s ∈ S), and transition function T which determines the
probability of transitioning to state sj upon executing action a in state si, p(sj |si, a) := T (si, a, sj).
A task (s, g) is defined by a start state s ∈ S and a goal state g ∈ G and the agent’s objective is to
identify a trajectory of via states v which gets the agent from s to g. We define a modularization1

M of the state-space S to be a set of Boolean matricesM := {Mi}i=1...m indicating the module
membership of all states s ∈ S. That is, for all s ∈ S, there exists i ∈ 1, . . . ,m such that
Mi(s) = 1, Mj(s) = 0 ∀j 6= i. We assume this to form a disjoint cover of the state-space
(overlapping modular architectures will be explored in future work). We will abuse notation by
using the expression s ∈M to indicate that a state s is a member of a module M . As our planning
algorithm P , we consider random search as a worst-case scenario although, in principle, our approach
applies to any algorithm such as dynamic programming or Q-learning3 and we expect the optimal
modularization to depend on the specific algorithm utilized.

We describe and analyze planning as a Markov process. For planning, the underlying state-space is
the same as that of the MDP and the transition matrix T is a marginalization over a planning policy
πplan (which, here, we assume is the random policy πrand(a|si) := 1

|Asi
| )

Tij =
∑

a

πplan(a|si) T (si, a, sj) (1)

Given a modularizationM, planning at the global level is a Markov process MG corresponding to
a “low-resolution” representation of planning in the underlying MDP where each state corresponds

1This is an example of a “propositional representation” 17,18 and is analogous to state aggregation or “clus-
tering” 19,20 in reinforcement learning which is typically accomplished via heuristic bottleneck discovery algo-
rithms 21. Our method is novel in that it does not require the optimal policy as an input and is founded on a
normative principle.
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to a “local” module Mi and the transition structure TG is induced from T via marginalization and
normalization22 over the internal states of the local modules Mi.

2.2 Description length of planning

We use an information-theoretic framework23,24 to define a measure, the (expected) description
length (DL) of planning, which can be used to quantify the complexity of planning P in the induced
global L(P|MG) and local modules L(P|Mi). We will compute the DL of planning, L(P), in a
non-modularized setting and outline the extension to modularized planning DL L(P|M) (elaborating
further in the supplementary material). Given a task (s, g) in an MDP, a solution v(n) to this task
is an n-state trajectory such that v(n)

1 = s and v
(n)
n = g. The description length (DL) of this

trajectory is L(v(n)) := − log pplan(v
(n)). A task may admit many solutions corresponding to

different trajectories over the state-space thus we define the DL of the task (s, g) to be the expectation
over all trajectories which solve this task, namely

L(s, g) := Ev,n

[
L(v(n))

]
= −

∞∑

n=1

∑

v(n)

p(v(n)|s, g) log p(v(n)|s, g) (2)

This is the (s, g)-th entry of the trajectory entropy matrix H of M. Remarkably, this can be expressed
in closed form25:

[H]sg =
∑

v 6=g

[(I − Tg)−1]svHv (3)

where T is the transition matrix of the planning Markov chain (Eq. 1), Tg is a sub-matrix correspond-
ing to the elimination of the g-th column and row, and Hv is the local entropy Hv := H(Tv·) at state
v. Finally, we define the description length L(P) of the planning process P itself over all tasks (s, g)

L(P) := Es,g[L(s, g)] =
∑

(s,g)

Ps Pg L(s, g) (4)

where Ps and Pg are priors of the start and goal states respectively which we assume to be factorizable
P(s,g) = Ps Pg for clarity of exposition. In matrix notation, this can be expressed asL(P) = Ps HPT

g
where Ps is a row-vector of start state probabilities and Pg is a row-vector of goal state probabilities.

The planning DL, L(P|M), of a nontrivial modularization of an MDP requires (1) the computation
of the DL of the global L(P|MG) and the local planning processes L(P|Mi) for global MG and
local Mi modular structures respectively, and (2) the weighting of these quantities by the correct
priors. See supplementary material for further details.

2.3 Minimum modularized description length of planning

Based on a modularization, planning can be first performed at the global level across modules, and
then subsequently locally within the subset of modules identified by the global planning process
(Fig. 1). Given a task (s, g) where s represents the start state and g represents the goal state, global
search would involve finding a trajectory in MG from the induced initial module (the unique Ms such
that Ms(s) = 1) to the goal module (Mg(g) = 1). The result of this search will be a global directive
across modules Ms → · · · → Mg. Subsequently, local planning sub-tasks are solved within each
module in order to “fill in the details”. For each module transition Mi →Mj in MG, a local search
in Mi is accomplished by planning from an entrance state from the previous module, and planning
until an exit state for module Mj is entered. This algorithm is illustrated in Figure 1.

By minimizing the sum of the global L(P|MG) and local DLs L(P|Mi), we establish the optimal
modularizationM∗ of a state-space for planning:

M∗ := argmin
M

[L(P|M) + L(M)] , where L(P|M) := L(P|MG) +
∑

i

L(P|Mi) (5)

Note that this formulation explicitly trades-off the complexity (measured as DL) of planning at the
global level, L(P|MG), i.e. across modules, and at the local level, L(P|Mi), i.e. within individual
modules (Fig. 1C-D). In principle, the representational cost of the modularization itself L(M) is also
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part of the trade-off, but we do not consider it further here for two reasons. First, in the state-spaces
considered in this paper, it is dwarfed by the the complexities of planning, L(M) � L(P|M)
(see the supplementary material for the mathematical characterization of L(M)). Second, it taxes
long-term rather than short-term memory, which is at a premium when planning26,27. Importantly,
although computing the DL of a modularization seems to pose significant computational challenges
by requiring the enumeration of a large number of potential trajectories in the environment (across
or within modules), in the supplementary material we show that it can be computed in a relatively
straightforward manner (the only nontrivial operation being a matrix inversion) using the theory of
finite Markov chains22.

2.4 Planning compression

The planning DL L(s, g) for a specific task (s, g) describes the expected difficulty in finding an
intervening trajectory v for a task (s, g). For example, in a binary coding scheme where we assign
binary sequences to each state, the expected length of string of random 0s and 1s corresponding to a
trajectory will be shorter in a modularized compared to a non-modularized representation. Thus, we
can examine the relative benefit of an optimal modularization, in the Shannon limit, by computing
the ratio of trajectory description lengths in modularized and non-modularized representations of
a task or environment28. In line with spatial cognition terminology29, we refer to this ratio as the
compression factor of the trajectory.
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Figure 1. Modularized planning. A. Schematic exhibiting how planning, which could be highly
complex using a flat state space representation (left), can be reformulated into a hierarchical planning
process via a modularization (center and right). Boxes (circles or squares) show states, lines are
transitions (gray: potential transitions, black: transitions considered in current plan). Once the “global
directive” has been established by searching in a low-resolution representation of the environment
(center), the agent can then proceed to “fill in the details” by solving a series of local planning
sub-tasks (right). Formulae along the bottom show the DL of the corresponding planning processes.
B. Given a modularization, a serial hierarchical planning process unfolds in time beginning with
a global search task followed by local sub-tasks. As each global/local planning task is initiated in
series, there is a phasic increase in processing which scales with planning difficulty in the upcoming
module as quantified by the local DL, L(P|Mi). C. Map of London’s Soho state-space, streets (lines,
with colors coding degree centrality) correspond to states (courtesy of Hugo Spiers). D. Minimum
expected planning DL of London’s Soho as a function of the number of modules (minimizing over
all modularizations with the given number of modules). Red: global, blue: local, black: total DL.
E. Histogram of compression factors of 200 simulated trajectories from randomly chosen start to
goal locations in London’s Soho. F. Absolute entropic centrality (EC) differences within and across
connected modules in the optimal modularization of the Soho state-space. G. Scatter plot of degree
and entropic centralities of all states in the Soho state-space.
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2.5 Entropic centrality

The computation of the planning DL (Section 2.2) makes use of the trajectory entropy matrix H of a
Markov chain. Since H is composed of weighted sums of local entropies Hv , it suggests that we can
express the contribution of a particular state v to the planning DL by summing its terms for all tasks
(s, g). Thus, we define the entropic centrality, Ev , of a state v via

Ev =
∑

s,g

DsvgHv (6)

where we have made use of the fundamental tensor of a Markov chain D with components Dsvg =[
(I − Tg)−1

]
sv

. Note that task priors can easily be incorporated into this definition. The entropic
centrality (EC) of a state measures its importance to tasks across the domain and its gradient can
serve as a measure of “subgoalness” for the planning process P . Indeed, we observed in simulations
that one strategy used by an optimal modularization to minimize planning complexity is to “isolate”
planning DL within rather than across modules, such that EC changes more across than within
modules (Fig. 1F). This suggests that changes in EC serve as a good heuristic for identifying modules.

Furthermore, EC is tightly related to the graph-theoretic notion of degree centrality (DC). When tran-
sitions are undirected and are deterministically related to action, degree centrality deg(v) corresponds
to the number of states which are accessible from a state v. In such circumstances and assuming a
random policy, we have

Ev =
∑

s,g

Dsvg
1

deg(v)
log(deg(v)) (7)

The ECs and DCs of all states in a state-space reflecting the topology of London’s Soho are plotted in
Fig. 1G and show a strong correlation in agreement with this analysis. In Section 3.2 we test whether
this tight relationship, together with the intuition developed above about changes in EC demarcating
approximate module boundaries, provides a normative account of recently observed correlations
between DC and human hippocampal activity during spatial navigation30.

2.6 Efficient coding in modularized state-spaces

In addition to “compressing” the planning process, modularization also enables a neural channel to
transmit information (for example, a desired state sequence) in a more efficient pattern of activity
using a hierarchical entropy coding strategy31 whereby contextual codewords signaling the entrance
to and exit from a module constrain the set of states that can be transmitted to those within a
module thus allowing them to be encoded with shorter description lengths according to their relative
probabilities28 (i.e. a state that forms part of many trajectory will have a shorter description length
than one that does not). Assuming that neurons take advantage of these strategies in an efficient
code32, several predictions can be made with regard to the representational characteristics of neuronal
populations encoding components of optimally modularized state-spaces. We suggest that the phasic
neural responses (known as “start” and “stop” signals) which have been observed to encase learned
behavioral sequences in a wide range of control paradigms across multiple species33–36 serve this
purpose in modularized control architectures. Our theory makes several predictions regarding the
temporal dynamics and population characteristics of these start/stop codes. First, it determines
a specific temporal pattern of phasic start/stop activity as an animal navigates using an optimally
modularized representation of a state-space. Second, neural representations for the start signals should
depend on the distribution of modules, while the stop codes should be sensitive to the distribution
of components within a module. Considering the minimum average description length of each of
these distribution, we can make predictions regarding how much neural resources (for example, the
number of neurons) should be assigned to represent each of these start/stop variables. We verify these
predictions in published neural data36,34 in Section 4.

3 Route compression and state-space segmentation in spatial cognition

3.1 Route compression

We compared the compression afforded by optimal modularization to a recent behavioral study
examining trajectory compression during mental navigation29. In this task, students at the University
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of Toronto were asked to mentally navigate between a variety of start and goal locations on their
campus and the authors computed the (inverse) ratio between the duration of this mental navigation
and the typical time it would physically take to walk the same distance. Although mental navigation
time was substantially smaller than physical time, it was not simply a constant fraction of it, but
instead the ratio of the two (the compression factor) became higher with longer route length (Fig. 2A).
In fact, while in the original study only a linear relationship between compression factor and physical
route length was considered, reanalysing the data yielded a better fit by a logarithmic function
(R2 = 0.69 vs. 0.46).

In order to compare our theory with these data, we computed compression factors between the
optimally modularized and the non-modularized version of an environment. This was because
students were likely to have developed a good knowledge of the campus’ spatial structure, and so
we assumed they used an approximately optimal modularization for mental navigation, while the
physical walking time could not make use of this modularization and was bound to the original
non-modularized topology of the campus. As we did not have access to precise geographical data
about the part of the U. Toronto campus that was used in the original experiment, we ran our algorithm
on a part of London Soho which had been used in previous studies of human navigation30. Based on
200 simulated trajectories over route lengths of 1 to 10 states, we found that our compression factor
showed a similar dependence on route length2 (Fig. 2B) and again was better fit by a logarithmic
versus a linear function (R2 = 0.82 vs. 0.72, respectively).
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Figure 2. Modularized representations for spatial cognition. A. Compression factor as a function
of route length for navigating the U. Toronto campus (reproduced from Ref. 29) with linear (grey)
and logarithmic fits (blue). B. Compression factors for the optimal modularization in the London
Soho environment. C. Spearman correlations between changes in local planning DL, L(P|Mi), and
changes in different graph-theoretic measures of centrality.

3.2 Local planning entropy and degree centrality

We also modeled a task in which participants, who were trained to be familiar with the environment,
navigated between randomly chosen locations in a virtual reality representation of London’s Soho
by pressing keys to move through the scenes30. Functional magnetic resonance imaging during
this task showed that hippocampal activity during such self-planned (but not guided) navigation
correlated most strongly with changes in a topological state “connectedness” measure known as
degree centrality (DC, compared to other standard graph-theoretic measures of centrality such as
“betweenness” and “closeness”). Although changes in DC are not directly relevant to our theory, we
can show that they serve as a good proxy for a fundamental quantity in the theory, planning DL (see
Eq. 7), which in turn should be reflected in neural activations.

To relate the optimal modularization, the most direct prediction of our theory, to neural signals, we
made the following assumptions (see also Fig. 1B). 1. Planning (and associated neural activity)
occurs upon entering a new module (as once a plan is prepared, movement across the module can
be automatic without the need for further planning, until transitioning to a new module). 2. The
magnitude of neural activity is related to the local planning DL, L(P|Mi), of the module (as the
higher the entropy, the more trajectories need to be considered, likely activating more neurons with
different tunings for state transitions, or state-action combinations37, resulting in higher overall

2Note that the absolute scale of our compression factor is different from that found in the experiment because
we did not account for the trivial compression that comes from the simple fact that it is just generally faster to
move mentally than physically.
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Fig. 3 “Start/stop”
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Figure 3. Neural activities encoding module boundaries. A. T-maze task in which tone determines
the location of the reward (reproduced from Ref. 34). Inset: the model’s optimal modularization
of the discretized T-maze state-space. Note that the critical junction has been extracted to form its
own module which isolates the local planning DL caused by the split in the path. B. Empirical data
exhibiting the temporal pattern of task-bracketing in dorsolateral striatal (DLS) neurons. Prior to
learning the task, ensemble activity was highly variable both spatially and temporally throughout
the behavioral trajectory. Reproduced from Ref. 34. C. Simulated firing rates of “task-responsive”
neurons after and before acquiring an optimal modularization. D. The optimal modularization
(colored states are in the same module) of a proposed state-space for an operant conditioning task36.
Note that the lever pressing sequences form their own modules and thus require specialized start/stop
codes. E. Analyses of striatal neurons suggesting that a larger percentage of neurons encoded lever
sequence initiations compared to terminations, and that very few encoded both. Reproduced from
Ref. 36. F. Description lengths of start/stop codes in the optimal modularization.

activity in the population). Furthermore, as before, we also assume that participants were sufficiently
familiar with Soho that they used the optimal modularization (as they were specifically trained in
the experiment). Having established that under the optimal modularization entropic centrality (EC)
tends to change more across than within modules (Fig. 1F), and also that EC is closely related to DC
(Fig. 1G), the theory predicts that neural activity should be timed to changes in DC. Furthermore,
the DLs of successive modules along a trajectory will in general be positively correlated with the
differences between their DLs (due to the unavoidable “regression to the mean” effect3). Noting that
the planning DL of a module is just the (weighted) average EC of its states (see Section 2.5), the
theory thus more specifically predicts a positive correlation between neural activity (representing the
DLs of modules) and changes in EC and therefore changes in DC – just as seen in experiments.

We verified these predictions numerically by quantifying the correlation of changes in each centrality
measure used in the experiments with transient changes in local planning complexity as computed
in the model (Fig. 2C). Across simulated trajectories, we found that changes in DC had a strong
correlation with changes in local planning entropy (mean ρdeg = 0.79) that was significantly higher
(p < 10−5, paired t-tests) than the correlation with the other centrality measures. We predict that even
higher correlations with neural activity could be achieved if planning DL according to the optimal
modularization, rather than DC, was used directly as a regressor in general linear models of the fMRI
data.

3Transitioning to a module with larger/smaller DL will cause, on average, a more positive/negative DL
change compared to the previous module DL.

7



4 Task-bracketing and start/stop signals in striatal circuits

Several studies have examined sequential action selection paradigms and identified specialized task-
bracketing33,34 and “start” and “stop” neurons that are invariant to a wide range of motivational,
kinematic, and environmental variables36,35. Here, we show that task-bracketing and start/stop signals
arise naturally from our model framework in two well-studied tasks, one involving their temporal34

and the other their representational characteristics36.

In the first study, as rodents learned to navigate a T-maze (Fig. 3A), neural activity in dorsolateral
striatum and infralimbic cortex became increasingly crystallized into temporal patterns known as
“task-brackets”34. For example, although neural activity was highly variable before learning; after
learning the same neurons phasically fired at the start of a behavioral sequence, as the rodent turned
into and out of the critical junction, and finally at the final goal position where reward was obtained.
Based on the optimal modularization for the T-maze state-space (Fig. 3A inset), we examined
spike trains from a simulated neurons whose firing rates scaled with local planning entropy (see
supplementary material) and this showed that initially (i.e. without modularization, Fig. 3C right)
the firing rate did not reflect any task-bracketing but following training (i.e. optimal modularization,
Fig. 3C left) the activity exhibited clear task-bracketing driven by the initiation or completion of a
local planning process. These result show a good qualitative match to the empirical data (Fig. 3B,
from Ref. 34) showing that task-bracketing patterns of activity can be explained as the result of
module start/stop signaling and planning according to an optimal modular decomposition of the
environment.

In the second study, rodents engaged in an operant conditioning paradigm in which a sequence of eight
presses on a left or right lever led to the delivery of high or low rewards36. After learning, recordings
from nigrostriatal circuits showed that some neurons encoded the initiation, and fewer appeared to
encode the termination, of these action sequences. We used our framework to compute the optimal
modularization based on an approximation to the task state-space (Fig. 3D) in which the rodent could
be in many natural behavioral states (red circles) prior to the start of the task. Our model found
that the lever action sequences were extracted into two separate modules (blue and green circles).
Given a modularization, a hierarchical entropy coding strategy uses distinct neural codewords for the
initiation and termination of each module (Section 2.6). Importantly, we found that the description
lengths of start codes was longer than that of stop codes (Fig. 3F). Thus, an efficient allocation of
neural resources predicts more neurons encoding start than stop signals, as seen in the empirical data
(Fig. 3E). Intuitively, more bits are required to encode starts than stops in this state-space due to the
relatively high level of entropic centrality of the “rest” state (where many different behaviors may
be initiated, red circles) compared to the final lever press state (which is only accessible from the
previous Lever press state and where the rodent can only choose to enter the magazine or return to
“rest”). These results show that the start and stop codes and their representational characteristics arise
naturally from an efficient representation of the optimally modularized state space.

5 Discussion

We have developed the first framework in which it is possible to derive state-space modularizations
that are directly optimized for the efficiency of decision making strategies and do not require
prior knowledge of the optimal policy before computing the modularization. Furthermore, we
have identified experimental hallmarks of the resulting modularizations, thereby unifying a range
of seemingly disparate results from behavioral and neurophysiological studies within a common,
principled framework. An interesting future direction would be to study how modularized policy
production may be realized in neural circuits. In such cases, once a representation has been established,
neural dynamics at each level of the hierarchy may be used to move along a state-space trajectory via
a sequence of attractors with neural adaptation preventing backflow38, or by using fundamentally
non-normal dynamics around a single attractor state39. The description length that lies at the heart of
the modularization we derived was based on a specific planning algorithm, random search, which
may not lead to the modularization that would be optimal for other, more powerful and realistic,
planning algorithms. Nevertheless, in principle, our approach is general in that it can take any
planning algorithm as the component that generates description lengths, including hybrid algorithms
that combine model-based and model-free techniques that likely underlie animal and human decision
making40.
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