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Abstract

Deep neural networks have received a considerable attention due to the success
of their training for real world machine learning applications. They are also
of great interest to the understanding of sensory processing in cortical sensory
hierarchies. The purpose of this work is to advance our theoretical understanding of
the computational benefits of these architectures. Using a simple model of clustered
noisy inputs and a simple learning rule, we provide analytically derived recursion
relations describing the propagation of the signals along the deep network. By
analysis of these equations, and defining performance measures, we show that
these model networks have optimal depths. We further explore the dependence of
the optimal architecture on the system parameters.

1 Introduction

The use of deep feedforward neural networks in machine learning applications has become widespread
and has drawn considerable research attention in the past few years. Novel approaches for training
these structures to perform various computation are in constant development. However, there is still a
gap between our ability to produce and train deep structures to complete a task and our understanding
of the underlying computations. One interesting class of previously proposed models uses a series of
sequential of de-noising autoencoders (dA) to construct a deep architectures [5, 14]. At it base, the
dA receives a noisy version of a pre-learned pattern and retrieves the noiseless representation. Other
methods of constructing deep networks by unsupervised methods have been proposed including
the use of Restricted Boltzmann Machines (RBMs) [3, 12, 7]. Deep architectures have been of
interest also to neuroscience as many biological sensory systems (e.g., vision, audition, olfaction and
somatosensation, see e.g. [9, 13]) are organized in hierarchies of multiple processing stages. Despite
the impressive recent success in training deep networks, fundamental understanding of the merits and
limitations of signal processing in such architectures is still lacking.

A theory of deep network entails two dynamical processes. One is the dynamics of weight matrices
during learning. This problem is challenging even for linear architectures and progress has been
made recently on this front (see e.g. [11]). The other dynamical process is the propagation of the
signal and the information it carries through the nonlinear feedforward stages. In this work we
focus on the second challenge, by analyzing the ’signal and noise’ neural dynamics in a solvable
model of deep networks. We assume a simple clustered structure of inputs where inputs take the
form of corrupted versions of a discrete set of cluster centers or ’patterns’. The goal of the multiple
processing layer is to reformat the inputs such that the noise is suppressed allowing for a linear
readout to perform classification tasks based on the top representations. We assume a simple learning
rule for the synaptic matrices, the well known Pseudo-Inverse rule [10]. The advantage of this choice,
beside its mathematics tractability, is the capacity for storing patterns. In particular, when the input
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is noiseless, the propagating signals retain their desired representations with no distortion up to a
reasonable capacity limit. In addition, previous studies of this rule showed that these systems have a
considerable basins of attractions for pattern completion in a recurrent setting [8]. Here we study this
system in a deep feedforward architecture. Using mean field theory we derive recursion relations for
the propagation of signal and noise across the network layers, which are exact in the limit of large
network sizes. Analyzing this recursion dynamics, we show that for fixed overall number of neurons,
there is an optimal depth that minimizes the readout average classification error. We analyze the
optimal depth as a function of the system parameters such as load, sparsity, and the overall system
size.

2 Model of Feedforward Processing of Clustered Inputs

We consider a network model of sensory processing composed of three or more layers of neurons
arranged in a feedforward architecture (figure 1). The first layer, composed of Ny neuron is the
input or stimulus layer. The input layer projects into a sequence of one or more intermediate layers,
which we also refer to as processing layers. These layers can represent neurons in sensory cortices or
cortical-like structures. The simplest case is a single processing layer (figure 1.A). More generally, we
consider L processing layers with possibly different widths (figure 1.B). The last layer in the model is
the readout layer, which represents a downstream neural population that receives input from the top
processing layer and performs a specific computation, such as recognition of a specific stimulus or
classification of stimuli. For concreteness, we will use a layer of one or more readout binary neurons
that perform binary classifications on the inputs. For simplicity, all neurons in the network are binary
units, i.e., the activity level of each neuron is either O (silent) or 1 (firing). We denote .S lZ € {0, 1}, the
activity of the 7 € {1,..., N;} neuronin the [ = {1, ..., L} layer; N; denotes the size of the layer.
The level of sparsity of the neural code, i.e. the fraction f of active neurons for each stimulus, is set
by tuning the threshold 7; of the neurons in each layer (see below). For simplicity we will assume all
neurons (except for the readout) have the same sparsity, f .
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Figure 1: Schematics of the network. The network receives input from Ny neurons and then projects
them onto an intermediate layer composed of IV; processing neurons. The neurons can be arranged in
a single (A) or multiple (B) layers. The readout layer receives input from the last processing layer.

Input The input to the network is organized as clusters around P activity patterns. At it center, each
cluster has a prototypical representation of an underlying specific stimulus, denoted as Séﬁ > Where
i =1,..., Ny, denotes the index of the neuron in the input layer [ = 0, and the index u =1, ..., P,
denotes the pattern number. The probability of an input neuron to be firing is denoted by fy. Other
members of the clusters are noisy versions of the central pattern, representing natural variations in the
stimulus representation due to changes in physical features in the world, input noise, or neural noise.
We model the noise as iid Bernoulli distribution. Each noisy input S&V from the vth cluster, equals

St (=S éyy) with probability (1 + myg)/2, ((1 — mg)/2) respectively. Thus, the average overlap of
the noisy inputs with the central pattern, say p = 1 is
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ranging from my = 1 denoting the noiseless limit, to my = 0 where the inputs are uncorrelated with
the centers. Topologically, the inputs are organized into clusters with radius 1 — my.

Update rule The state S} of the i-th neuron in the [ > 0 layer is determined by thresholding the
weighted sum of the activities in the antecedent layer:

St=0(h-1). 2)
Here © is the step function and the field h{ represent the synaptic input to the neuron
Nl71 .. .
=Y Wi (S - ). 3)
j=1

where the sparsity f is the mean activity level of the preceding layer (set by thresholding, Eq. (2)).

Synaptic matrix A key question is how the connectivity matrix VVZ 11 is chosen. Here we construct

the weight matrix by first allocating for each layer [ , a set of P random templates &, € {0, 1}V
(with mean activity f), which are to serve as the represerltations of the P stimulus clusters in the layer.
Next, W has to be trained to ensure that the response, S; ,,, of the layer [ to a noiseless inputs, Sp ,,,
equals &; ,, . Here we use an explicit recipe to enforce these relations, namely the pseudo-inverse (PI)
model [10, 8, 6], given by

P
Wil = 5 1f o (6 ) (o= 1) )
p,,y:l
where N
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Ch, = NFAP & -HE, -0 (5)
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is the correlation matrix of the random templates in the /th layer. For completeness we also denote
&0, = So,.- This learning rule guarantees that for noiseless inputs, i.e., Sy = &p, ., the states of all
the layers are S, = &;,,,. This will in turn allow for a perfect readout performance if noise is zero.
The capacity of this system is limited by the rank of C' so we require P < N; [8].

A similar model of clustered inputs fed into a single processing layer has been studied in [1] using a
simpler, Hebbian projection weights.

3 Mean Field Equations for the Signal Propagation

To study the dynamics of the signal along the network layers, we assume that the input to the network
is a noisy version of one of the clusters, say, cluster ¢+ = 1. In the notation above, the input is a state
{S¢} with an overlap mg with the pattern & ;. Information about the cluster identity of the input is
represented in subsequent layers through the overlap of the propagated state with the representation
of the same cluster in each layer; in our case, the overlap between the response of the layer [, S;, and
&1,1 , defined similarly to Eq. (1), as:

ml—le(i_f)<Z(Sf—f)(§f’l—f)>. (6)

i=1
In each layer the load is defined as

o) = ﬁl (7)

Using analytical mean field techniques (detailed in the supplementary material), exact in the limit of
large N, we find a recursive equation for the overlaps of different layers. In this limit the fields and
the fluctuations of the fields 55}, assume Gaussian statistics as the realizations of the noisy input vary.
The overlaps are evaluated by thresholding these variables, given by
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The factor A;y; + Q41 is the variance of the fields <(5 hf+1)2> which has two contributions. The

first is due to the variance in the noisy responses of the previous layers, yielding

(67} 2
Ay = f(1 - 1— . 10
111 = f( f)l—a,( my) (10)
The second contribution comes from the spatial correlations between noisy responses of the previous
layers, yielding

o 1 —20&1
Qi1 = m <fex
(11)

Note that despite the fact that the noise in the different nodes of the input layer is uncorrelated, as the
signals propagate through the network, correlations between the noisy responses of different neurons
in the same layer emerge. These correlations depend on the particular realization of the random
templates, and will average to zero upon averaging over the templates. Nevertheless, they contribute
a non-random contribution to the total variance of the fields at each layer. Interestingly, for o; > 1/2
this term becomes negative, and reduces the overall variance of the fields.
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The above recursion equations hold for [ > 2. The initial conditions for this layer is )1 = 0 and m,
Ajgiven by:
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where g = P/Ny.

Finally, we note that a previous analysis of the feedforward PI model (in the dense case, f = 0.5)
reported results [6] neglected the contribution (); of the induced correlations to the field variance.
Indeed, their approximate equations fail to correctly describe the behavior of the system. As we will
show, our recursion relations fully accounts for the behavior of the network in the limit of large [V .

Infinitely deep homogeneous network The above equations, eq (8)-(11) describe the dynamics
of the average overlap of the network states and the variance in the inputs to the neurons in each
layer. This dynamics depends on the sizes (and sparsity) of the different processing layers. Although
the above equations are general, from now on, we will assume homogeneous architecture in which
N; = N = N;/L (all with the same sparsity). To find the behavior of the signals as they propagate
along this infinitely deep homogenous network (I — co) we look for the fixed points of the recursion
equation.

Solution of the equations reveals three fixed points of the trajectories. Two of them are stable fixed
points, one at m = 0 and the other at m = 1. The third is an unstable fixed point at some intermediate
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Figure 2: Overlap dynamics. (A) Trajectory of overlaps across layers from eq (8)-(11) (solid lines)
and simulations (circles). Dashed red line show the predicted separatrix m. The deviation from the
theoretical prediction near the separatrix are due to final size effects of the simulations (o = 0.4,
f = 0.1). (B) Basin of attraction for two values of f as a function of a. Line show theoretical
prediction and shaded area simulations. (C) Convergence time (number of layers) of the m = 1
attractor. Near the unstable fixed point (dashed vertical lines) convergence time diverges and rapidly
decreases for larger initial conditions, mg > mt.

value m!. Initial conditions with overlaps obeying mo > m' converge to 1, implying complete
suppression of the input noise, while those with my < mT lose all overlap with the central pattern
[figure 2.A], which depicts the values of the overlaps for different initial conditions. As expected, the
curves (analytical results derived by numerically iterating the above mean field equations) terminate
either at m; = 1 or m; = 0 for large [ . The same holds for the numerical simulations (dots) except
for a few intermediate values of initial conditions that converge to an intermediate asymptotic values
of overlaps. These intermediate fixed points are 'finite size effects’. As the system size (/V; and
correspondingly V) increases, the range of initial conditions that converge to intermediate fixed
points shrinks to zero. In general increasing the sparsity of the representations (i.e., reducing f
) improves the performance of the network. As seen in [figure 2.B] the basin of attraction of the
noiseless fixed point increases as f decreases.

Convergence time In general, the overlaps approach the noiseless state relatively fast, i.e., within
5 — 10 layers. This holds for initial conditions well within the basin of attraction of this fixed point.
If the initial condition is close to the boundary of the basin, i.e., my =~ mf, convergence is slow. In
this case, the convergence time diverges as mg — m' from above [figure 2.C].

4 Optimal Architecture

We evaluate the performances of the network by the ability of readout neurons to correctly perform
randomly chosen binary linear classifications of the clusters. For concreteness we consider the
performance of a single readout neuron to perform a binary classification where for each central
pattern, the desired label is &, ,, = 0, 1. The readout weights, projecting from the last processing
layer into the readout [figure 1] are assumed to be learned to perform the correct classification by
a pseudo-inverse rule, similar to the design of the processing weight matrices. The readout weight
matrix is given by

1 P

) 1 .
Wi, = N = o) Z (&rou — fro) [CL]W (EJL,M - f) . (15)

We assume the readout labels are iid Bernoulli variables with zero bias (f,., = 0.5), though a bias can
be easily incorporated. The error of the readout is the probability of the neuron being in the opposite
state than the labels.

wr=1

1—mp,
= —, 16
€ 5 (16)
where m,., is the average overlap of the readout layer, and can be calculated using the recursion

equations (8)-(11). However, Since generally f # f,,, the activity factor need to be replaced in the



proper positions in the equations. For correctness, we bring the exact form of the readout equation in
the supplementary material.

4.1 Single infinite layer

In the following we explore the utility of deep architectures in performing the above tasks. Before
assessing quantitatively different architectures, we present a simple comparison between a single
infinitely wide layer and a deep network with a small number of finite-width layers.

An important result of our theory is that for a model with a single processing layer with finite f, the
overlap m; and hence the classification error do not vanish even for a layer with infinite number of
neurons. This holds for all levels of input noise, i.e., as long as my < 1. This can be seen by setting
a = 0 in equations (8)-(11) for L = 2 . Note that although the variance contribution to the noise in
the field, A,., vanishes, the contribution from the correlations, (J1, remains finite and is responsible
for the fact that m,., < 1 and € > 0 [1]. In contrast, in a deep network, if the initial overlap is within
the basin of attraction the m = 1 solution, the overlap quickly approach m = 1 [figure (2).C]. This
suggests that a deep architecture will generally perform better than a single layer, as can be seen in
the example in figure 3.A.

Mean error The readout error depends on the level of the initial noise (i.e., the value of mg). Here
we introduce a global measure of performance, F , defined as the readout error averaged over the
initial overlaps,

1
o / dmop (mo) < (m) (17)
0

where the p(my) is the distribution of cluster sizes. For simplicity we use here a uniform distribution
p = 1. The mean error is a function of the parameters of the network, namely the sparsity f , the input
and total loads oy = P/Ny, ay = P/N, respectively, and the number of layers L, which describes
the layout of the network. We are now ready to compare the performance of different architectures.

4.2 Limited resources

In any real setting, the resources of the network are limited. This may be due to finite number of
available neurons or a limit on the computational power. To evaluate the optimal architecture under
constraints of a fixed total number of neurons, we assume that the total number of neurons is fixed
to Ny = kNy, where NNy is the size of the input layer. As in the analysis above, we consider for
simplicity alternative uniform architectures in which all processing layers are of equal size N = N, /L
. The performance as a function of the number of layers is shown in figure 3.B which depicts the
mean error against the number of processing layers L for several values of the expansion factork.
These curves show that the error has a minimum at a finite depth

Lopt = arg mLin E(L). (18)

The reason for this is that for shallower networks, the overlaps have not been iterated sufficient
number of times and hence remain further from the noiseless fixed point. On the other hand, deeper
networks will have an increased load at each layer, since
P

a= - N L, (19)
thereby reducing the noise suppression of each layer. As seen in the figure, increasing the total
number of neurons, yields a lower mean error E,,;, and increases the the optimal depth on the
network. Note however, that for large « , the mean error rises slowly for L larger than its optimal
value; this is is because the error changes very slowly with « for small «. and remains close to its
a = 0 value. Thus, increasing the depth moderately above L,,; may not harm significantly the
performance. Ultimately, if L increases to the order of KN/ P , the load in each processing layer
« approaches 1, and the performance deteriorates drastically. Other considerations, such as time
required for computation may favor shallower architectures, and in practice will limit the utility of
architectures deeper than L.



(A)

Single inf_layer,

Readout error (¢)

0 1 2 3 4 5 6 7 8 0 2 4 6 8 10 12 14 16 12

# of layers (L)

Loy

o

Figure 3: Optimal layout. (A) Comparing readout error produced by the same initial condition
(mo = 0.6) of a single, infinitely-wide processing layer to that of a deep architecture with oo = 0.2.
For both networks ag = 0.7, f = 0.15 and my = 0.6. (B) Mean error as a function of the number
of the processing layers for three values of expansion factor k = N;/Ny. Dashed line shows the
error of a single infinite layer. (C) Optimal number of layers as a function of the inverse of the input
load (g ox P), for different values of sparsity. Lines show linear regression on the data points. (D)
minimal error as a function of the input load (number of stored templates). Same color code as (C).

The effect of load on the optimal architecture If the overall number of neurons in the network is
fixed, then the optimal layout L, is a function of the size of the dataset, i.e, P. For large P, the
optimal network becomes shallow. This is because that when the load is high, resources are better
allocated to constrain « as much as possible, due to the high readout error when « is close to 1,
figures C and D . As shown in [figure 3.D], L,,;increases with decreasing the load, scaling as

Lopt o< P12, (20)

This implies that the width IV, scales as

Npt o< P12, 1)

4.3 Autoencoder example

The model above assumes inputs in the form of random patterns (§p,,,) corrupted by noise. Here
we illustrate that the qualitative behavior of the network for inputs generated by handwritten digits
(MNIST dataset) with random corruptions. To visualize the suppression of noise by the deep pseudo-
inverse network, we train the network with autoencoder readout layer, namely use a readout layer of
size Ny and readout labels equal the original noiseless images, &, = £o,,.. The readout weights
are Pseudo-inverse weights with output labels identical to the input patterns, and following eq. (15).
[? 2]. A perfect overlap at the readout layer implies perfect reconstruction of the original noiseless
pattern.

In figure 4, two networks were trained as autoencoders on a set of templates composed of 3-digit
numbers (See experimental procedures in the supplementary material). Both networks have the same
number of neurons. In the first, all processing neurons are placed in a single wide layer, while in the
other neurons were divided into 10 equally-sized layers. As the theory predicts, the deep structure
is able to reproduce the original templates for a wide range of initial noise, while the single layer
typically reduces the noise but fails to reproduce the original image.
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Figure 4: Visual example of the difference between a single processing layer and a deep struc-
ture. Input data was prepared using the MNIST handwritten digit database. Example of the templates
are shown on the top row. Two different networks were trained to autoencode the inputs, one with
all the processing neurons in a single layer (figure 1.A) and one in which the neurons were divided
equally between 10 layers (figure 1.B) (See experimental procedures in the supplementary material
for details). A noisy version of the templates were introduced to the two networks and the outputs are
presented on the third and fourth rows, for different level of initial noise (columns).

5 Summary and Final Remarks

Our paper aims at gaining a better understanding of the functionality of deep networks. Whereas the
operation of the bottom (low level processing of the signals) and the top (fully supervised) stages are
well understood, an understanding of the rationale of multiple intermediate stages and the tradeoffs
between competing architectures is lacking. The model we study is simplified both in the task,
suppressing noise, and its learning rule (pseudo-inverse). With respect to the first, we believe that
changing the noise model to the more realistic variability inherent in objects will exhibit the same
qualitative behaviors. With respect to the learning rule, the pseudo-inverse is close to SVM rule in the
regime we work, so we believe that is a good tradeoff between realism and tractability. Thus, although
the unavoidable simplicity of our model, we believe its analysis yields important insights which will
likely carry over to the more realistic domains of deep networks studied in ML and neuroscience.

Effects of sparseness Our results show that the performance of the network is improved as the
sparsity of the representation increases. In the extreme case of f — 0, perfect suppression of noise
occurs already after a single processing layer. Cortical sensory representations exhibit only moderate
sparsity levels, f ~ 0.1. Computational considerations of robustness to ‘representational noise’
at each layer will also limit the value of f. Thus, deep architectures may be necessary for good
performance at realistic moderate levels of sparsity (or for dense representations).

Infinitely wide shallow architectures: A central result of our model is that a finite deep network
may perform better than a network with a single processing layer of infinite width. An infinitely wide
shallow network has been studied in the past (e.g., [4]). In principle, an infinitely wide network, even
with random projection weights, may serve as a universal approximate, allowing for yielding readout
performance as good as or superior to any finite deep network. This however requires a complex
training of the readout weights. Our relatively simple readout weights are incapable of extracting this
information from the infinite, shallow architecture. Similar behavior is seen with simpler readout
weights, the Hebbian weights as well as with more complex readout generated by training the readout
weights using SVMs with noiseless patterns or noisy inputs [1]. Thus, our results hold qualitatively
for a broad range of plausible readout learning algorithms (such as Hebb, PI, SVM) but not for
arbitrarily complex search that finds the optimal readout weights.
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