
Single Pass PCA of Matrix Products

Shanshan Wu
The University of Texas at Austin
shanshan@utexas.edu

Srinadh Bhojanapalli
Toyota Technological Institute at Chicago

srinadh@ttic.edu

Sujay Sanghavi
The University of Texas at Austin
sanghavi@mail.utexas.edu

Alexandros G. Dimakis
The University of Texas at Austin

dimakis@austin.utexas.edu

Abstract

In this paper we present a new algorithm for computing a low rank approximation
of the product ATB by taking only a single pass of the two matrices A and B. The
straightforward way to do this is to (a) first sketch A and B individually, and then
(b) find the top components using PCA on the sketch. Our algorithm in contrast
retains additional summary information about A,B (e.g. row and column norms
etc.) and uses this additional information to obtain an improved approximation from
the sketches. Our main analytical result establishes a comparable spectral norm
guarantee to existing two-pass methods; in addition we also provide results from
an Apache Spark implementation1 that shows better computational and statistical
performance on real-world and synthetic evaluation datasets.

1 Introduction

Given two large matrices A and B we study the problem of finding a low rank approximation of their
product ATB, using only one pass over the matrix elements. This problem has many applications in
machine learning and statistics. For example, if A = B, then this general problem reduces to Principal
Component Analysis (PCA). Another example is a low rank approximation of a co-occurrence matrix
from large logs, e.g., A may be a user-by-query matrix and B may be a user-by-ad matrix, so ATB
computes the joint counts for each query-ad pair. The matrices A and B can also be two large bag-of-
word matrices. For this case, each entry of ATB is the number of times a pair of words co-occurred
together. As a fourth example, ATB can be a cross-covariance matrix between two sets of variables,
e.g., A and B may be genotype and phenotype data collected on the same set of observations. A low
rank approximation of the product matrix is useful for Canonical Correlation Analysis (CCA) [3].
For all these examples, ATB captures pairwise variable interactions and a low rank approximation is
a way to efficiently represent the significant pairwise interactions in sub-quadratic space.

Let A and B be matrices of size d⇥ n (d � n) assumed too large to fit in main memory. To obtain
a rank-r approximation of ATB, a naive way is to compute ATB first, and then perform truncated
singular value decomposition (SVD) of ATB. This algorithm needs O(n2d) time and O(n2

) memory
to compute the product, followed by an SVD of the n⇥ n matrix. An alternative option is to directly
run power method on ATB without explicitly computing the product. Such an algorithm will need to
access the data matrices A and B multiple times and the disk IO overhead for loading the matrices to
memory multiple times will be the major performance bottleneck.

For this reason, a number of recent papers introduce randomized algorithms that require only a few
passes over the data, approximately linear memory, and also provide spectral norm guarantees. The

1The code can be found at https://github.com/wushanshan/MatrixProductPCA

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

https://github.com/wushanshan/MatrixProductPCA

key step in these algorithms is to compute a smaller representation of data. This can be achieved by
two different methods: (1) dimensionality reduction, i.e., matrix sketching [15, 5, 14, 6]; (2) random
sampling [7, 1]. The recent results of Cohen et al. [6] provide the strongest spectral norm guarantee
of the former. They show that a sketch size of O(r̃/✏2) suffices for the sketched matrices eAT eB to
achieve a spectral error of ✏, where r̃ is the maximum stable rank of A and B. Note that eAT eB is
not the desired rank-r approximation of ATB. On the other hand, [1] is a recent sampling method
with very good performance guarantees. The authors consider entrywise sampling based on column
norms, followed by a matrix completion step to compute low rank approximations. There is also a lot
of interesting work on streaming PCA, but none can be directly applied to the general case when A is
different from B (see Figure 4(c)). Please refer to Appendix D for more discussions on related work.

Despite the significant volume of prior work, there is no method that computes a rank-r approximation
of ATB when the entries of A and B are streaming in a single pass 2. Bhojanapalli et al. [1] consider
a two-pass algorithm which computes column norms in the first pass and uses them to sample in
a second pass over the matrix elements. In this paper, we combine ideas from the sketching and
sampling literature to obtain the first algorithm that requires only a single pass over the data.

Contributions: We propose a one-pass algorithm SMP-PCA (which stands for Streaming Matrix
Product PCA) that computes a rank-r approximation of ATB in time O((nnz(A) + nnz(B))

⇢2r3r̃
⌘2 +

nr6⇢4r̃3

⌘4). Here nnz(·) is the number of non-zero entries, ⇢ is the condition number, r̃ is the maximum
stable rank, and ⌘ measures the spectral norm error. Existing two-pass algorithms such as [1] typically
have longer runtime than our algorithm (see Figure 3(a)). We also compare our algorithm with the
simple idea that first sketches A and B separately and then performs SVD on the product of their
sketches. We show that our algorithm always achieves better accuracy and can perform arbitrarily
better if the column vectors of A and B come from a cone (see Figures 2, 4(b), 3(b)).

The central idea of our algorithm is a novel rescaled JL embedding that combines information from
matrix sketches and vector norms. This allows us to get better estimates of dot products of high
dimensional vectors compared to previous sketching approaches. We explain the benefit compared to
a naive JL embedding in Figure 2 and the related discussion; we believe it may be of more general
interest beyond low rank matrix approximations.

We prove that our algorithm recovers a low rank approximation of ATB up to an error that depends
on kATB � (ATB)rk and kATBk, decaying with increasing sketch size and number of samples
(Theorem 3.1). The first term is a consequence of low rank approximation and vanishes if ATB is
exactly rank-r. The second term results from matrix sketching and subsampling; the bounds have
similar dependencies as in [6].

We implement SMP-PCA in Apache Spark and perform several distributed experiments on synthetic
and real datasets. Our distributed implementation uses several design innovations described in
Section 4 and Appendix C.5 and it is the only Spark implementation that we are aware of that
can handle matrices that are large in both dimensions. Our experiments show that we improve by
approximately a factor of 2⇥ in running time compared to the previous state of the art and scale
gracefully as the cluster size increases. The source code is available at [18].

In addition to better performance, our algorithm offers another advantage: It is possible to compute
low-rank approximations to ATB even when the entries of the two matrices arrive in some arbitrary
order (as would be the case in streaming logs). We can therefore discover significant correlations
even when the original datasets cannot be stored, for example due to storage or privacy limitations.

2 Problem setting and algorithms

Consider the following problem: given two matrices A 2 Rd⇥n1 and B 2 Rd⇥n2 that are stored in
disk, find a rank-r approximation of their product ATB. In particular, we are interested in the setting
where both A, B and ATB are too large to fit into memory. This is common for modern large scale
machine learning applications. For this setting, we develop a single-pass algorithm SMP-PCA that
computes the rank-r approximation without explicitly forming the entire matrix ATB.

2One straightforward idea is to sketch each matrix individually and perform SVD on the product of the
sketches. We compare against that scheme and show that we can perform arbitrarily better using our rescaled JL
embedding.

2

Notations. Throughout the paper, we use A(i, j) or Aij to denote (i, j) entry for any matrix A. Let
Ai and Aj be the i-th column vector and j-th row vector. We use kAkF for Frobenius norm, and
kAk for spectral (or operator) norm. The optimal rank-r approximation of matrix A is Ar, which
can be found by SVD. For any positive integer n, let [n] denote the set {1, 2, · · · , n}. Given a set
⌦ ⇢ [n

1

]⇥ [n
2

] and a matrix A 2 Rn1⇥n2 , we define P
⌦

(A) 2 Rn1⇥n2 as the projection of A on ⌦,
i.e., P

⌦

(A)(i, j) = A(i, j) if (i, j) 2 ⌦ and 0 otherwise.

2.1 SMP-PCA

Our algorithm SMP-PCA (Streaming Matrix Product PCA) takes four parameters as input: the
desired rank r, number of samples m, sketch size k, and the number of iterations T . Performance
guarantee involving these parameters is provided in Theorem 3.1. As illustrated in Figure 1, our
algorithm has three main steps: 1) compute sketches and side information in one pass over A and B;
2) given partial information of A and B, estimate important entries of ATB; 3) compute low rank
approximation given estimates of a few entries of ATB. Now we explain each step in detail.

Figure 1: An overview of our algorithm. A single pass is performed over the data to produce the
sketched matrices eA, eB and the column norms kAik, kBjk, for i 2 [n

1

] and j 2 [n
2

]. We then
compute the sampled matrix P

⌦

(

fM) through a biased sampling process, where P
⌦

(

fM) =

fM(i, j) if
(i, j) 2 ⌦ and zero otherwise. Here ⌦ represents the set of sampled entries. The (i, j)-th entry of fM
is given in Eq. (2). Performing matrix completion on P

⌦

(

fM) gives the desired rank-r approximation.

Algorithm 1 SMP-PCA: Streaming Matrix Product PCA
1: Input: A 2 Rd⇥n1 , B 2 Rd⇥n2 , desired rank: r, sketch size: k, number of samples: m, number

of iterations: T
2: Construct a random matrix ⇧ 2 Rk⇥d, where ⇧(i, j) ⇠ N (0, 1/k), 8(i, j) 2 [k]⇥ [d]. Perform

a single pass over A and B to obtain: eA = ⇧A, eB = ⇧B, and kAik, kBjk, for i 2 [n
1

] and
j 2 [n

2

].
3: Sample each entry (i, j) 2 [n

1

]⇥ [n
2

] independently with probability q̂ij = min{1, qij}, where
qij is defined in Eq.(1); maintain a set ⌦ ⇢ [n

1

]⇥ [n
2

] which stores all the sampled pairs (i, j).
4: Define fM 2 Rn1⇥n2 , where fM(i, j) is given in Eq. (2). Calculate P

⌦

(

fM) 2 Rn1⇥n2 , where
P
⌦

(

fM) =

fM(i, j) if (i, j) 2 ⌦ and zero otherwise.
5: Run WAltMin(P

⌦

(

fM), ⌦, r, q̂, T), see Appendix A for more details.
6: Output: bU 2 Rn1⇥r and bV 2 Rn2⇥r.

Step 1: Compute sketches and side information in one pass over A and B. In this step we
compute sketches eA := ⇧A and eB := ⇧B, where ⇧ 2 Rk⇥d is a random matrix with entries being
i.i.d. N (0, 1/k) random variables. It is known that ⇧ satisfies an "oblivious Johnson-Lindenstrauss
(JL) guarantee" [15][17] and it helps preserving the top row spaces of A and B [5]. Note that any
sketching matrix ⇧ that is an oblivious subspace embedding can be considered here, e.g., sparse JL
transform and randomized Hadamard transform (see [6] for more discussion).

Besides eA and eB, we also compute the L
2

norms for all column vectors, i.e., kAik and kBjk, for
i 2 [n

1

] and j 2 [n
2

]. We use this additional information to design better estimates of ATB in the

3

next step, and also to determine important entries of eAT eB to sample. Note that this is the only step
that needs one pass over data.

Step 2: Estimate important entries of ATB by rescaled JL embedding. In this step we use partial
information obtained from the previous step to compute a few important entries of eAT eB. We first
determine what entries of eAT eB to sample, and then propose a novel rescaled JL embedding for
estimating those entries.

We sample entry (i, j) of ATB independently with probability q̂ij = min{1, qij}, where

qij = m · (kAik2

2n
2

kAk2F
+

kBjk2

2n
1

kBk2F
). (1)

Let ⌦ ⇢ [n
1

]⇥ [n
2

] be the set of sampled entries (i, j). Since E(
P

i,j qij) = m, the expected number
of sampled entries is roughly m. The special form of qij ensures that we can draw m samples in
O(n

1

+m log(n
2

)) time; we show how to do this in Appendix C.5.

Note that qij intuitively captures important entries of ATB by giving higher weight to heavy rows
and columns. We show in Section 3 that this sampling actually generates good approximation to the
matrix ATB.

The biased sampling distribution of Eq. (1) is first proposed by Bhojanapalli et al. [1]. However, their
algorithm [1] needs a second pass to compute the sampled entries, while we propose a novel way of
estimating dot products, using information obtained in the first step.

Define fM 2 Rn1⇥n2 as
fM(i, j) = kAik · kBjk ·

eAT
i
eBj

k eAik · k eBjk
. (2)

Note that we will not compute and store fM , instead, we only calculate fM(i, j) for (i, j) 2 ⌦. This
matrix is denoted as P

⌦

(

fM), where P
⌦

(

fM)(i, j) = fM(i, j) if (i, j) 2 ⌦ and 0 otherwise.

-1 -0.5 0 0.5 1

True dot product

-2

-1

0

1

2

E
st

im
a
te

d
 d

o
t
p
ro

d
u
ct

JL embedding

Rescaled JL embedding

(a) (b)

Figure 2: (a) Rescaled JL embedding (red dots) captures the dot products with smaller variance
compared to JL embedding (blue triangles). Mean squared error: 0.053 versus 0.129. (b) Lower
figure illustrates how to construct unit-norm vectors from a cone with angle ✓. Let x be a fixed
unit-norm vector, and let t be a random Gaussian vector with expected norm tan(✓/2), we set y as
either x+ t or �(x+ t) with probability half, and then normalize it. Upper figure plots the ratio of
spectral norm errors kATB � eAT eBk/kATB � fMk, when the column vectors of A and B are unit
vectors drawn from a cone with angle ✓. Clearly, fM has better accuracy than eAT eB for all possible
values of ✓, especially when ✓ is small.

We now explain the intuition of Eq. (2), and why fM is a better estimator than eAT eB. To estimate the
(i, j) entry of ATB, a straightforward way is to use eAT

i
eBj = k eAik · k eBjk · cos e✓ij , where e✓ij is the

4

angle between vectors eAi and eBj . Since we already know the actual column norms, a potentially
better estimator would be kAik · kBjk · cos e✓ij . This removes the uncertainty that comes from
distorted column norms3.

Figure 2(a) compares the two estimators eAT
i
eBj (JL embedding) and fM(i, j) (rescaled JL embedding)

for dot products. We plot simulation results on pairs of unit-norm vectors with different angles. The
vectors have dimension 1,000 and the sketching matrix has dimension 10-by-1,000. Clearly rescaling
by the actual norms help reduce the estimation uncertainty. This phenomenon is more prominent
when the true dot products are close to ±1, which makes sense because cos ✓ has a small slope
when cos ✓ approaches ±1, and hence the uncertainty from angles may produce smaller distortion
compared to that from norms. In the extreme case when cos ✓ = ±1, rescaled JL embedding can
perfectly recover the true dot product4.

In the lower part of Figure 2(b) we illustrate how to construct unit-norm vectors from a cone with
angle ✓. Given a fixed unit-norm vector x, and a random Gaussian vector t with expected norm
tan(✓/2), we construct new vector y by randomly picking one from the two possible choices x+t and
�(x+ t), and then renormalize it. Suppose the columns of A and B are unit vectors randomly drawn
from a cone with angle ✓, we plot the ratio of spectral norm errors kATB � eAT eBk/kATB � fMk in
Figure 2(b). We observe that fM always outperforms eAT eB and can be much better when ✓ approaches
zero, which agrees with the trend indicated in Figure 2(a).

Step 3: Compute low rank approximation given estimates of few entries of ATB. Finally we
compute the low rank approximation of ATB from the samples using alternating least squares:

min

U,V 2Rn⇥r

X

(i,j)2⌦

wij(e
T
i UV T ej � fM(i, j))2, (3)

where wij = 1/q̂ij denotes the weights, and ei, ej are standard base vectors. This is a popular
technique for low rank recovery and matrix completion (see [1] and the references therein). After T
iterations, we will get a rank-r approximation of fM presented in the convenient factored form. This
subroutine is quite standard, so we defer the details to Appendix A.

3 Analysis

Now we present the main theoretical result. Theorem 3.1 characterizes the interaction between
the sketch size k, the sampling complexity m, the number of iterations T , and the spectral error
k(ATB)r � [ATBrk, where [ATBr is the output of SMP-PCA, and (ATB)r is the optimal rank-r
approximation of ATB. Note that the following theorem assumes that A and B have the same size.
For the general case of n

1

6= n
2

, Theorem 3.1 is still valid by setting n = max{n
1

, n
2

}.
Theorem 3.1. Given matrices A 2 Rd⇥n and B 2 Rd⇥n, let (ATB)r be the optimal rank-r
approximation of ATB. Define r̃ = max{kAk2

F
kAk2 ,

kBk2
F

kBk2 } as the maximum stable rank, and ⇢ =

�⇤
1

�⇤
r

as
the condition number of (ATB)r, where �⇤

i is the i-th singular values of ATB.

Let [ATBr be the output of Algorithm SMP-PCA. If the input parameters k, m, and T satisfy

k � C
1

kAk2kBk2⇢2r3

kATBk2F
· max{r̃, 2 log(n)}+ log (3/�)

⌘2
, (4)

m � C
2

r̃2

�
·
✓
kAk2F + kBk2F

kATBkF

◆
2

· nr
3⇢2 log(n)T 2

⌘2
, (5)

T � log(

kAkF + kBkF
⇣

), (6)

where C
1

and C
2

are some global constants independent of A and B. Then with probability at least
1� �, we have

k(ATB)r � [ATBrk  ⌘kATB � (ATB)rkF + ⇣ + ⌘�⇤
r . (7)

3We also tried using the cosine rule for computing the dot product, and another sketching method specifically
designed for preserving angles [2], but empirically those methods perform worse than our current estimator.

4See http://wushanshan.github.io/files/RescaledJL_project.pdf for more results.

5

http://wushanshan.github.io/files/RescaledJL_project.pdf

Remark 1. Compared to the two-pass algorithm proposed by [1], we notice that Eq. (7) contains
an additional error term ⌘�⇤

r . This extra term captures the cost incurred when we are approximating
entries of ATB by Eq. (2) instead of using the actual values. The exact tradeoff between ⌘ and k is
given by Eq. (4). On one hand, we want to have a small k so that the sketched matrices can fit into
memory. On the other hand, the parameter k controls how much information is lost during sketching,
and a larger k gives a more accurate estimation of the inner products.

Remark 2. The dependence on kAk2
F+kBk2

F
kATBkF

captures one difficult situation for our algorithm. If
kATBkF is much smaller than kAkF or kBkF , which could happen, e.g., when many column
vectors of A are orthogonal to those of B, then SMP-PCA requires many samples to work. This is
reasonable. Imagine that ATB is close to an identity matrix, then it may be hard to tell it from an
all-zero matrix without enough samples. Nevertheless, removing this dependence is an interesting
direction for future research.

Remark 3. For the special case of A = B, SMP-PCA computes a rank-r approximation of matrix
ATA in a single pass. Theorem 3.1 provides an error bound in spectral norm for the residual matrix
(ATA)r � [ATAr. Most results in the online PCA literature use Frobenius norm as performance
measure. Recently, [10] provides an online PCA algorithm with spectral norm guarantee. They
achieves a spectral norm bound of ✏�⇤

1

+ �⇤
r+1

, which is stronger than ours. However, their algorithm
requires a target dimension of O(r log n/✏2), i.e., the output is a matrix of size n-by-O(r log n/✏2),
while the output of SMP-PCA is simply n-by-r.

Remark 4. We defer our proofs to Appendix C. The proof proceeds in three steps. In Appendix C.2,
we show that the sampled matrix provides a good approximation of the actual matrix ATB. In
Appendix C.3, we show that there is a geometric decrease in the distance between the computed
subspaces bU , bV and the optimal ones U⇤, V ⇤ at each iteration of WAltMin algorithm. The spectral
norm bound in Theorem 3.1 is then proved using results from the previous two steps.

Computation Complexity. We now analyze the computation complexity of SMP-PCA. In Step
1, we compute the sketched matrices of A and B, which requires O(nnz(A)k + nnz(B)k) flops.
Here nnz(·) denotes the number of non-zero entries. The main job of Step 2 is to sample a set ⌦
and calculate the corresponding inner products, which takes O(m log(n) + mk) flops. Here we
define n as max{n

1

, n
2

} for simplicity. According to Eq. (4), we have log(n) = O(k), so Step 2
takes O(mk) flops. In Step 3, we run alternating least squares on the sampled matrix, which can
be completed in O((mr2 + nr3)T) flops. Since Eq. (5) indicates nr = O(m), the computation
complexity of Step 3 is O(mr2T). Therefore, SMP-PCA has a total computation complexity
O(nnz(A)k + nnz(B)k +mk +mr2T).

4 Numerical Experiments

Spark implementation. We implement our SMP-PCA in Apache Spark 1.6.2 [19]. For the purpose
of comparison, we also implement a two-pass algorithm LELA [1] in Spark5. The matrices A
and B are stored as a resilient distributed dataset (RDD) in disk (by setting its StorageLevel
as DISK_ONLY). We implement the two passes of LELA using the treeAggregate method.
For SMP-PCA, we choose the subsampled randomized Hadamard transform (SRHT) [16] as the
sketching matrix. The biased sampling procedure is performed using binary search (see Appendix C.5
for how to sample m elements in O(m log n) time). After obtaining the sampled matrix, we run ALS
(alternating least squares) to get the desired low-rank matrices. More details can be found at [18].

Description of datasets. We test our algorithm on synthetic datasets and three real datasets:
SIFT10K [9], NIPS-BW [11], and URL-reputation [12]. For synthetic data, we generate matri-
ces A and B as GD, where G has entries independently drawn from standard Gaussian distribution,
and D is a diagonal matrix with Dii = 1/i. SIFT10K is a dataset of 10,000 images. Each image is
represented by 128 features. We set A as the image-by-feature matrix. The task here is to compute
a low rank approximation of ATA, which is a standard PCA task. The NIPS-BW dataset contains
bag-of-words features extracted from 1,500 NIPS papers. We divide the papers into two subsets,
and let A and B be the corresponding word-by-paper matrices, so ATB computes the counts of
co-occurred words between two sets of papers. The original URL-reputation dataset has 2.4 million

5To our best knowledge, this the first distributed implementation of LELA.

6

2 5 10
0

1000

2000

3000

Runtime (sec) vs Cluster size

LELA

SMC-PCA

(a)

1000 2000

Sketch size (k)

0.05

0.1

0.15

0.2

S
p
e
ct

ra
l n

o
rm

 e
rr

o
r

SVD(ÃT
B̃)

SMP-PCA
LELA
Optimal

1000 2000

Sketch size (k)

0.05

0.1

0.15

0.2

0.25

0.3 SVD(ÃT
B̃)

SMP-PCA
LELA
Optimal

(b)

Figure 3: (a) Spark-1.6.2 running time on a 150GB dataset. All nodes are m3.2xlarge EC2 instances.
See [18] for more details. (b) Spectral norm error achieved by three algorithms over two datasets:
SIFT10K (left) and NIPS-BW (right). SMP-PCA outperforms SVD(

eAT eB) by a factor of 1.8 for
SIFT10K and 1.1 for NIPS-BW. The error of SMP-PCA keeps decreasing as the sketch size k grows.

URLs. Each URL is represented by 3.2 million features, and is indicated as malicious or benign. This
dataset has been used previously for CCA [13]. Here we extract two subsets of features, and let A and
B be the corresponding URL-by-feature matrices. The goal is to compute a low rank approximation
of ATB, the cross-covariance matrix between two subsets of features.

Sample complexity. In Figure 4(a) we present simulation results on a small synthetic data with
n = d = 5, 000 and r = 5. We observe that a phase transition occurs when the sample complexity
m = ⇥(nr log n). This agrees with the experimental results shown in previous papers, see, e.g., [4, 1].
For all rest experiments, unless otherwise specified, we set r = 5, T = 10, and m as 4nr log n.

Table 1: A comparison of spectral norm error over three datasets

Dataset d n Algorithm Sketch size k Error

Synthetic 100,000 100,000
Optimal - 0.0271
LELA - 0.0274

SMP-PCA 2,000 0.0280

URL-
malicious 792,145 10,000

Optimal - 0.0163
LELA - 0.0182

SMP-PCA 2,000 0.0188

URL-
benign 1,603,985 10,000

Optimal - 0.0103
LELA - 0.0105

SMP-PCA 2,000 0.0117

Comparison of SMP-PCA and LELA. We now compare the statistical performance of SMP-PCA
and LELA [1] on three real datasets and one synthetic dataset. As shown in Figure 3(b) and Table 1,
LELA always achieves a smaller spectral norm error than SMP-PCA, which makes sense because
LELA takes two passes and hence has more chances exploring the data. Besides, we observe that as
the sketch size increases, the error of SMP-PCA keeps decreasing and gets closer to that of LELA.

In Figure 3(a) we compare the runtime of SMP-PCA and LELA using a 150GB synthetic dataset on
m3.2xlarge Amazon EC2 instances6. The matrices A and B have dimension n = d = 100, 000. The
sketch dimension is set as k = 2, 000. We observe that the speedup achieved by SMP-PCA is more
prominent for small clusters (e.g., 56 mins versus 34 mins on a cluster of size two). This is possibly
due to the increasing spark overheads at larger clusters, see [8] for more related discussion.

Comparison of SMP-PCA and SVD(

eAT eB). In Figure 4(b) we repeat the experiment in Section 2
by generating column vectors of A and B from a cone with angle ✓. Here SVD(

eAT eB) refers to
6Each machine has 8 cores, 30GB memory, and 2⇥80GB SSD.

7

1 2 3 4
Samples / nrlogn

0.2

0.3

0.4

0.5

S
p
e
ct

ra
l n

o
rm

 e
rr

o
r

k = 400

k = 800

(a)
0 π/4 π/2 3π/4 π

10
0

10
5

Ratio of errors vs theta

(b)

200 400 600 800 1000

Sketch size (k)

0.2

0.4

0.6

0.8

1

S
p
e
ct

ra
l n

o
rm

 e
rr

o
r

A
T

r Br

SMP-PCA

(c)

Figure 4: (a) A phase transition occurs when the sample complexity m = ⇥(nr log n). (b) This
figure plots the ratio of spectral norm error of SVD(

eAT eB) over that of SMP-PCA. The columns of
A and B are unit vectors drawn from a cone with angle ✓. We see that the ratio of errors scales to
infinity as the cone angle shrinks. (c) If the top r left singular vectors of A are orthogonal to those of
B, the product AT

r Br is a very poor low rank approximation of ATB.

computing SVD on the sketched matrices7. We plot the ratio of the spectral norm error of SVD(

eAT eB)

over that of SMP-PCA, as a function of ✓. Note that this is different from Figure 2(b), as now we
take the effect of random sampling and SVD into account. However, the trend in both figures are the
same: SMP-PCA always outperforms SVD(

eAT eB) and can be arbitrarily better as ✓ goes to zero.

In Figure 3(b) we compare SMP-PCA and SVD(

eAT eB) on two real datasets SIFK10K and NIPS-BW.
The y-axis represents spectral norm error, defined as ||ATB � [ATBr||/||ATB||, where [ATBr is
the rank-r approximation found by a specific algorithm. We observe that SMP-PCA outperforms
SVD(

eAT eB) by a factor of 1.8 for SIFT10K and 1.1 for NIPS-BW.

Now we explain why SMP-PCA produces a more accurate result than SVD(

eAT eB). The reasons are
twofold. First, our rescaled JL embedding fM is a better estimator for ATB than eAT eB (Figure 2).
Second, the noise due to sampling is relatively small compared to the benefit obtained from fM , and
hence the final result computed using P

⌦

(

fM) still outperforms SVD(

eAT eB).

Comparison of SMP-PCA and AT
r Br. Let Ar and Br be the optimal rank-r approximation of A

and B, we show that even if one could use existing methods (e.g., algorithms for streaming PCA)
to estimate Ar and Br, their product AT

r Br can be a very poor low rank approximation of ATB.
This is demonstrated in Figure 4(c), where we intentionally make the top r left singular vectors of A
orthogonal to those of B.

5 Conclusion

We develop a novel one-pass algorithm SMP-PCA that directly computes a low rank approximation
of matrix product, using ideas of matrix sketching and entrywise sampling. As a subroutine of our
algorithm, we propose rescaled JL for estimating entries of ATB, which has smaller error compared
to the standard estimator ˜AT

˜B. This we believe can be extended to other applications. Moreover,
SMP-PCA allows the non-zero entries of A and B to be presented in any arbitrary order, and hence
can be used for steaming applications. We design a distributed implementation for SMP-PCA. Our
experimental results show that SMP-PCA can perform arbitrarily better than SVD(

eAT eB), and is
significantly faster compared to algorithms that require two or more passes over the data.

Acknowledgements We thank the anonymous reviewers for their valuable comments. This research
has been supported by NSF Grants CCF 1344179, 1344364, 1407278, 1422549, 1302435, 1564000,
and ARO YIP W911NF-14-1-0258.

7This can be done by standard power iteration based method, without explicitly forming the product matrix
eAT eB, whose size is too big to fit into memory according to our assumption.

8

References
[1] S. Bhojanapalli, P. Jain, and S. Sanghavi. Tighter low-rank approximation via sampling the leveraged

element. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 902–920. SIAM, 2015.

[2] P. T. Boufounos. Angle-preserving quantized phase embeddings. In SPIE Optical Engineering+ Applica-
tions. International Society for Optics and Photonics, 2013.

[3] X. Chen, H. Liu, and J. G. Carbonell. Structured sparse canonical correlation analysis. In International
Conference on Artificial Intelligence and Statistics, pages 199–207, 2012.

[4] Y. Chen, S. Bhojanapalli, S. Sanghavi, and R. Ward. Completing any low-rank matrix, provably. arXiv
preprint arXiv:1306.2979, 2013.

[5] K. L. Clarkson and D. P. Woodruff. Low rank approximation and regression in input sparsity time. In
Proceedings of the 45th annual ACM symposium on Symposium on theory of computing, pages 81–90.
ACM, 2013.

[6] M. B. Cohen, J. Nelson, and D. P. Woodruff. Optimal approximate matrix product in terms of stable rank.
arXiv preprint arXiv:1507.02268, 2015.

[7] P. Drineas, R. Kannan, and M. W. Mahoney. Fast monte carlo algorithms for matrices ii: Computing a
low-rank approximation to a matrix. SIAM Journal on Computing, 36(1):158–183, 2006.

[8] A. Gittens, A. Devarakonda, E. Racah, M. F. Ringenburg, L. Gerhardt, J. Kottalam, J. Liu, K. J. Maschhoff,
S. Canon, J. Chhugani, P. Sharma, J. Yang, J. Demmel, J. Harrell, V. Krishnamurthy, M. W. Mahoney, and
Prabhat. Matrix factorization at scale: a comparison of scientific data analytics in spark and C+MPI using
three case studies. arXiv preprint arXiv:1607.01335, 2016.

[9] H. Jegou, M. Douze, and C. Schmid. Product quantization for nearest neighbor search. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 33(1):117–128, 2011.

[10] Z. Karnin and E. Liberty. Online pca with spectral bounds. In Proceedings of The 28th Conference on
Learning Theory (COLT), volume 40, pages 1129–1140, 2015.

[11] M. Lichman. UCI machine learning repository. http://archive.ics.uci.edu/ml, 2013.

[12] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker. Identifying suspicious urls: an application of large-scale
online learning. In Proceedings of the 26th annual international conference on machine learning, pages
681–688. ACM, 2009.

[13] Z. Ma, Y. Lu, and D. Foster. Finding linear structure in large datasets with scalable canonical correlation
analysis. arXiv preprint arXiv:1506.08170, 2015.

[14] A. Magen and A. Zouzias. Low rank matrix-valued chernoff bounds and approximate matrix multiplication.
In Proceedings of the twenty-second annual ACM-SIAM symposium on Discrete Algorithms, pages 1422–
1436. SIAM, 2011.

[15] T. Sarlos. Improved approximation algorithms for large matrices via random projections. In Foundations
of Computer Science, 2006. FOCS’06. 47th Annual IEEE Symposium on, pages 143–152. IEEE, 2006.

[16] J. A. Tropp. Improved analysis of the subsampled randomized hadamard transform. Advances in Adaptive
Data Analysis, pages 115–126, 2011.

[17] D. P. Woodruff. Sketching as a tool for numerical linear algebra. arXiv preprint arXiv:1411.4357, 2014.

[18] S. Wu, S. Bhojanapalli, S. Sanghavi, and A. Dimakis. Github repository for "single-pass pca of matrix
products". https://github.com/wushanshan/MatrixProductPCA, 2016.

[19] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica.
Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In Proceedings
of the 9th USENIX conference on Networked Systems Design and Implementation, 2012.

9

https://github.com/wushanshan/MatrixProductPCA

