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Abstract

Bayesian nonparametric methods based on the Dirichlet Process (DP), gamma pro-
cess and beta process, have proven effective in capturing aspects of various datasets
arising in machine learning. However, it is now recognized that such processes
have their limitations in terms of the ability to capture power law behavior. As such
there is now considerable interest in models based on the Stable Processs (SP),
Generalized Gamma process (GGP) and Stable-Beta Process (SBP). These models
present new challenges in terms of practical statistical implementation. In analogy
to tractable processes such as the finite-dimensional Dirichlet process, we describe
a class of random processes, we call iid finite-dimensional BFRY processes, that
enables one to begin to develop efficient posterior inference algorithms such as
variational Bayes that readily scale to massive datasets. For illustrative purposes,
we describe a simple variational Bayes algorithm for normalized SP mixture mod-
els, and demonstrate its usefulness with experiments on synthetic and real-world
datasets.

1 Introduction

Bayesian non-parametric ideas have played a major role in various intricate applications in statistics
and machine learning. The Dirichlet process (DP) [1], due to its remarkable properties and relative
tractability, has been the primary choice for many applications. It has also inspired the development of
variants such as the HDP [2] which can be seen as an infinite-dimensional extension of latent Dirichlet
allocation [3]. While there are many possible descriptions of a DP, a most intuitive one is its view as
the limit, as K →∞, of a finite-dimensional Dirichlet process, PK(A) =

∑K
k=1DkI{Vk∈A}, where

one can take (D1, . . . , DK) to be a K-variate symmetric Dirichlet vector on the (K − 1)-simplex
with parameters (θ/K, . . . , θ/K), for θ > 0 and {Vk} are an arbitrary i.i.d. sequence of variables
over a space Ω, with law H(A) = Pr(Vk ∈ A). Multiplying by a Gθ, an independent Gamma(θ, 1),

variable, leads to a finite-dimensional Gamma process ΓK(A) =
∑K
k=1GkI{Vk∈A} := GθPK(A),

where {Gk} are i.i.d. Gamma(θ/K, 1) variables, and one may set ΓK(Ω) = Gθ. It was shown
that limK→∞(PK ,ΓK)

d
= (F̃0,θ, µ̃0,θ), where the limits correspond to a DP and a Gamma process

(GP) [4]. While (PK ,ΓK) are often viewed as approximations to the DP and Gamma process (GP),
the works of [5, 6, 7] and references therein demonstrate the general utility of these models.

The relationship between the GP and DP shows that the GP is a more flexible random process. This
is borne out by its recognized applicability for a wider range of data structures. As such, it suffices
to focus on ΓK as a tractable instance of what we refer to as an i.i.d. finite-dimensional process. In
general, we say a random process, µK(·) :=

∑K
k=1 JkδVk , is an i.i.d. finite-dimensional process if

[(i)] For each fixed K, (J1, . . . , JK) are i.i.d. random variables [(ii)] limK→∞ µK
d
= µ̃, where µ̃ is a

completely random measure (CRM) [8]. In fact, from [9] (Theorem 14), it follows that if the limit
exists µ̃ must be a CRM and therefore T := µ̃(Ω) <∞ is a non-negative infinitely divisible random
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variable. On the other hand, it is important to note that, {Jk} and TK = µK(Ω) =
∑K
k=1 Jk need

not be infinitely divisible. We also point out there are many constructions of µK that converge to
the same µ̃. According to [4], for every CRM µ̃ one can construct special cases of µK that always
converge as follow: Let (C1, . . . , CK) denote a disjoint partition of Ω such that H(Ck) = 1/K for
k = 1, . . . ,K, then one can set Jk

d
= µ̃(Ck), where the {Jk} are iid infinitely divisible variables

and TK
d
= T. For reference we shall call such µK finite-dimensional Kingman processes or simply

Kingman proceses. It is clear that the finite-dimensional gamma process satisfies such a construction
with Jk = Gk and TK = Gθ. However, the nice tractable features of this special case, do not carry
over in general. This is due to the fact that there are many cases where the distribution of µ̃(Ck), is
not tractable either in the sense of not being easily simulated or having a relatively simple density.
The latter is of particular importance if one wants to consider developing inferential techniques for
CRM models that scale readily to large or massive data sets. An example of this would be variational
Bayes type methods, which would otherwise be well suited to the i.i.d. based models [10]. As such
we consider a finer class of i.i.d. finite-dimensional processes as follows: We say µK is ideal if in
addition to [(i)] and [(ii)] it satisfies [(iii)] the Jk are easily simulated [(iv)] the density of Jk has
an explicit closed form suitable for application of techniques such as variational Bayes. We do not
attempt to specify any formal structure on what we mean by ideal, except to note that one can easily
recognize a choice of µK that is not ideal.

Our focus in this paper is not to explore the generalities of finite-dimensional processes. Rather
it is to identify specific ideal processes which are suitable for important cases where µ̃ is a Stable
process (SP), or Generalized Gamma process (GGP). Furthermore by a simple transformation we
can construct processes that have behaviour similar to a Stable-Beta process (SBP). The SP, GGP,
SBP, and processes constructed from them, are now regarded as important alternatives to the DP,
GP and beta process (BP), as they, unlike the (DP, GP, BP), are better able to capture power law
behavior inherent in many types of datasets [11, 12, 13, 14, 15]. Unfortunately Kingman processes
based on SP, GGP or SBP are clearly not ideal. Indeed, if one considers for 0 < α < 1, T = Sα
a positive stable random variable, with density fα, then the corresponding stable process µ̃α,0, is

such that Jk
d
= µα,0(Ck)

d
= K−1/αSα. While it is fairly easy to sample Sα and hence each Jk, it is

well-known that the density fα does not have generally a tractable form. Things become worse in
the GGP setting as the relevant density is formed by exponentially tilting the density fα. Finally it is
neither clear from the literature how to sample T for SBP, and much less have a simple form for its
corresponding density. Here we shall construct ideal processes based on various manipulations of a
class of µK we call finite-dimensional BFRY [16] processes. We note that BFRY random variables
appear in machine learning contexts in recent work [17], albeit in a very different role.

Based on finite-dimensional BFRY processes, we provide simple variational Bayes algorithms for
mixture models based on normalized SP and GGP. We also derive collapsed variational Bayes
algorithms where the jumps are marginalized out. We demonstrate the effectiveness of our approach
on both synthetic and real-world datasets. Our intent here is to demonstrate how these processes can
be used within the context of variational inference. This in turn hopefully helps to elucidate how to
implement such procedures, or other inference techniques that benefit from explicit densities, such as
hybrid Monte Carlo [18] or stochastic gradient MCMC algorithms [19].

2 Background

2.1 Completely random measure and Laplace functionals

Let (Ω,F) be a measurable space, A random measure µ on Ω is completely random [8] if for any
disjoint A,B ∈ F , µ(A) and µ(B) are independent. It is known that any CRM can be written as
the sum of a deterministic measure, a measure with fixed atoms, and a random measure represented
as a linear functional of the Poisson process [8]. In this paper, we focus on CRMs with only the
third component. Let Π be a Poisson process on R+ × Ω with mean intensity decomposed as
ν(ds, dω) = ρ(ds)H(dω). A realization of Π and corresponding CRM is written as

Π =

Π(R+,Ω)∑
k=1

δ(sk,ωk), µ =

∫ ∞
0

sΠ(ds, dω) =

Π(R+,Ω)∑
k=1

skδωk . (1)
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We refer to ρ as the Lévy measure of µ and H as the base measure, and write µ ∼ CRM(ρ,H).
Examples of CRMs include the gamma process GP(θ,H) with Lévy measure ρ(ds) = θs−1e−sds
or the beta process BP(c, θ,H) with Lévy measure ρ(du) = θcu−1(1− u)c−1I{0≤u≤1}du. Stable,
generalized gamma, and stable beta are also CRMs, and we will discuss them later.

A CRM is identified by its Laplace functional, just as a random variable is identified by its charac-
teristic function [20]. For a random measure µ and a measurable function f , the Laplace functional
Lµ(f) is defined as

Lµ(f) := E[e−µ(f)], µ(f) :=

∫
Θ

f(ω)µ(dω). (2)

When µ ∼ CRM(ρ,H), the Laplace functional can be computed using the following theorem.

Theorem 1. (Lévy-Khintchine Formula [21]) For µ ∼ CRM(ρ,H) and measurable f on Ω,

Lµ(f) = exp

{
−
∫

Ω

∫ ∞
0

(1− e−sf(ω))ρ(ds)H(dω)

}
. (3)

2.2 Stable and related processes

A Stable Process SP(θ, α,H) is a CRM with Lévy measure

ρ(ds) =
θ

Γ(1− α)
s−α−1ds, (4)

and a Generalized Gamma Process GGP(θ, α, τ,H) is a CRM with Lévy measure

ρ(ds) =
θ

Γ(1− α)
s−α−1e−τsds, (5)

where θ > 0, 0 < α < 1, and τ > 0.

GGP is general in the sense that we can get many other processes from it. For example, by letting
α → 0 we get GP, and by setting τ = 0 we get SP. Furthermore, while it is well-known that the
Pitman-Yor process (see [22] and [23]) can be derived from SP, there is also a construction based
on GGP as follows. In particular as a consequence of ([23], Proposition 21), if we randomize θ =
Gamma(θ′/α, 1) in SP and normalize the jumps, then we get the Pitman-Yor process PYP(θ′, α)
for θ′ > 0. The jumps of SP and GGP are known to be heavy-tailed, and this results in power-law
behaviour of data drawn from models having those processes as priors.

The stable beta process SBP(θ, α, c,H) is a CRM with Lévy measure

ρ(du) =
θΓ(1 + c)

Γ(1− α)Γ(c+ α)
u−α−1(1− u)c+α−1I{0≤u≤1}du, (6)

where θ > 0, 0 < α < 1, and c > −α. SBP can be viewed as a heavy-tailed extension of BP, and the
special case of c = 0 can be obtained by applying the transformation u = s/(s+ 1) in SP.

2.3 BFRY distributions

The BFRY distribution with parameter 0 < α < 1, written as BFRY(α), is a random variable with
density

gα(s) =
α

Γ(1− α)
s−α−1(1− e−s). (7)

We can simulate S ∼ BFRY(α) with S d
= G/B, whereG ∼ Gamma(1−α, 1) andB ∼ Beta(α, 1).

One can easily verify this by computing the density of the ratio distribution.

The name BFRY was coined in [16] after the work of Bertoin, Fujita, Roynette, and Yor [24]
who obtained explicit descriptions of the infinitely divisible random variable and subordinator
corresponding to the density. However, the density arises much earlier, and can be found in a variety
of contexts, for instance in [23] (Proposition 12, Corollary 13 and see also Eq.(124)) and [25]. See
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[17] for the use of BFRY distributions to induce the closed form Indian buffet process type generative
processes that have a type III power law behaviour.

We also explain some variations of BFRY distributions needed for the construction of finite-
dimensional BFRY processes for SP and GGP. First, we can scale the BFRY random variables
by some scale c > 0. In that case, we write S ∼ BFRY(c, α), and the density is given as

gc,α(s) =
c

Γ(1− α)
s−α−1(1− e−(α/c)1/αs). (8)

We can easily sample S ∼ BFRY(c, α) as S d
= (α/c)−1/αT where T ∼ BFRY(α). We can also

exponentially tilt the scaled BFRY random variable, with a parameter τ > 0. For that we write
S ∼ BFRY(c, τ, α), and the density is given as

gc,τ,α(s) =
αs−α−1e−τs(1− e−(α/c)1/αs)

Γ(1− α){(τ + (α/c)1/α)α − τα}
. (9)

We can simulate S ∼ BFRY(c, τ, α) as S d
= GT where G ∼ Gamma(1− α, 1) and T is a random

variable with density,

h(t) =
αt−α−1

(τ + (α/c)1/α)α − τα
I{(τ+(α/c)1/α)−1≤t≤τ−1}, (10)

which can easily be sampled using inverse transform sampling.

3 Main Contributions

3.1 A Motivating example

Before we jump into our method, we first revisit an example of ideal finite-dimensional processes.
Inspired by constructions of DP and GP, the Indian buffet process (IBP, [26]) was developed as a
model for feature selection, by considering the limit K →∞ of an M ×K binary matrix whose en-
tries {Zm,k} are conditionally independent Bern(Uk) variables where {Uk} are i.i.d. Beta(θ/K, 1)
variables. Although not explicitly described as such, this leads to the notion of a finite-dimensional
beta process µK =

∑K
k=1 UkδVk . In [26], IBP was obtained as the limit of the marginal dis-

tribution where µK was marginalized out, and this result coupled with [27] show indirectly that
limK→∞ µK → µ ∼ BP(θ,H). Here, we show another proof of this convergence, by inspecting the
Laplace functional of µK . The Laplace functional of µK is computed as follows:

LµK (f) = E[e−µK(f)] =

[ ∫
Ω

∫ 1

0

θ

K
u
θ
K−1e−uf(ω)duH(dω)

]K
=

[
1− 1

K

∫
Ω

∫ 1

0

θu
θ
K−1(1− e−uf(ω))duH(dω)

]K
. (11)

Since uθ/K is bounded by 1, the bounded convergence theorem implies

lim
K→∞

LµK (f) = exp

{
−
∫

Ω

∫ ∞
0

(1− e−uf(ω))θu−1I{0≤u≤1}duH(dω)

}
, (12)

which exactly matches the Laplace functional of µ computed by Eq. (3). In contrast to the marginal
likelihood arguments, in our proof, we illustrate the direct relationship between the random measures
and suggest a blueprint that can be applied to other CRMs. Note that the finite-dimensional beta
process is not a Kingman process, since the beta variables are not infinitely divisible and the total
mass T is a Dickman variable. We can also apply our argument to the case of the finite-dimensional
gamma process, the proof of which is given in our supplementary material.

3.2 Finite-dimensional BFRY processes

Inspired by the finite-dimensional beta and gamma process examples, we propose finite-dimensional
BFRY processes, which converge to SP, GGP, and SBP as K →∞.
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Theorem 2. (Finite-dimensional BFRY processes)

(i) Let µ ∼ SP(θ, α,H). Construct µK as follows:

J1, . . . , JK
i.i.d.∼ BFRY(θ/K,α), V1, . . . , VK

i.i.d.∼ H, µK =

K∑
k=1

JkδVk . (13)

(ii) Let µ ∼ GGP(θ, α, τ,H). Construct µK as follows:

J1, . . . , JK
i.i.d.∼ BFRY(θ/K, τ, α), V1, . . . , VK

i.i.d.∼ H, µK =

K∑
k=1

JkδVk . (14)

(iii) Let µ ∼ SBP(θ, α, 0, H). Construct µK as follows:

S1, . . . , SK
i.i.d.∼ BFRY(θ/K,α), Jk = Sk

Sk+1 for k = 1, . . . ,K,

V1, . . . , VK
i.i.d.∼ H, µK =

K∑
k=1

JkδVk . (15)

For all three cases, limK→∞ Lf (µK) = Lf (µ) for an arbitrary measurable f .

Proof. We first provide a proof for SP case (i), and the proof for GGP (ii) is almost identical. The
Laplace functional of µK is written as

LµK (f) =

[ ∫
Ω

∫ ∞
0

e−sf(ω) θ

KΓ(1− α)
s−α−1(1− e−(αK/θ)1/αs)dsH(dω)

]K
=

[
1− 1

K

∫
Ω

∫ ∞
0

θ

Γ(1− α)
(1− e−sf(ω))s−α−1(1− e−(αK/θ)1/αs)dsH(dω)

]K
Since 1− e−(αK/θ)s is bounded by 1, the bounded convergence theorem implies,

lim
K→∞

LµK (f) = exp

{
−
∫

Ω

∫ ∞
0

(1− e−sf(ω))
θ

Γ(1− α)
s−α−1dsH(dω)

}
,

which exactly matches the Laplace functional of SP. The proof of (iii) is trivial from (i) and the
relationship between SP and SBP.

Corollary 1. Let τ = 1 and α→ 0 in (14). Then µK will converge to µ ∼ GP(θ,H).

Proof. The result is trivial by letting α→ 0 in Lf (µK).
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Figure 1: Log of average
jump sizes of NSPs

Finite-dimensional BFRY processes are certainly ideal processes, since
we can easily sample the jumps {Jk}, and we have explicit closed form
densities written as (8) and (9). Hence, based on those processes, we
can develop efficient inference algorithms such as variational Bayes for
power-law models related to SP, GGP, and SBP that require explicit
densities of jumps. Figure 1 illustrates the log of average jump sizes
of 100 normalized SPs drawn using finite-dimensional BFRY processes,
with θ = 1,K = 1000, and varying α. As expected, the jumps generated
with bigger α are more heavy-tailed.

3.3 Finite-dimensional normalized random measure mixture models

A normalized random measure (NRM) is obtained by normalizing a CRM by its total mass. A NRM
mixture model (NRMM) is then defined as a mixture model with NRM prior, and its generative
process is written as follows:

µ ∼ CRM(ρ,H), φ1, . . . φN
i.i.d.∼ µ/µ(Ω), Xn|φn ∼ L(φn), (16)

where L is a likelihood distribution. One can easily do posterior inferences by marginalizing out µ,
with an auxiliary variable. Once µ is marginalized out we can develop a Gibbs sampler [28]. However,
this scales poorly as mentioned earlier. On the other hand, one may replace µ with µK , yielding
the finite-dimensional NRMM (FNRMM), for which efficient variational Bayes can be developed
provided that the finite-dimensional process is ideal.
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3.4 Variational Bayes for finite-dimensional mixture models

We first introduce a variational Bayes algorithm for finite-dimensional normalized SP mixture
(FNSPM). The joint likelihood of the model is written as

Pr({Xn ∈ dxn, zn}, {Jk ∈ dsk, Vk ∈ dωk}) = s−N·

K∏
k=1

s
Nk
k gθ/K,α(dsk)

∏
zn=k

L(dxn|ωk)H(dωk), (17)

where s· :=
∑
k sk, and zn is an indicator variable such that zn = k if φn = ωk. We found it

convenient to introduce an auxiliary variable U ∼ Gamma(N, s·) as in [20] to remove s−N· :

Pr({Xn ∈ dxn, zn}, {Jk ∈ dsk, Vk ∈ dωk}, U ∈ du)

∝ uN−1du

K∏
k=1

s
Nk
k e−uskgθ/K,α(sk)dsk

∏
zn=k

L(dxn|ωk)H(dωk). (18)

Now we introduce variational distributions for {z, s, ω, u} and optimize the Evidence Lower BOund
(ELBO) with respect to the parameters of the variational distributions. The posterior statistics can be
simulated using the optimized variational distributions. We can also optimize the hyperparamters θ
and α with ELBO. The detailed optimization procedure is described in the supplementary material.

3.5 Collapsed Gibbs sampler for finite-dimensional mixture models

As with the NRMM, we can also marginalize out the jumps {Jk} to get the collapsed model.
Marginalizing out s in (18) gives

Pr({Xn ∈ dxn, zn}, {Vk ∈ dωk}, U ∈ du) ∝ uN−1du

K∏
k=1

[
θ(1− ξNk−α)

uNk−α
Γ(Nk − α)

Γ(1− α)

]I{Nk>0}

×
[
θuα

α
(ξ−α − 1)

]I{Nk=0} ∏
zn=k

L(dxn|ωk)H(dωk), (19)

where ξ := u
u+(αK/θ)1/α

. Based on this, we can derive the collapsed Gibbs sampler for FNSPM,
and the detailed equations are in the supplementary material.

3.6 Collapsed variational Bayes for finite-dimensional mixture models

Based on the marginalized log likelihood (19), we can develop a collapsed variational Bayes algorithm
for FNSPM, following the collapsed variational inference algorithm for DPM [29]. We introduce
variational distributions for {u, z, ω}, and then the update equation for q(z) is computed using the
conditional posterior p(z|x). The hyperparamters can also be optimized, the detailed procedures for
which are explained in the supplementary material.

4 Experiments

4.1 Experiments on synthetic datasets

4.1.1 Data generation

We generated 10 datasets from PYP mixture models. Each dataset was generated as follows. We
first generated cluster labels for 2,000 data points from PYP(θ, α) with θ = 1 and α = 0.7. Given
the cluster labels, we generated data points from Mult(M,ω), where the number of trials M was
chosen uniformly from [1, 50] and ω was sampled from Dir(0.05 · 1200). We also generated another
10 datasets from CRP mixture models CRP(θ) with θ = 1, to see if FNSPM adapts to the change of
the underlying random measure. For each dataset, we used 80% of data points for training and the
remaining 20% for testing.

4.1.2 Algorithm settings and performance measure

We compared six algorithms - Collapsed Gibbs (CG) for FDPM (CG/D), Variational Bayes (VB) for
FDPM (VB/D), Collapsed Variational Bayes (CVB) for FDPM (CVB/D), CG for FNSPM (CG/S),
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Figure 2: (Left) comparison between the infinite-dimensional algorithm and the finite dimensional algorithms.
(Middle) Average times per iteration of the infinite and the finite dimensional algorithms. (Right) Average
number of iterations need to converge for variational algorithms.

Table 1: Comparison between six finite-dimensional algorithms on synthetic PYP, synthetic CRP, AP corpus and
NIPS corpus. Average test log-likelihood values and α estimates are shown with standard deviations.

PYP CRP AP NIPS

loglikel α loglikel α loglikel α loglikel α

CG/D -33.2078
(1.5557) - -25.4076

(1.9081) - -157.2228
(0.0189) - -352.8909

(0.0070) -

VB/D -33.4480
(1.6495) - -25.4148

(1.9120) - -157.2379
(0.0304) - -352.9104

(0.0172) -

CVB/D -33.4278
(1.6525) - -25.4150

(1.9115) - -157.2302
(0.0280) - -352.8692

(0.0321) -

CG/S -33.1039
(1.5676)

0.6940
(0.0235)

-25.4079
(1.9077)

0.2867
(0.0762)

-157.1920
(0.0036)

0.5261
(0.0032)

-352.7487
(0.0037)

0.5857
(0.0032)

VB/S -33.1861
(1.5873)

0.4640
(0.0085)

-25.5076
(1.9122)

0.4770
(0.0041)

-157.1391
(0.1154)

0.4748
(0.0434)

-352.6078
(0.2599)

0.4945
(0.0324)

CVB/S -33.2031
(1.5858)

0.7041
(0.0322)

-25.4080
(1.9085)

0.2925
(0.0608)

-157.2182
(0.0282)

0.5327
(0.0060)

-352.7544
(0.0088)

0.5899
(0.0070)

VB for FNSPM (VB/S) and CVB for FNSPM (CVB/S). All the algorithms were initialized with a
single run of sequential collapsed Gibbs sampling starting from zero clusters, and afterwards ran for
100 iterations. The variational algorithms were terminated if the improvements of the ELBO were
smaller than a threshold. The hyperparameters θ and α were initialized as θ = 1 and α = 0.5 for all
algorithms. The performances were measured by average test log-likelihood,

1

Ntest

Ntest∑
n=1

log p(xn|xtrain). (20)

For CG, we computed the average of samples collected every 10 iterations. For VB and CVB, we
computed the log-likelihood using the expectations of the variational distributions.

4.1.3 Effect of K on predictive performance and running time

To see the effect of K on predictive performance, we first compared the finite-dimensional algorithms
(CG for FNSPM, VB for FNSPM and CVB for FNSPM) to the infinite-dimensional algorithm
(CG for NSPM [28]). We tested the four algorithms on 10 synthetic datasets generated from PYP
mixtures, with K ∈ {200, 400, 600, 800, 1000} for finite algorithms, and measured the difference
of average test log likelihood compared to the infinite-dimensional algorithm. We also measured
the average running time per iteration of the four algorithms, and the average number of iterations
to converge of the variational algorithms. Figure 2 shows the results. As expected, the difference
between finite-dimensional algorithms and the infinite-dimensional algorithm decreases as K grows.
The finite-dimensional algorithms have O(NK) time complexity per iteration, and the infinite-
dimensional algorithm has O(NK̃) where K̃ is the maximum number of clusters created during
clustering. However, in practice, variational algorithms can be implemented with efficient matrix
multiplications, and this makes them much faster than sampling algorithms. Moreover, as shown in
Figure 2, variational algorithms usually converge in 50 iterations.
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4.1.4 Comparing finite-dimensional algorithms on PYP and CRP datasets

We compared six algorithms for finite mixture models (CG/D, VB/D, CVB/D, CG/S, VB/S and
CVB/S) on PYP mixture datasets and CRP mixture datasets, with K = 1000. The results are summa-
rized in Table 1. On PYP datasets, in general, FNSPM outperformed FDPM and CG outperformed
VB and CVB. CG/S consistently outperformed CG/D, and the same relationship applied to VB/S
and VB/D and CVB/S and CVB/D. Even though VB/S and CVB/S were variational algorithms, the
performance gap between them and CG/S was not significant. Table 1 shows the estimated α values
for CG/S, VB/S and CVB/S. CG/S and CVB/S seemed to recover the true value α = 0.7, but VB/S
didn’t. We found that VB/S tends to control the other parameter θ while holding α near its initial
value 0.5. On CRP datasets, all the algorithms showed similar performances except for VB/S, which
was consistently worse than other algorithms. This is probably due to the bad estimates of α.

4.2 Experiments on real-world documents

We compared the six algorithms on real-world document clustering task by clustering AP corpus 1 and
NIPS corpus 2. We preprocessed the corpora using latent Dirichlet allocation (LDA) [3]. We ran LDA
with 300 topics, and then gave each document a bag-of-words representation of topic assignments
to those 300 topics. We assumed that those representations were generated from the multinomial-
Dirichlet model, and clustered them using FDPM and FNSPM. We used 80% of documents for
training and the remaining 20% for computing average test log-likelihood. We setK = 2, 000 and ran
each algorithm for 200 iterations. We repeated this 10 times to measure the average performance.The
results are summarized in Table 1. In general, the algorithms based on FNSPM showed better
performance than those of FDPM based ones, implying that FNSPM based algorithms are well
capturing the heavy-tailed cluster distributions of the corpora. VB/S performed the best, even though
it sometimes converged to poor values.

5 Conclusion

In this paper, we proposed finite-dimensional BFRY processes that converge to SP, GGP and SBP. The
jumps of the finite-dimensional BFRY processes have nice closed-form densities, and this leads to
the efficient posterior inference algorithms. With finite-dimensional BFRY processes, we developed
variational Bayes and collapsed variational Bayes for finite-dimensional normalized SP mixture
models, and demonstrated its performance both on synthetic and real-world datasets. As mentioned
earlier, with finite dimensional BFRY processes one can develop variational Bayes or other posterior
inference algorithms for a variety of models with SP, GGP and SBP priors. This fact, along with
more theoretical properties of finite-dimensional processes, presents interesting avenues for future
research.
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