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Abstract

We consider the Threshold Bandit setting, a variant of the classical multi-armed
bandit problem in which the reward on each round depends on a piece of side
information known as a threshold value. The learner selects one of K actions
(arms), this action generates a random sample from a fixed distribution, and the
action then receives a unit payoff in the event that this sample exceeds the threshold
value. We consider two versions of this problem, the uncensored and censored case,
that determine whether the sample is always observed or only when the threshold is
not met. Using new tools to understand the popular UCB algorithm, we show that
the uncensored case is essentially no more difficult than the classical multi-armed
bandit setting. Finally we show that the censored case exhibits more challenges, but
we give guarantees in the event that the sequence of threshold values is generated
optimistically.

1 Introduction

The classical Multi-armed Bandit (MAB) problem provides a framework to reason about sequential
decision settings, but specifically where the learner’s chosen decision is intimately tied to information
content received as feedback. MAB problems have generated much interest in the Machine Learning
research literature in recent years, particularly as a result of the changing nature in which learning
and estimation algorithms are employed in practice. More and more we encounter scenarios in which
the procedure used to make and exploit algorithmic predictions is exactly the same procedure used to
capture new data to improve prediction performance. In other words it is increasingly harder to view
training and testing as distinct entities.

MAB problems generally involve repeatedly making a choice between one of a finite (or even infinite)
set of actions, and these actions have historically been referred to as arms of the bandit. If we “pull”
arm i at round ¢, then we receive a reward R! € [0, 1] which is frequently assumed to be a stochastic
quantity that is drawn according to distribution D;. Typically we assume that D; are heterogeneous
across the arms i, whereas we assume the samples {Rﬁ }i=1,...r are independently and identically
distributed according to the fixed D; across all times t.1 Of course, were the learner to have full
knowledge of the distributions D; from the outset, she would presumably choose to pull the arm
whose expected reward y; is highest. With that in mind, we tend to consider the (expected) regret of
the learner, defined to be the (expected) reward of the best arm minus the (expected) reward of the
actual arms selected by the learner.

Early work on MAB problems (Robbins, 1952; Lai and Robbins, 1985; Gittins et al., 2011) tended to
be more focused on asymptotic guarantees, whereas more recent work (Auer et al., 2002; Auer, 2003)

I'Note that in much of our notation we use superscript # to denote the time period rather than as an exponent.
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has been directed towards a more “finite time” approach in which we can bound regret for fixed time
horizons T'. One of the best-known and well-studied techniques is known as the Upper Confidence
Bound (UCB) algorithm (Auer et al., 2002; Auer and Ortner, 2010). The magic of UCB relies on a
very intuitive policy framework, that a learner should select decisions by maximizing over rewards
estimated from previous data but only after biasing each estimate according to its uncertainty. Simply
put, one should choose the arm that maximizes the “mean plus confidence interval,” hence the name
Upper Confidence Bound.

In the present paper we focus on the Threshold Bandit setting, described as follows. On each round 7,
a piece of side information is given to the learner in the form of a real number c¢’, the learner must
then choose arm i out of K arms, and this arm produces a value Xl-’ drawn from a survival distribution
with survival function F;(x) = Pr(X/ > x). The reward to the learner is not X! itself but is instead
the binary value R; = I[X/ > ¢']; that is, we receive a unit reward when the sample X/ exceeds the
threshold value ¢!, and otherwise we receive no reward. For a fixed value of ¢/, each arm i has
expected payoff E[R!] = F;(¢’). Notice, crucially, that the arm with the greatest expected payoff can
vary significantly across different threshold values.

This abstract model has a number of very natural applications:

1. Packet Delivery with Deadlines: FedEx receives a stream of packages that need to be
shipped from source to destination, and each package is supplied with a delivery deadline.
The goal of the FedEx routing system is to select a transportation route (via air or road or
ship, etc.) that has the highest probability of on-time arrival. Of course some transportation
schemes are often faster (e.g. air travel) but have higher volatility (e.g. due to poor weather).

2. Supplier Selection: Customers approach a manufacturing firm to produce a product with
specific quality demands. The firm must approach one of several suppliers to contract out
the work, but the firm is uncertain as to the capabilities and variabilities of the products each
supplier produces.

3. Dark Pool Brokerage: A financial brokerage firm is asked to buy or sell various sized
bundles of shares, and the brokerage aims to offload the transactions onto one of many
dark pools, i.e. financial exchanges that match buyers and sellers in a confidential manner
(Ganchev et al., 2010; Amin et al., 2012; Agarwal et al., 2010). A standard dark pool
mechanism will simply execute the transaction if there is suitable liquidity, or will reject the
transaction when no match is made. Of course the brokerage gets paid on commission, and
simply wants to choose the pool that has the highest probability of completion.

What distinguishes the Threshold Bandit problem from the standard stochastic multi-armed bandit
setting are two main features:

1. The regret of the learner will be measured in comparison to the best policy rather than to
simply the best arm. Note that the optimal offline policy may incorporate the threshold
value ¢’ before selecting an arm I”.

2. Whereas the standard stochastic bandit setting assumes that we observe the reward R’ of
the chosen arm I’, in the Threshold Bandit setting we consider two types of feedback.

(a) Uncensored Feedback: After playing arm I, the learner observes the sample X,
regardless of the threshold value ¢’. This is a natural model for the FedEx routing
problem above, wherein one learns the travel time of a package regardless of the
deadline having been met.

(b) Censored Feedback: After playing I’, the learner observes a null value when X }, >,
and otherwise observes X’,. This is a natural model for the Supplier Selection problem
above, as we would only learn the product’s quality value when the customer rejects
what is received from the supplier.

In the present paper we present roughly three primary results. First, we provide a new perspective
on the classical UCB algorithm, giving an alternative proof that relies on an interesting potential
function argument; we believe this technique may be of independent interest. Second, we analyze
the Threshold Bandit setting when given uncensored feedback, and we give a novel algorithm called
DKWUCB based on the Dvoretzky-Kiefer-Wolfowitz inequality (Dvoretzky et al., 1956). We show,
somewhat surprisingly, that with uncensored feedback the regret bound is no worse than the standard



stochastic MAB setting, suggesting that despite the much richer policy class one has nearly the same
learning challenge. Finally, we consider learning in the censored feedback setting, and propose an
algorithm KMUCSB, akin to the Kaplan-Meier estimator (Kaplan and Meier, 1958). Learning with
censored feedback is indeed more difficult, as the performance can depend significantly on the order
of the threshold values. In the worst case, when threshold values are chosen in an adversarial order,
the cost of learning scales with the number of unique threshold values, whereas one can perform
significantly better under certain constraints on optimistic assumptions on the order or even a random
order.

2 A New Perspective on UCB

Before focusing on the Threshold Bandit problem, let us turn our attention to the classical stochastic
MAB setting and give another look at the UCB algorithm. We will now provide a modified proof
of the regret bound of UCB that relies on a potential function. Potential arguments have proved
quite popular in studying adversarial bandit problems (Auer et al., 2003; Audibert and Bubeck, 2009;
Abernethy et al., 2012; Neu and Bartok, 2013; Abernethy et al., 2015), but have received less use
in the stochastic setting. This potential trick is the basis for forthcoming results on the Threshold
Bandit.

Let D; be a distribution on the reward R!, with support on [0,1]. We imagine the rewards

Ril, e ,RiT S D;, whose mean E[R!] = y;. A bandit algorithm is simply a procedure that chooses
a random arm/action I’ on round ¢ as a function of the set of past observed (action, reward) pairs,
(r! ,R}] Yy, (111 ,R’I;ll ). Finally, let N/ := ¥’} I[I* = i] and define the empirical mean estimator
Loy I =ilRSe

at time 7 to be fi} := 7

We assume we are given a particular deviation bound which provides the following guarantee,
Pr(|ui—ff| >& | N >N) < f(N.e),

where f(-) is some function, continuous in € and monotonically decreasing in both parameters, that
controls the probability of a large deviation. While UCB relies specifically on the Hoeffding-Azuma
inequality (Cesa-Bianchi and Lugosi, 2006), for now we leave the deviation bound in generic form.
This will be useful in following sections.

Given f(-,-), what is of interest to our present work is a pair of functions that allow us to convert
between values of € and N in order to guarantee that f(N,€) < 8 for a given 8 > 0. To this end define

8(e,d) := min{N: f(N,e/2) <8},
] inf{e: f(N,e) <&} if N > 0;
S(N,9) = { 11n{ (V¢ f lotherwise7

We will often omit the d in the argument to #(-),¢(+). Note the key property that g(N,d) < €/2 for
any N > f(g,9).

We can now define our variant of the UCB algorithm for a fixed choice of § > 0.

UCB Algorithm: on round ¢ play I' = argmax {{f; + G(N;,8) } (1)
i

We will make the simplifying assumption that the largest y; is unique and, without loss of generality, let
us assume that the coordinates are permuted in order that y is the largest mean reward. Furthermore,
define A; ;= —py; fori=2,...,K.

A central piece of the analysis relies on the following potential function, which depends on the current

number of plays of each arm i =2,... K.
K Ni—1
D(Ng, ... ,Ng) =2 ) ¢(N,8) )
i=2 N=0

Lemma 1. The expected regret of UCB is bounded as
E[Regret; (UCB)] < E[®(NI ..., NLTH] +O(T3)



Proof. The (random) additional regret suffered on round ¢ of UCB is exactly y; — ;. By virtue of
our given deviation bound, we know that

w < @+ (N3, 8) and Py < up +g(Ny,8), each w.p. >1—3. 3)

Also, let &' be the indicator variable that one of the above two inequalities fails to hold. Of course we
chose ¢(-) in order that E[E] < 28 via a simple union bound.

Note that, by virtue of using the UCB selection rule for I, it is clear that we have
iy +6(N1,8) <y +¢(N7:, 8) “)
If we combine Equations 3 and 4, and consider the event that & = 0, then we obtain
< iy +6(N,8) < il +6(N7,8) < ppr +26(Nyi, 8).
Even in the event that & = 1 we have that u; —u;+ < 1. Hence, it follows immediately that gy — ppr <
2G(N7,8) +¢€'.

Finally, we observe that the potential function was chosen so that CD(N;“,...,N}(“) —
D(N3,...,Ng) = 2¢(N%:,98). Recalling that ®(0,...,0) = 0, a simple telescoping argument gives that

T
E[Regret; (UCB)] <E [@(N, T',... .Ng ™)+ Y & | =E[@WN, T',... ,NgT)] +2T8.
=1

O

The final piece we need to establish is that the number of pulls Ni’ ofarm i, fori =2,...,K, is unlikely
to exceed £(A;, 8). This result uses some more standard techniques from the original UCB analysis
(Auer et al., 2002), and we defer it to the appendix.

Lemma 2. Forany T > 0 we have E[®(N T!,... NITH] < ®(4(A2,9),...,1(Ak,8)) + O(T?8).

We are now able to combine the above results for the final bound.
Theorem 1. If we set § = T2 /2, the expected regret of UCB is bounded as

E[Regret; (UCB)] < 8 i logA(_T) +0(1).
i=2 d

Proof. Note that a very standard deviation bound that holds for all distributions supported on
[0,1] is the Hoeffding-Azuma inequality (Cesa-Bianchi and Lugosi, 2006), where the bound is

given by f(N,e) = 2exp(—2Ne?). Utilizing Hoeffding-Azuma we have (g, 8) = PILS/S—‘ and

G(N,d) = 1og2(]2v/ Y for N > 0. If we utilize the fact that Yoo \/ < 2+/Y, then we see that
#(A;,9)
i log(2/3)#(A;,d) log(2 8
B(1(00,5) D) =2 Z c.8) =22 EOEED) s loel D)
i=2 N=
Combining the Lemma 1 and Lemma 2, setting 8 = T_2 /2, we conclude the theorem. O

3 The Threshold Bandits Model

In the preceding, we described a potential-based proof for the UCB algorithm in the classic stochastic
bandit problem. We now return to the Threshold Bandit setting, our problem of interest.

A K-armed Threshold Bandit problem is defined by random variables X/ and a sequence of threshold
values ¢ for 1 <i< K and 1 <t < T, where i is the index for arms. Successive pulling of arm
i generates the values X!, X2,... X7 which are drawn ii.d. from an unknown distribution. The
threshold values ¢!, 2, ..., ¢! are drawn from M = {1,2,...,m} (according to rules specified later).
The threshold value ¢’ is observed at the beginning of round ¢, and the learner follows a policy P to
choose the arm to play based on its past selections and previously observed feedbacks. Suppose the
arm pulled at round 7 is I', the observed reward is then R, = I[X}, > c']; that is, we receive a unit
reward when the sample X ﬁ, exceeds the threshold value ¢/, and otherwise we receive no reward. We
distinguish two different types of feedback.



1. Uncensored Feedback: After playing arm I’, the learner observes the sample X/, regardless

of the threshold value ¢’.
if X4, > ¢,

. 0
2. Censored Feedback: After playing I’, the learner observes> , .
X}, otherwise

In this case, we refer to the threshold value as a censor value.

Let F;(x) denote the survival function of the distribution on arm i. That is, F;(x) = Pr(X/ > x). We

measure regret against the optimal policy with full knowledge of Fy,...,F, i.e.,
T T
Regret; (P)=E | ) (m'fv](Rﬁ» —RZ,)} =F [Z (m?)]d[ (X >c)-T(X}y > c’))] :
—1 \i€n =1 \i€n

Notice that for a fixed value of ¢, each arm i has expected payoff E[R!] = F;(c¢’), the regret can also
be written as

Regret; (P) = E [£., (maxic(, Fi (¢)) — Fir (¢)]
Our goal is to design a policy that minimizes the regret.

4 DKWUCB: Dvoretzky-Kiefer-Wolfowitz Inequality based Upper
Confidence Bound algorithm

In this section, we study the uncensored feedback setting in which the value X/, is always observed
regardless of ¢’. We assume that the largest F;(j) is unique for all j € M, and define i*(j) =
argmax; Fi(j),Ai(j) = F(j)(j) — Fi(j) foralli=1,2,...,K and j € M.

Under this setting, the algorithm will use the empirical distribution as an estimate for the true
distribution. Specifically, we want to estimate the true survival function F; via:

1 . .
_ Zf;:lH[X}CT Z Js IT = l]
Ni

vjeM 5)

The key tool in our analysis is a deviation bound on the empirical CDF of a distribution, and we
note that this bound holds uniformly over the support of the distribution. The Dvoretzky-Kiefer-
Wolfowitz (DKW) inequality (Dvoretzky et al., 1956) allows us to bound the error on F; () :

Lemma 3. At a timet, let I‘i-’ be the empirical distribution function of F; as given in equation 5. The

probability that the maximum of the difference between I:"l-’ and F; over all j € M is at least € is less
than 2exp (—2€’NY) , i.e.,

Pr (sup ey | (j) — Fi(J)| > € | N} > N) <2exp(—2¢’N).

The proof of the lemma can be found in Dvoretzky et al. (1956). The key insight is that the estimate £;
converges to F; point-wise at the same rate as the Hoeffding-Asumza inequality. That is, one does not
pay an additional M factor from applying a union bound. The fact that we have uniform convergence
of the CDF with the same rate as the Hoeffding-Azuma inequality allows us to immediately apply
the potential function argument from Section 2. In particular, we define f(N,€) = 2exp (—2€°N) , as
well as the pair of functions f(€,8) and (N, d) exactly the same as the previous section, i.e.,

TSR

82
{ VB2 N > 0

(N, 9)

1 otherwise.

We are now ready to define our DKWUCB algorithm for a fixed choice of parameter & > 0 to solve
the problem.

DKWUCB Algorithm: on round ¢ play I' < argmax { £/ (c') +¢(N/,3)} . (6)

ZExisting literature often refers to this as right-censoring. With right-censored feedback, samples from
playing arms at high threshold values can inform decisions at low threshold values but not vice versa.



To analyze DKWUCB, we use a slight variant of the potential function defined in Section 2. Let
i*(j) = argmax; F;(j) denote the optimal arm for threshold value j, and N! denote the number of
rounds arm i is pulled when it is not optimal, N! = Z’T_:ll [[I* =i, I" #i*(c")]. Notice that N < N!.
Define the potential function as:

1

1
G(N.,9) @)
i=1 N=0
Theorem 2. Setting & = T2 /2, the expected regret of DKWUCB is bounded as

K

E[Regret.(DKWUCB)| <8 ) ———————
[Regrety ) ,;mlnjeMAi(J)

O(N,... . Ng):=2

N aoke

loeT
£ to(n,

We defer the proof of this theorem to the appendix.

We pause now to comment on some of the strengths of this type of analysis. At a high-level, the
typical analysis to the UCB algorithm for the standard multi-armed bandit problem (Auer et al.,
2002) is the following: (1) at some finite time 7, the number of pulls of a bad arm i is O (bi#)
with high probability, and (2) the regret suffered by any such pull is O(A;). The contribution of arm
i to total regret is therefore O (logA—(,T)) In contrast, we analyzed the UCB algorithm in Section 2
by observing that the expected regret suffered on round ¢ is bounded by the difference between the
empirical mean estimator and the true mean for the payoff of arm I”. Of course by design this quantity
is almost certainly (w.p. at least 1 — ) less than g(N}, ). The potential function ®(-,...,-) tracks the
accumulation of these values ¢(N!) for each arm i, and the final regret bound is a consequence of the

summation properties of ¢, for the particular estimator being used.

While these two approaches lead to the same bound in the standard multi-armed bandit problem,
the potential function approach bears fruit in the Threshold Bandit setting. Because the uniform
convergence rate promised by the DKW inequality matches that of the Hoeffding-Azume inequality,
Theorem 2 should not be surprising; the ith arm’s contribution to DKWUCB’s regret should be
idenitical to UCB, but with the suboptimality gap now equal to min; A;(j).

However, following the program for the standard analysis of UCB, one would naively argue that
log(T')
(minjem A ()))?
number of threshold values ¢’, suffering as much as max ey A;(j) regret, yielding a bound of
0 (maxjeM Ai(j)log(T) max; A; (/)

(minjen Ai()))? min; A;(/)
the derived result. By tracking the convergence of the underlying estimator, we circumvent this
problem entirely.

arm i is incorrectly pulled O( ) times. These pulls might come in the face of any

) on the ith arm’s regret contribution, which is a factor O ( ) worse than

5 KMUCB: Kaplan-Meier based Upper Confidence Bound Algorithm

We now turn to the censored feedback setting, in which the feedback of pulling arm I’ is observed
only when XY, is less than ¢’. For ease of presentation, we assume that the largest F;( /) is unique for
all j € M, and define i*(j) = argmax; F;(j),Ai(j) = F+(j)(j) — Fi(j) foralli=1,2,...,K and j € M.

One prevalent non-parametric estimator for censored data is the Kaplan-Meier maximum likelihood
estimator Kaplan and Meier (1958); Peterson (1983). Most of existing works have studied the uniform
error bound of Kaplan-Meier estimator in the case that the threshold values are drawn i.i.d. from a
known distribution Foldes and Rejto (1981) or asymptotic error bound for the non-i.i.d. case Huh
et al. (2009). The only known uniform error bound of Kaplan-Meier estimator is proposed in Ganchev
etal. (2010).

Noting that for a given threshold value, all the feedbacks from larger threshold values are useful, we
propose a new estimator with tighter uniform error bound based on the Kaplan-Meier estimator as
following:

~_ D)
AV

®)

@)}



where Di(j) and N! () is defined as follows
t—1 t—1
At=min{Xp,c'}, D)= Y IAT> =1, Ni(j) = YT T =1,

=1 =1

We first present an error bound for the modified Kaplan-Meier estimate of F;(j) :

Lemma 4. At time t, let I:"l»’ be the modified Kaplan-Meier estimate of F; as given in equation 8.
For any j € M, the probability that the difference between Fi’ () and F;(j) is at least € is less than

2 .
2exp (—%) ,1.e.,

2a7t( 3
Pr(|F/ (j) — F(j)| > €) < 2exp (_“Vz@> ,

We defer the proof of this lemma to the appendix.

Different to the stochastic uncensored MAB setting, we show that the cost of learning with censored
feedback depends significantly on the order of the threshold values. To illustrate this point, we first
show a comparison between the regret of adversarial setting and optimistic setting. In the adversarial
setting, the threshold values are chosen to arrive in a non-decreasing order 1,1,...,1,2,...,2,3,...,m,
the problem becomes playing m independent copies of bandits, and the regret scales with m;
while in the optimistic setting, the threshold values are chosen to arrive in a non-increasing or-
der mm,....mm—1,....m—1,...,1,...,1, which means the learner can make full use of the
samples, and can thus perform significantly better. Afterwards, we show that if the order of the
threshold values is close to uniformly random, the regret only scales with logm.

5.1 Adversarial vs. Optimistic Setting

For the simplicity of presentation, we assume that in both settings, the time horizon could be divided
in to m stages, each with length |7 /m].. In the adversarial setting, threshold value j comes during
stage j; while in the optimistic setting threshold value m — j + 1 comes during stage ;.

For the adversarial setting, due to the censored feedback structure, only the samples observed within
the same stage can help to inform decision making. From the perspective of the learner, this is
equivalent to facing m independent copies of stochastic MAB problems, and thus, the regret scales
with m. Making use of the lower bound of stochastic MAB problems Lai and Robbins (1985), we can
conclude the following theorem.

Theorem 3. If the threshold values arrive according to the adversarial order specified above, no
K log(T /m)

=1 KL(B(F())I[B(F(;y(/))’
KL(:||-) is the Kullback-Leibler divergence Lai and Robbins (1985) and B(-) is the probability
distribution function of Bernoulli distribution.

where

learning algorithm can achive a regret bound better than Z;":l Yy

For the optimistic setting, although the feedbacks are right censored, we note that every sample
observed in the previous rounds are useful in later rounds. This is because the threshold values arrive
in non-increasing order. Therefore, we can reduce the optimistic setting to the Threshold Bandit
problem with uncensored feedback, and use the DKWUCB proposed in Section 4 to solve it. More
specifically, we can set

f(N,e) := 2exp(—€>N/2),
ed) = |TER),

G(N,9)

{ /2logls,2/8) NS
1 otherwise.
and on every round, the learner plays the same strategy as DKWUCB. We call this strategy OPTIM.
Following the same procedure in Section 4, we can provide a regret for OPTIM.
Theorem 4. Let § = T~2/2 and assume T > mK. The regret of the optimistic setting satisfies

K

E[Regret . (OPTIM )| <32) ———————
[Regrety ( ) ,;mlnjeMAi(J)

logT
& Lo



5.2 Cyclic Permutation Setting

In this subsection, we show that if the order of threshold values is close to uniformly random, we can
perform significantly better than the adversarial setting. To be precise, we assume that the threshold
values are a cyclic permutation order of 1,2, ...,m. We define the set M = {cK™ ckmtl . ckimt1)=1}
for any non-negative integer k < T /m.

We are now ready to present KMUCB, which is a modified Kaplan-Meier-based UCB algorithm.
KMUCB divides the time horizon into epochs of length Km and, for each epoch, pulls each arm once
for each threshold value. KMUCB then performs an “arm elimination” process, and once all but one
arm has been eliminated, it proceeds to pull the single remaining arm for the given threshold value.
KMUCB?’s estimation procedure leverages information across threshold values, where observations
from higher thresholds are utilized to estimate mean payoffs for lower thresholds; information does
not flow in the other direction, however, as a result of the censoring assumption. Specifically, for a
given threshold index j, KMUCB tracks the arm elimination process as follows: for any threshold
values below j, KMUCB believes that we have determined the best arm, and plays that arm constantly.
For threshold values greater than or equal to j, KMUCB explores all arms uniformly. Note that by
uniform exploration over all arms for threshold value j, all sub-optimal arms can be detected with

probability at least 1 — O (%) after O ( log7 ) epochs. KMUCB then removes all the

(m—j+1) mine ) A7 ()
sub-optimal arms for threshold value j, and increments j by 1. Denoting the last time unit of epoch k
as ty = kKm, the detailed description of KMUCB is shown in Algorithm 1.

Algorithm 1 KMUCB

1: Input: A setof arms 1,2,... K.

2: Initialization: L; < [K]Vje M,k 1,j 1

3: forepochk=1,2,....,T/Kmdo

4 count[j'] <~ 0Vj e M

5 for 7 from (t;_; +1) to #; do

6: Observe ¢ = j’ and set count[;'] < count[;'] + 1
7

8

if j/ < j then
: I' < index of the single arm remaining in L
9: else

10: I' + count[/’].
11: end if

12: end for

e NN 161og(Tk) Al
13: if j < m and max; x| Flf"(]) —F*(j) > (mffil)])( Vie L;\ {argmax; Flf"(])} then
14:
Lj«+ argmaxﬁif"(j) , j—j+1
i'€[K]
15: end if
16: end for

Theorem 5. The expected regret of KMUCB is bounded as

+0(1).

ilog 128 max jep Ai(j) logT
m—— .
i=i minge(x] jew 47 ()

We defer the proof of this theorem to the appendix.

We note two directions of future research. First, we believe the above bound can likely be made
stronger by either improving upon the minimization in the denominator or the maximization in the
numerator. Second, we believe the “cyclic permutation” assumption can be weakened to “uniformly
randomly sequence of thresholds,” but we were unable to make progress in this direction. We
welcome further investigation along these lines.
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