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Abstract

In high-dimensional settings, where the number of features p is much larger than the
number of samples n, methods that systematically examine arbitrary combinations
of features have only recently begun to be explored. However, none of the current
methods is able to assess the association between feature combinations and a target
variable while conditioning on a categorical covariate. As a result, many false
discoveries might occur due to unaccounted confounding effects.
We propose the Fast Automatic Conditional Search (FACS) algorithm, a significant
discriminative itemset mining method which conditions on categorical covariates
and only scales as O(k log k), where k is the number of states of the categorical
covariate. Based on the Cochran-Mantel-Haenszel Test, FACS demonstrates supe-
rior speed and statistical power on simulated and real-world datasets compared to
the state of the art, opening the door to numerous applications in biomedicine.

1 Introduction
In the last 10 years, the amount of data available is growing at an unprecedented rate. However, in
many application domains, such as computational biology and healthcare, the amount of features is
growing much faster than typical sample sizes. Therefore, statistical inference in high-dimensional
spaces has become a tool of the utmost importance for practitioners in those fields. Despite the great
success of approaches based on sparsity-inducing regularizers [16, 2], the development of methods to
systematically explore arbitrary combinations of features and assess their statistical association with
a target of interest has been less studied. Exploring all combinations of p features is equivalent to
handling a 2p-dimensional space, thus combinatorial feature discovery exacerbates the challenges for
statistical inference in high-dimensional spaces even for moderate p.

Under the assumption that features and targets are binary random variables, recent work in the field
of significant discriminative itemset mining offers tools to solve the computational and statistical
challenges incurred by combinatorial feature discovery. However, all state-of-the-art approaches [15,
10, 13, 7, 8] share a key limitation: no method exists to assess the conditional association between
feature combinations and the target. The ability to condition the associations on an observed covariate
is fundamental to correct for confounding effects. If unaccounted for, one may find many false
positives that are actually associated with the covariate and not the class of interest [17]. For example,
in medical case/control association studies, it is common to search for combinations of genetic
variants that are associated with a disease of interest. In this setting, the class labels are the health
status of individuals, sick or healthy. The features represent binary genetic variants, encoded as 1
if the variant is altered and as 0 if not. Often, in high-order association studies, a subset of genetic
variants are combined to form a binary variable whose value is 1 if the subset only contains altered
genetic variants and is 0 otherwise. A subset of genetic variants is associated with the class label if the
frequencies of altered combinations in each class are statistically different. However, it is often the
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case that the studied samples belong to several subpopulations, for example African-American, East
Asian or European Caucasian, which show differences in the prevalence of some altered combinations
of genetic variants because of systematic ancestry differences. When, additionally, the subpopulations
clusters are unevenly distributed across classes, it can result in false associations to the disease of
interest [12]. This is the reason why it is necessary to model ancestry differences between cases and
controls in the presence of population structure or to correct for covariates in more general settings.

Hence our goal in this article is to present the first approach to significant discriminative itemset
mining that allows one to correct for a confounding categorical covariate.

To reach this goal, we present the novel algorithm FACS, which enables significant discrimina-
tive itemset mining with categorical covariates through the Cochran-Mantel-Haenszel test [9] in
O(k log k) time, where k is the number of states of the categorical covariate, compared to the standard
implementation which is exponential in k.

The rest of this article is organized as follows: In Section 2 we define the problem to be solved
and introduce the main theoretical concepts from related work that FACS is based on, namely the
Cochran-Mantel-Haenszel-test and Tarone’s testability criterion. In Section 3, we describe in detail
our contribution, the FACS algorithm and its efficient implementation. Finally, Section 4 validates the
performance of our method on a set of simulated and biomedical datasets.

2 Problem statement and related work
In this section we introduce the necessary background, notation and terminology for the remainder
of this article. First, in Section 2.1 we rigorously define the problem we solve in this paper. Next,
in Sections 2.2 and 2.3 we describe two key elements on which our method is based: the Cochran-
Mantel-Haenszel (CMH) test and Tarone’s testability criterion.

2.1 Discovering significant feature combinations in the presence of a categorical covariate

We consider a dataset of n observations D = {(ui, yi, ci)}ni=1, where the ith observation consists of:
(I) a feature vector ui consisting of p binary features, ui,j ∈ {0, 1} for j = 1, . . . , p; (II) a binary class
label, yi ∈ {0, 1}; and (III) a categorical covariate ci, which has k categories, i.e. ci ∈ {1, 2, . . . , k}.
Given any subset of features S ⊆ {1, 2, . . . , p}, we define its induced feature combination for the ith
observation as zi,S =

∏
j∈S ui,j , such that zi,S takes value 1 if and only if ui,j = 1 for all features in

S . Now, we use ZS to denote the feature combination induced by S , of which zi,S is the realization
for the ith observation. Similarly, we use Y to denote the label, and C to denote the covariate, of
which yi and ci are realizations, respectively, for i = 1, 2, . . . , n. Below we use the standard notation
A ⊥⊥ B to denote “A is statistically independent of B”.

Typically, significant discriminative itemset mining aims to find all feature subsets S for which a
statistical association test rejects the null hypothesis, namely ZS ⊥⊥ Y , after a rigorous correction for
multiple hypothesis testing. However, for any feature subset such that ZS 6⊥⊥ Y but ZS ⊥⊥ Y |C, the
association between ZS and Y is exclusively mediated by the covariate C, which acts in this case as
a confounder creating spurious associations.

Our goal: In this work, the aim is to find all feature subsets S for which a statistical association
test rejects the null hypothesis ZS ⊥⊥ Y |C, thus allowing to correct for a confounding categorical
covariate while keeping the computational efficiency, statistical power and the ability to correct for
multiple hypothesis testing of existing methods.

In the remainder of this section we will introduce two fundamental concepts our work relies upon.
The first one is the Cochran-Mantel-Haenszel (CMH) test, which offers a principled way to test if a
feature combination ZS is conditionally dependent on the class labels Y given the covariate C, that
is, to test the null hypothesis ZS ⊥⊥ Y |C. The second concept is Tarone’s testability criterion, which
allows a correction for multiple hypothesis testing while retaining large statistical power, in scenarios
such as ours where billions or trillions of association tests must be performed.

Tarone’s testability criterion has only been successfully applied to unconditional association tests,
such as Fisher’s exact test [6] or Pearson’s χ2 test [11]. Thus, the state-of-the-art in significant
discriminative itemset mining forces one to choose between: (a) using Bonferroni’s correction,
resulting in very low statistical power or an arbitrary limit in the cardinality of feature subsets (e.g.
[18]), or (b) using Tarone’s testability criterion, losing the ability to account for covariates and
resulting in potentially many confounded patterns being deemed significant [15, 13, 7, 8].
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Our contribution: In this paper, we propose FACS, a novel algorithm that allows applying Tarone’s
testability criterion to the CMH test, allowing to correct for a categorical covariate in significant
discriminative itemset mining for the first time. FACS will be introduced in detail in Section 3.

2.2 Conditional association testing with the Cochran-Mantel-Haenszel (CMH) test
To test if ZS ⊥⊥ Y |C, the CMH test [9] arranges the n realisations of {(zi,S , yi, ci)}ni=1 into k
distinct 2× 2 contingency tables, one table for each possible value of the covariate c, as:

Variables zS = 1 zS = 0 Row totals
y = 1 aS,j n1,j − aS,j n1,j

y = 0 xS,j − aS,j n2,j − xS,j + aS,j n2,j

Col totals xS,j nj − xS,j nj

where: (I) nj is the number of observations with c = j, n1,j of which have class label y = 1 and n2,j
of which have class label y = 0; (II) xS,j is the number of observations with c = j and zi,S = 1;
(III) aS is the number of observations with c = j, class label y = 1 and zi,S = 1. Based on
{nj , n1,j , xS,j , aS,j}kj=1, a p-value pS for feature combination ZS is computed as:

pS = 1− Fχ2
1


(∑k

j=1 aS,j −
xS,jn1,j

nj

)2
∑k
j=1

n1,j

nj

(
1− n1,j

nj

)
xS,j

(
1− xS,j

nj

)
 (1)

where Fχ2
1
(·) is the distribution function of a χ2 random variable with 1 degree of freedom. Finally,

the feature combination ZS and its corresponding feature subset S will be deemed significantly
associated if the p-value pS falls below a corrected significance threshold δ, that is, if pS ≤ δ.

The CMH test can be understood as a form of meta-analysis applied to k disjoint datasets {Dj}kj=1,
where Dj = {(ui, yi) | ci = j} contains only observations for which the covariate c takes value j.
For confounded feature combinations, the association might be large in the entire dataset D, but small
for conditional datasets Dj . Thus, the CMH test will not deem such feature combinations significant.

2.3 The multiple testing problem in discriminative itemset mining
In our setup, one must perform 2p− 1 association tests, one for each possible subset of features. Even
for moderate p, this leads to an enormous number of tests, resulting in a large multiple hypothesis
testing problem. To produce statistically reliable results, the significance threshold δ will be chosen to
guarantee that the Family-Wise Error Rate (FWER), defined as the probability of producing any false
positives, is upper-bounded by a significance level α. FWER control is most commonly achieved with
Bonferroni’s correction [3, 5], which in our setup would imply using δ = α/(2p − 1) as significance
threshold. However, Bonferroni’s correction tends to be overly conservative, resulting in very low
statistical power when the number of tests performed is large. In contrast, recent work in significant
discriminative itemset mining [15, 10, 13, 7] showed that, in this setting, Bonferroni’s correction can
be outperformed in terms of statistical power by Tarone’s testability criterion [14].

Tarone’s testability criterion is based on the observation that, for some discrete test statistics based on
contingency tables, a minimum attainable p-value can be computed as a function of the table margins.
Let Ψ(S) denote the minimum attainable p-value corresponding to the contingency table of feature
combination ZS . By definition, pS ≥ Ψ(S), therefore Ψ(S) > δ implies that feature combination
ZS can never be deemed significantly associated, and hence it cannot cause a false positive. In other
words, feature subsets S for which Ψ(S) > δ are irrelevant as far as the FWER is concerned. In
Tarone’s terminology, S is said to be untestable. Thus, defining the set of testable feature subsets at
level δ as IT (δ) = {S|Ψ(S) ≤ δ}, Tarone’s testability criterion obtains the corrected significance
threshold as δtar = max {δ : FWERtar(δ) ≤ α}, where FWERtar(δ) = δ|IT (δ)|. Note that this
amounts to applying a Bonferroni correction to feature subsets S in IT (δ) only. FWER control
follows from the fact that untestable feature subsets cannot affect the FWER. Since in practice
|IT (δ)| � 2p − 1, Tarone’s testability criterion often outperforms Bonferroni’s correction in terms
of statistical power by a large margin.

The main practical limitation of Tarone’s testability criterion is its computational complexity. Naively
computing δtar would involve explicitly enumerating all 2p − 1 feature subsets and evaluating their
respective minimum attainable p-values, something unfeasible even for moderate p. Existing work in
significant discriminative pattern mining solves that limitation by exploiting specific properties of
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certain test statistics, such as Fisher’s Exact Test or Pearson’s χ2 test, that allow to apply branch-and-
bound algorithms to evaluate δtar. However, the properties those algorithms rely on do not apply to
conditional statistical association tests, such as the CMH test. In the next section, we present in detail
our novel approach to apply Tarone’s method to the CMH test.

3 Our contribution: The FACS algorithm
This section introduces the Fast Automatic Conditional Search (FACS) algorithm, the first approach
that allows the application of Tarone’s testability criterion to the CMH test in a computationally
efficient manner. Section 3.1 discusses the main challenges facing FACS and summarizes how
FACS improves the state of the art. Section 3.2 provides a high-level description of the algorithm.
Finally, Sections 3.3 and 3.4 detail the two key steps of FACS, which are also the main algorithmic
contributions of this work.

3.1 Overview and Contributions
The main objective of the FACS algorithm, described in Section 3.2 below, can be summarised as:

Objective: Given a dataset D = {(ui, yi, ci)}ni=1, the goal of FACS is to:

1. Compute Tarone’s corrected significance threshold δtar.
2. Retrieve all feature subsets S whose p-value pS is below δtar.

For both (1) and (2), the test statistic of choice will be the CMH test, thus allowing to correct for a
confounding categorical covariate as described in Section 2.2.

The key contribution of our work is to bridge the gap between Tarone’s testability criterion and the
CMH test. Firstly, in Section 3.3, we show for the first time that Tarone’s method can be applied to
the CMH test. More importantly, in Section 3.4 we introduce a novel branch-and-bound algorithm to
efficiently compute δtar without requiring the function Ψ computing Tarone’s minimum attainable
p-value to be monotonic. This allows us not only to apply Tarone’s testability criterion to the CMH
test, but to do so as efficiently as existing methods not able to handle confounding covariates do.

3.2 High-level description of FACS

As shown in the pseudocode in Algorithm 1, conceptually, FACS performs two main operations:

Algorithm 1 FACS
Input: Dataset D = {(ui, yi, ci)}ni=1,

target FWER α
Output: {S | pS ≤ δtar}

1: Initialize global variables δtar = 1
and IT (δtar) = ∅

2: δtar, IT (δtar)← tarone_cmh(∅)
3: Return
{S ∈ IT (δtar) | pS ≤ δtar}

Algorithm 2 tarone_cmh
Input: Current feature subset being processed S

1: if is_testable_cmh(S, δtar) then {see Sec-
tion 3.3}

2: Append S to IT (δtar)
3: FWERtar(δtar)← δtar|IT (δtar)|
4: while FWERtar(δtar) > α do
5: Decrease δtar
6: IT (δtar)←{

S ∈ IT (δtar) : is_testable(S, δtar)
}

7: FWERtar(δtar)← δtar|IT (δtar)|
8: if not is_prunable_cmh(S, δtar) then {see 3.4}
9: for S ′ ∈ Children(S) do

10: tarone_cmh(S ′)

Firstly, Line 2 invokes the routine tarone_cmh, described in Algorithm 2. This routine uses our
novel branch-and-bound approach to efficiently compute Tarone’s corrected significance threshold
δtar and the set of testable feature subsets IT (δtar).

Secondly, using the significance threshold δtar obtained in the previous step, Line 3 evaluates the
conditional association of the feature combination ZS of each testable feature subset S ∈ IT (δtar)
with the class labels, given the categorical covariate, using the CMH test as shown in Section 2.2.
Note that, according to Tarone’s testability criterion, untestable feature subsets S 6∈ IT (δtar) cannot
be significant and therefore do not need to be considered in this step. Since in practice |IT (δtar)| �
2p − 1, the procedure tarone_cmh is the most critical part of FACS.

The routine tarone_cmh uses the enumeration scheme first proposed in [10, 13]. All 2p feature
subsets are arranged in an enumeration tree such that S ′ ∈ Children(S)⇒ S ⊂ S ′. In other words,
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the children of a feature subset S in the enumeration tree are obtained by adding an additional feature
to S. Before invoking tarone_cmh, in Line 1 of Algorithm 1 the significance threshold δtar is
initialized to 1, the largest value it can take, and the set of testable feature combinations IT (δtar) is
initialized to the empty set. The enumeration procedure is started by calling tarone_cmh with the
empty feature subset S = ∅, which acts as the root of the enumeration tree1. All 2p − 1 non-empty
feature subsets will then be explored recursively by traversing the enumeration tree depth-first.

Every time a feature subset S in the tree is visited, Line 1 of Algorithm 2 checks if it is testable, as
detailed in Section 3.3. If it is, S is appended to the set of testable feature subsets IT (δtar) in Line 2.
The FWER condition for Tarone’s testability criterion is checked in Lines 3 and 4. If it is found
to be violated, the significance threshold δtar is decreased in Line 5 until the condition is satisfied
again, removing from IT (δtar) any feature subsets made untestable by decreasing δtar in Line 6 and
re-evaluating the FWER condition accordingly in Line 7. Before continuing the traversal of the tree
by exploring the children of the current feature subset S , Line 8 checks if our novel pruning criterion
applies, as described in Section 3.4. Only if it does not apply are all children of S visited recursively
in Lines 9 and 10. The testability and pruning conditions in Lines 1 and 8 become more stringent
as δtar decreases. Because of this, as δtar decreases along the enumeration procedure (see Line 5),
increasingly larger parts of the search space are pruned. Thus, the algorithm terminates when, for the
current value of δtar and IT (δtar), all feature subsets that cannot be pruned have been visited.

The two most challenging steps in FACS are the design of an appropriate testability criterion,
is_testable_cmh(S, δ), and an efficient pruning criterion, is_prunable_cmh(S, δ), that circum-
vent the limitations of the current state of the art. These are now each described in detail.

3.3 A testability criterion for the CMH test
As mentioned in Section 2.3, Tarone’s testability criterion has only been applied to test statistics such
as Fisher’s exact test, Pearson’s χ2 test and the Mann-Whitney U Test, none of which allows for
incorporating covariates. However, the following proposition shows that the CMH test also has a
minimum attainable p-value Ψcmh(S):

Proposition 1 The CMH test has a minimum attainable p-value Ψcmh(S), which can be computed
in O(k) time as a function of the margins {nj , n1,j , xS,j}kj=1 of the k 2× 2 contingency tables.

The proof of Proposition 1, provided in the Supp. Material, involves showing that Ψcmh(S) can be
computed from the k 2× 2 contingency tables corresponding to ZS (see Section 2.2) by optimising
the p-value pS with respect to {aS,j}kj=1 while keeping the table margins {nj , n1,j , xS,j}kj=1 fixed.

3.4 A pruning criterion for the CMH test

State-of-the-art methods [15, 8], all of which are limited to unconditional association testing, exploit
the fact that the minimum attainable p-value function Ψ(S), using either Fisher’s exact test or
Pearson’s χ2 test on a single contingency table, obeys a simple monotonicity property: S ⊆ S ′ ⇒
Ψ(S) ≤ Ψ(S ′) provided that xS ≤ min(n1, n2). This leads to a remarkably simple pruning criterion:
if a feature subset S is non-testable, i.e. Ψ(S) > δ, and its support xS is smaller or equal to
min(n1, n2), then all children S ′ of S , which satisfy S ⊂ S ′ by construction of the enumeration tree,
will also be non-testable and can be pruned from the search space. However, such a monotonicity
property does not hold for the CMH minimum attainable p-value function Ψcmh(S), severely
complicating the development of an effective pruning criterion.

In Section 3.4.1 we show how to circumvent this limitation by introducing a novel pruning criterion
based on defining a monotonic lower envelope Ψ̃cmh(S) ≤ Ψcmh(S) of the original minimum
attainable p-value function Ψcmh(S) and prove that it leads to a valid pruning strategy. Finally, in
Section 3.4.2, we provide an efficient algorithm to evaluate Ψ̃cmh(S) in O(k log k) time, instead of a
naive implementation whose computational complexity would scale exponentially with k, the number
of categories for the covariate. Due to space constraints, all proofs are in the Supp. Material.

3.4.1 Definition and correctness of the pruning criterion

As mentioned above, existing unconditional significant discriminative pattern mining meth-
ods only consider feature subsets S with support xS ≤ min(n1, n2) to be potentially prun-

1We define zi,∅ = 1 for all observations, so this artificial feature combination will never be significant.
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able. Analogously, we consider as potentially prunable the set of feature subsets IPP =
{S |xS,j ≤ min(n1,j , n2,j)∀ j = 1, . . . , k}. Note that for k = 1, our definition reduces to that
of existing work. In itemset mining, a very large proportion of all feature subsets will have small
supports. Therefore, restricting the application of the pruning criterion to potentially prunable patterns
does not cause a loss of performance in practice. We can now state the definition of the lower envelope
for the CMH minimum attainable p-value:

Definition 1 Let S ∈ IPP be a potentially prunable feature subset. The lower envelope Ψ̃cmh(S) is
defined as Ψ̃cmh(S) = min {Ψcmh(S ′) | S ′ ⊇ S}.
Note that, by construction, Ψ̃cmh(S) satisfies Ψ̃cmh(S) ≤ Ψcmh(S) for all feature subsets S in the
set of potentially prunable patterns. Next, we show that unlike for the minimum attainable p-value
function Ψcmh(S), the monotonicity property holds for the lower envelope Ψ̃cmh(S):
Lemma 1 Let S,S ′ ∈ IPP be two potentially prunable feature subsets such that S ⊆ S ′. Then,
Ψ̃cmh(S) ≤ Ψ̃cmh(S ′) holds.
Next, we state the main result of this section, which establishes our search space pruning criterion:

Theorem 1 Let S ∈ IPP be a potentially prunable feature subset such that Ψ̃cmh(S) > δ. Then,
Ψcmh(S ′) > δ for all S ′ ⊇ S, i.e. all feature subsets containing S are non-testable at level δ and
can be pruned from the search space.

To summarize, the pruning criterion is_prunable_cmh in Line 8 of Algorithm 2 evaluates to true
if and only if S ∈ IPP ⇔ xS,j ≤ min(n1,j , n2,j)∀ j = 1, . . . , k and Ψ̃cmh(S) > δtar.

3.4.2 Evaluating the pruning criterion in O(k log k) time

In FACS, the pruning criterion stated above will be applied to all enumerated feature subsets. Hence,
it is mandatory to have an efficient algorithm to compute the lower envelope for the CMH minimum
attainable p-value Ψ̃cmh(S) for any potentially prunable feature subset S ∈ IPP .

As shown in the proof of Proposition 1 in the Supp. Material, Ψcmh(S) depends on the pattern S
through its k-dimensional vector of supports xS = (xS,1, . . . , xS,k). Also, the condition S ′ ⊇ S
implies that xS′,j ≤ xS,j ∀ j = 1, . . . , k. As a consequence, one can rewrite Definition 1 as
Ψ̃cmh(S) = min

xS′≤xS
Ψcmh(xS′), where the vector inequality xS′ ≤ xS holds component-wise. Thus,

naively computing Ψ̃(S) would require optimizing Ψcmh over a set of size
∏k
j=1 xS,j = O(mk),

wherem is the geometric mean of {xS,j}kj=1. This scaling is clearly impractical, as even for moderate
k it would result in an overhead large enough to outweigh the benefits of pruning.

Because of this, in the remainder of this section we propose the last key part of FACS: an efficient
algorithm which evaluates Ψ̃(S) in only O(k log(k)) time. We will arrive at our final result in two
steps, contained in Lemma 2 and Theorem 2.

Lemma 2 Let S ∈ IPP be a potentially prunable feature subset. The optimum x∗S′ of the discrete
optimization problem min

xS′≤xS
Ψcmh(xS′) satisfies x∗S′,j = 0 or x∗S′,j = xS,j for each j = 1, . . . , k.

In short, Lemma 2 shows that the optimum x∗S′ = {Ψcmh(xS′) |xS′ ≤ xS} of the discrete opti-
mization problem defining Ψ̃(S) is always a vertex of the discrete hypercube J0,xSK. Thus, the
computational complexity of evaluating Ψ̃cmh(S) can be reduced from O(mk) to O(2k), where
m� 2 for most patterns. Finally, building upon the result of Lemma 2, Theorem 2 below shows that
one can in fact find the optimal vertex out of all O(2k) vertices in O(k log k) time.

Theorem 2 Let S ∈ IPP be a potentially testable feature subset and define βlS,j =
n2,j

nj

(
1− xS,j

nj

)
and βrS,j =

n1,j

nj

(
1− xS,j

nj

)
for j = 1, . . . , k. Let πl and πr be permutations πl, πr : J1, kK 7→

J1, kK such that βlS,πl(1)
≤ . . . ≤ βlS,πl(k)

and βrS,πr(1)
≤ . . . ≤ βrS,πr(k)

, respectively.

Then, there exists an integer κ ∈ J1, kK such that the optimum x∗S′ = arg min
xS′≤xS

Ψcmh(xS′) satisfies

one of the two possible conditions: (I) x∗S′,πl(j)
= xS,πl(j) for all j ≤ κ and x∗S′,πl(j)

= 0 for all
j > κ or (II) x∗S′,πr(j)

= xS,πr(j) for all j ≤ κ and x∗S′,πr(j)
= 0 for all j > κ.
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Figure 1: (a) Runtime as a function of the number of features, p. (b) Runtime as a function of the
number of categories of the covariate, k. (c) Precision as a function of the true signal strengh, ρtrue.
(d) False detection proportion as a function of the strength of the signal ρconf . n = 200 samples
were used in (a), (b) and n = 500 in (c), (d). Also, we set ρtrue = ρconf = ρ.

In summary, Theorem 2 above implies that the 2k candidates to be the optimum x∗S′ according to
Lemma 2 can be narrowed down to only 2k vertices: k candidates satisfying the first condition and k
the second condition. Moreover, evaluating Ψcmh for all k candidates satisfying the first condition
(resp. the second condition) can be done in O(k) time rather than O(k2). This is due to the fact that
each of the k candidate vertices for each condition can be obtained by changing a single dimension
with respect to the previous one. Therefore, the operation dominating the computational complexity
is the sorting of the two k-vectors (βlS,1, . . . , β

l
S,k) and (βrS,1, . . . , β

r
S,k). As a consequence, the

runtime required to evaluate the lower envelope Ψ̃cmh(S), and thus our novel pruning criterion
is_prunable_cmh, scales as O(k log k) with the number of categories of the covariate.

4 Experiments
In Section 4.1 we describe a set of experiments on simulated datasets, evaluating the performance of
FACS in terms of runtime, precision and its ability to correct for confounding. Next, in Section 4.2,
we use our method in two applications in computational biology. Due to space constraints, only a
high-level summary of the experimental setup and results will be presented here. Additional details
can be found in the Supp. Material and code for FACS is available on GitHub2.

4.1 Runtime and power comparisons on simulated datasets

We compare FACS with four significant discriminative itemset mining methods: LAMP-χ2, Bonf-CMH,
2k-FACS and mk-FACS. (1) LAMP-χ2 [15, 10] is the state-of-the-art in significant discriminative
itemset mining. It uses Tarone’s testability criterion but is based on Pearson’s χ2 test and thus cannot
account for covariates; (2) Bonf-CMH uses the CMH test, being able to correct for confounders, but
uses Bonferroni’s correction, resulting in a considerable loss of statistical power; (3) and (4) 2k-FACS
and mk-FACS are two suboptimal versions of FACS, which implement the pruning criterion using the
approach shown in Lemma 2, which scales as O(2k), or via brute-force search, scaling as O(mk).

Runtime evaluations: Figure 1(a) shows that FACS scales as the state-of-the-art LAMP-χ2 when
increasing the number of features p, while the Bonferroni-based method Bonf-CMH scales consider-
ably worse. This indicates both that FACS is able to correct for covariates with virtually no runtime
overhead with respect to LAMP-χ2 and confirms the efficacy of Tarone’s testability criterion. Figure
1(b) shows that FACS can handle categorical covariates of high-cardinality k with almost no overhead,
in contrast to mk-FACS and 2k-FACS which are only applicable for low k. This demonstrates the
importance of our efficient implementation of the pruning criterion.

Precision and false positive detection evaluations: We generated synthetic datasets with one truly
associated feature subset Strue and one confounded feature subset Sconf to evaluate precision and
ability to correct for confounders. Figure 1(c) shows that FACS has a similar precision as LAMP-χ2,
being slightly worse for weak signals and slightly better for stronger signals. Again, the performance
of the Bonferroni-based method Bonf-CMH is drastically worse. Most importantly, Figure 1(d)
indicates that unlike LAMP-χ2, FACS has the ability to greatly reduce the false positive detection by
conditioning on an appropriate categorical covariate.

2https://github.com/BorgwardtLab/FACS
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Table 1: Total number of significant combinations (hits) found by LAMP-χ2, FACS and BONF-CMH and
average genomic inflation factor λ. λ for BONF-CMH is similar to FACS since both use the CMH test.

Datasets FACS LAMP-χ2 BONF-CMH
hits λ hits λ hits

LY 433 1.17 100,883 3.18 19
avrB 43 1.21 546 2.38 1

4.2 Applications to computational biology
In this section, we look for significant feature combinations in two widely investigated biological
applications: Genome-Wide Association Studies (GWAS), using two A. thaliana datasets, and a study
of combinatorial regulation of gene expression in breast cancer cells.

A. thaliana GWAS: We apply FACS, LAMP-χ2 and Bonf-CMH to two datasets from the plant model
organism A. thaliana [1], which contain 84 and 95 samples, respectively. The labels of each dataset
indicate the presence/absence of a plant defense-related phenotype: LY and avrB. In the two datasets,
each plant sample is represented by a sequence of approximately 214, 000 genetic bases. The genetic
bases are encoded as binary features which indicate if the base at a specific locus is standard or altered.
To minimize the effect of the evolutionary correlations between nearby bases (< 10 kilo-bases),
we downsampled each of the five chromosomes of each dataset, evenly by a factor of 20, using 20
different offsets. It resulted in complementary datasets containing between 1, 423 and 2, 661 features.
Our results for all methods are aggregated across all downsampled versions. In GWAS, one needs to
correct for the confounding effect of population structure to avoid many spurious associations. For
both datasets we condition on the ancestry, resulting in k = 5 and k = 3 categories for the covariate.

Table 1 shows the number of feature combinations (c.f. Section 2.1) reported as significant by each
method, as well as the corresponding genomic inflation factor λ [4], a popular criterion in statistical
genetics to quantify confounding. When compared to LAMP-χ2, we observe a severe reduction in the
number of feature combinations deemed significant by FACS, as well as a sharp decrease in λ. This
strongly indicates that many feature combinations reported by LAMP-χ2 are affected by confounding.
The λ values of LAMP-χ2 show strong marginal associations between many feature combinations
and labels, inflating the corresponding Pearson χ2-test statistic values compared to the expected χ2

null distribution and resulting in many spurious associations. However, since most of those feature
combinations are independent of the labels given the covariates, the CMH test statistics values are
much closer to the χ2 distribution, leading to a lower λ and resulting in hits that are corrected for the
covariate. Moreover, the lack of power of BONF-CMH results in a very small number of hits.

Combinatorial regulation of gene expression in breast cancer cells: The breast cancer data set,
as used in [15], includes 12, 773 genes classified into up-regulated or not up-regulated. Each gene is
represented by 397 binary features which indicate the presence/absence of a sequence motif in the
neighborhood of this gene. We aim to find combinations of motifs that are enriched in up-regulated
genes. Two sets of experiments were conducted, conditioning on 8 and 16 categories respectively. In
this case, the covariate groups together genes sharing similar sets of motifs. As previously, LAMP-χ2

reports 1, 214 motif combinations as significant, while FACS reports only 26 — a reduction of over
97%. Further studies shown in the Supp. Material strongly suggest that most motif combinations
found by LAMP-χ2 but not FACS are indeed due to confounding.

5 Conclusions
This article has presented FACS, the first approach to significant discriminative itemset mining that (i)
allows to condition on a categorical covariate, (ii) corrects for the inherent multiple testing problem
and (iii) retains high statistical power. Furthermore, we (iv) proved that the runtime of FACS scales
as O(k log k), where k is the number of states of the categorical covariate. Regarding future work,
generalizing the state-of-the-art to handle continuous data is a key open problem in significant
discriminative itemset mining. Solving it would greatly help make the framework applicable to new
domains. Another interesting improvement would be to combine FACS with the approach in [8]. In
their work, Tarone’s testability criterion is used along with permutation-testing to increase statistical
power by taking the redundancy between feature combinations into account. By using a similar
approach in combination with the CMH test, one could further increase statistical power while
retaining the ability to correct for a categorical covariate.
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