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Abstract

Nonconvex and nonsmooth problems have recently received considerable atten-
tion in signal/image processing, statistics and machine learning. However, solv-
ing the nonconvex and nonsmooth optimization problems remains a big challenge.
Accelerated proximal gradient (APG) is an excellent method for convex program-
ming. However, it is still unknown whether the usual APG can ensure the con-
vergence to a critical point in nonconvex programming. In this paper, we extend
APG for general nonconvex and nonsmooth programs by introducing a monitor
that satisfies the sufficient descent property. Accordingly, we propose a monotone
APG and a nonmonotone APG. The latter waives the requirement on monotonic
reduction of the objective function and needs less computation in each iteration.
To the best of our knowledge, we are the first to provide APG-type algorithms
for general nonconvex and nonsmooth problems ensuring that every accumulation
point is a critical point, and the convergence rates remain O (k%) when the prob-
lems are convex, in which k is the number of iterations. Numerical results testify
to the advantage of our algorithms in speed.

1 Introduction

In recent years, sparse and low rank learning has been a hot research topic and leads to a wide
variety of applications in signal/image processing, statistics and machine learning. [;-norm and
nuclear norm, as the continuous and convex surrogates of [p-norm and rank, respectively, have been
used extensively in the literature. See e.g., the recent collections [1]. Although /;-norm and nuclear
norm have achieved great success, in many cases they are suboptimal as they can promote sparsity
and low-rankness only under very limited conditions [2, 3]. To address this issue, many nonconvex
regularizers have been proposed, such as [,-norm [4], Capped-/; penalty [3], Log-Sum Penalty [2],
Minimax Concave Penalty [5], Geman Penalty [6], Smoothly Clipped Absolute Deviation [7] and
Schatten-p norm [8]. This trend motivates a revived interest in the analysis and design of algorithms
for solving nonconvex and nonsmooth problems, which can be formulated as

Iin F(x) = f(x) + g(x), )

where f is differentiable (it can be nonconvex) and g can be both nonconvex and nonsmooth.

Accelerated gradient methods have been at the heart of convex optimization research. In a series of
celebrated works [9, 10, 11, 12, 13, 14], several accelerated gradient methods are proposed for prob-
lem (1) with convex f and g. In these methods, & iterations are sufficient to find a solution within
0] (k%) error from the optimal objective value. Recently, Ghadimi and Lan [15] presented a unified
treatment of accelerated gradient method (UAG) for convex, nonconvex and stochastic optimiza-



Table 1: Comparisons of GD (General Descent Method), iPiano, GIST, GDPA, IR, IFB, APG, UAG
and our method for problem (1). The measurements include the assumption, whether the methods
accelerate for convex programs (CP) and converge for nonconvex programs (NCP).

Method name || Assumption | Accelerate (CP) | converge (NCP)
GD [16, 17] f+g: KL No Yes
iPiano [ 18] nonconvex f, convex g No Yes
GIST [19] nonconvex f, g = g1 — g2, g1, go convex No Yes
GDPA [20] nonconvex f, g = g1 — g2, g1, g2 convex No Yes

IR [8, 21] special f and g No Yes
1FB [22] nonconvex f, nonconvex g No Yes
APG [12, 13] convex f, convex g Yes Unclear
UAG [15] nonconvex f, convex g Yes Yes

Ours nonconvex f, nonconvex g Yes Yes

tion. They proved that their algorithm converges' in nonconvex programming with nonconvex f but
convex g and accelerates with an O (k%) convergence rate in convex programming for problem (1).
Convergence rate about the gradient mapping is also analyzed in [15].

Attouch et al. [16] proposed a unified framework to prove the convergence of a general class of
descent methods using the Kurdyka-Lojasiewicz (KL) inequality for problem (1) and Frankel et
al. [17] studied the convergence rates of general descent methods under the assumption that the
desingularising function ¢ in KL property has the form of %te. A typical example in their frame-
work is the proximal gradient method. However, there is no literature showing that there exists an
accelerated gradient method satisfying the conditions in their framework.

Other typical methods for problem (1) includes Inertial Forward-Backward (IFB) [22], iPiano [ 18],
General Iterative Shrinkage and Thresholding (GIST) [19], Gradient Descent with Proximal Aver-
age(GDPA) [20] and Iteratively Reweighted Algorithms (IR) [8, 21]. Table I demonstrates that the
existing methods are not ideal. GD and IFB cannot accelerate the convergence for convex programs.
GIST and GDPA require that g should be explicitly written as a difference of two convex functions.
iPiano demands the convexity of g and IR is suitable for some special cases of problem (1). APG
can accelerate the convergence for convex programs, however, it is unclear whether APG can con-
verge to critical points for nonconvex programs. UAG can ensure the convergence for nonconvex
programming, however, it requires g to be convex. This restricts the applications of UAG to solving
nonconvexly regularized problems, such as sparse and low rank learning. To the best of our knowl-
edge, extending the accelerated gradient method for general nonconvex and nonsmooth programs
while keeping the O (k%) convergence rate in the convex case remains an open problem.

In this paper we aim to extend Beck and Teboulle’s APG [12, 13] to solve general nonconvex and
nonsmooth problem (1). APG first extrapolates a point y; by combining the current point and
the previous point, then solves a proximal mapping problem. When extending APG to nonconvex
programs the chief difficulty lies in the extrapolated point y;. We have little restriction on F'(yy)
when the convexity is absent. In fact, F'(y}) can be arbitrarily larger than F'(x;) when yy, is a bad
extrapolation, especially when F' is oscillatory. When Xy is computed by a proximal mapping at
abad yj, F'(Xr+1) may also be arbitrarily larger than F'(xy). Beck and Teboulle’s monotone APG
[12] ensures F'(xp1+1) < F(xi). However, this is not enough to ensure the convergence to critical
points. To address this issue, we introduce a monitor satisfying the sufficient descent property to
prevent a bad extrapolation of y; and then correct it by this monitor. In summary, our contributions
include:

1. We propose APG-type algorithms for general nonconvex and nonsmooth programs (1). We
first extend Beck and Teboulle’s monotone APG [12] by replacing their descent condition
with sufficient descent condition. This critical change ensures that every accumulation point
is a critical point. Our monotone APG satisfies some modified conditions for the framework
of [16, 17] and thus stronger results on convergence rate can be obtained under the KL

"Except for the work under the KL assumption, convergence for nonconvex problems in this paper and the
references of this paper means that every accumulation point is a critical point.



assumption. Then we propose a nonmonotone APG, which allows for larger stepsizes
when line search is used and reduces the average number of proximal mappings in each
iteration. Thus it can further speed up the convergence in practice.

2. For our APGs, the convergence rates maintain O (k%) when the problems are convex. This
result is of great significance when the objective function is locally convex in the neighbor-
hoods of local minimizers even if it is globally nonconvex.

2 Preliminaries

2.1 Basic Assumptions

Note that a function g : R™ — (—o0, +00] is said to be proper if dom g # (), where dom g =
{x € R: g(x) < +o0}. g is lower semicontinuous at point xg if liminf,_,x, g(x) > g(x0). In
problem (1), we assume that f is a proper function with Lipschitz continuous gradients and g is
proper and lower semicontinuous. We assume that F'(x) is coercive, i.e., F' is bounded from below
and F'(x) — oo when ||x|| — oo, where || - || is the l5-norm.

2.2 KL Inequality

Definition 1. [23] A function f : R™ — (—o0,+00| is said to have the KL property at U €
domdf = {x € R" : 9f(u) # 0} if there exists 1 € (0,+00], a neighborhood U of @ and a
function ¢ € ®,, such that forallu € U({u € R" : f(@) < f(u) < f(Q) + n}, the following
inequality holds

¢'(f(a) — f(@))dist(0,0f (u)) > 1, 2)

where ®,, stands for a class of function ¢ : [0,n) — R7 satisfying: (1) ¢ is concave and C' on
(0,m); (2) @ is continuous at 0, p(0) = 0; and (3) ¢’ (x) > 0, ¥x € (0,7n).

All semi-algebraic functions and subanalytic functions satisfy the KL property. Specially, the desin-
gularising function ¢(t) of semi-algebraic functions can be chosen to be the form of %te with
6 € (0,1]. Typical semi-algebraic functions include real polynomial functions, ||z||, with p > 0,
rank(X), the indicator function of PSD cone, Stiefel manifolds and constant rank matrices [23].

2.3 Review of APG in the Convex Case

We first review APG in the convex case. Bech and Teboulle [13] extend Nesterov’s accelerated
gradient method to the nonsmooth case. It is named the Accelerated Proximal Gradient method and
consists of the following steps:

th_1 — 1
Vi =X+ 2 tlk (X — Xp—1), 3)
Xg41 = Proxakg(Yk —apV£(yr)), )

VALE)?? + 141 )
2 )

thy1 =

where the proximal mapping is defined as prox,, ,(x) = argmin,, g(u) + 5% — ul[%. APG is not
a monotone algorithm, which means that F'(x,1) may not be smaller than F(xj). So Beck and
Teboulle [12] further proposed a monotone APG, which consists of the following steps:

tr_ tr—1—1
Yk :Xk‘i’i,;kl(zk *Xk)Jrik 1k (xk — Xp—1), ©)
Zit1 = Prox,, (Y& — axV f(yk)), )
VA2 +1+1
thy1 = %7 3)
_J zpq, it F(zpg) < F(xp),
Xk+1 = { xi,  otherwise. ®)



3 APGs for Nonconvex Programs

In this section, we propose two APG-type algorithms for general nonconvex nonsmooth problems.
We establish the convergence in the nonconvex case and the O (k%) convergence rate in the convex
case. When the KL property is satisfied we also provide stronger results on convergence rate.

3.1 Monotone APG

We give two reasons that result in the difficulty of convergence analysis on the usual APG [12, 13]
for nonconvex programs: (1) y, may be a bad extrapolation, (2) in [12] only descent property,
F(xg+1) < F(xg), is ensured. To address these issues, we need to monitor and correct y; when
it has the potential to fail, and the monitor should enjoy the property of sufficient descent which is
critical to ensure the convergence to a critical point. As is known, proximal gradient methods can
make sure sufficient descent [16] (cf. (15)). So we use a proximal gradient step as the monitor. More
specially, our algorithm consists of the following steps:

tr_ th_1 — 1
}’k:Xk+g(zk_xk)+L(xk_xk71)v (10)
123 t
Zuss = prox,, (i — , VF(30)) (1n
Vi1 = prox,, ,(xk — az Vf(xr)), (12)
VA2 +141
the1 = % (13)
_ Zj41, if F(Zk+1) < F(Vk+1)7
Xk+1 = { Vii1, otherwise. (14)

where o, and o, can be fixed constants satisfying o, < % and o, < %, or dynamically computed
by backtracking line search initialized by Barzilai-Borwein rule’. L is the Lipschitz constant of V f.

Our algorithm is an extension of Beck and Teboulle’s monotone APG [12]. The difference lies in
the extra v, as the role of monitor, and the correction step of x-update. In (9) F'(z41) is compared
with F(xy,), while in (14) F(zj41) is compared with F(vg1). A further difference is that Beck
and Teboulle’s algorithm only ensures descent while our algorithm makes sure sufficient descent,
which means

F(xp41) < F(xr) = 8] vigr — x|, (15)
where § > 0 is a small constant. It is not difficult to understand that only the descent property cannot
ensure the convergence to a critical point in nonconvex programming. We present our convergence
result in the following theorem?.

Theorem 1. Let f be a proper function with Lipschitz continuous gradients and g be proper and
lower semicontinuous. For nonconvex f and nonconvex nonsmooth g, assume that F'(z) is coercive.
Then {xy} and {vy} generated by (10)-(14) are bounded. Let x* be any accumulation point of
{x1}, we have 0 € OF(x*), i.e., X* is a critical point.

A remarkable aspect of our algorithm is that although we have made some modifications on Beck
and Teboulle’s algorithm, the O (k%) convergence rate in the convex case still holds. Similar to
Theorem 5.1 in [12], we have the following theorem on the accelerated convergence in the convex
case:

Theorem 2. For convex f and g, assume that V f is Lipschitz continuous, let X* be any global
optimum, then {X;.} generated by (10)-(14) satisfies

2
F — F(x*) < ————||x¢ — x*||? 1
(xn+1) (x*) < ay(N+1)2HXO x[|%, (16)

When the objective function is locally convex in the neighborhood of local minimizers, Theorem
2 means that APG can ensure to have an O (k—lz) convergence rate when approaching to a local
minimizer, thus accelerating the convergence.

For better reference, we summarize the proposed monotone APG algorithm in Algorithm 1.

2For the detail of line search with Barzilai-Borwein initializtion please see Supplementary Materials.
3The proofs in this paper can be found in Supplementary Materials.



Algorithm 1 Monotone APG
Initialize z; = X1 = X0, t1 = 1,10 = 0, ay < %, oy < %
fork=1,2,3,--- do

update yi, Zi+1, Vk+1, tk+1 and xi41 by (10)-(14).
end for

3.2 Convergence Rate under the KL Assumption

The KL property is a powerful tool and is studied by [16], [17] and [23] for a class of general
descent methods. The usual APG in [12, 13] does not satisfy the sufficient descent property, which
is crucial to use the KL property, and thus has no conclusions under the KL assumption. On the
other hand, due to the intermediate variables y, vi and zy, our algorithm is more complex than
the general descent methods and also does not satisfy the conditions therein. However, due to the
monitor-corrector step (12) and (14), some modified conditions* can be satisfied and we can still
get some exciting results under the KL assumption. With the same framework of [17], we have the
following theorem.

Theorem 3. Let f be a proper function with Lipschitz continuous gradients and g be proper and
lower semicontinuous. For nonconvex f and nonconvex nonsmooth g, assume that F(x) is coercive.
If we further assume that f and g satisfy the KL property and the desingularising function has the
form of o(t) = $t? for some C > 0, 6 € (0,1], then

1. If 0 = 1, then there exists ky such that F(xy) = F* for all k > ki and the algorithm
terminates in finite steps.

2. If0 € [§,1), then there exists ko such that for all k > ks,

d,c? \FR
F(xp) — F* < (W) Thy- (17)

3. 1If0 € (0, %) then there exists k3 such that for all k > ks,

Flxy) - F S((k—kg)dg(l—%)) ! (18)

where F* is the same function value at all the accumulation points of {xy}, 1, = F(vi) —

D) -
F* d; = (i +L> /(i - g) and dy = min{—zdllc, —1929 (23377é — 1) 7'3971}

When F'(x) is a semi-algebraic function, the desingularising function ¢(t) can be chosen to be the
form of %te with 6 € (0,1] [23]. In this case, as shown in Theorem 3, our algorithm converges in
finite iterations when # = 1, converges with a linear rate when 6 € [%, 1) and a sublinear rate (at

least O(1)) when 6 € (0, §) for the gap F(x;,) — F**. This is the same as the results mentioned in
[17], although our algorithm does not satisfy the conditions therein.

3.3 Nonmonotone APG

Algorithm 1 is a monotone algorithm. When the problem is ill-conditioned, a monotone algorithm
has to creep along the bottom of a narrow curved valley so that the objective function value does not
increase, resulting in short stepsizes or even zigzagging and hence slow convergence [24]. Removing
the requirement on monotonicity can improve convergence speed because larger stepsizes can be
adopted when line search is used.

On the other hand, in Algorithm 1 we need to compute zx4; and v in each iteration and use
Vi1 to monitor and correct z;1. This is a conservative strategy. In fact, we can accept zx4; as
xp41 directly if it satisfies some criterion showing that yj, is a good extrapolation. Then v is
computed only when this criterion is not met. Thus, we can reduce the average number of proximal

*For the details of difference please see Supplementary Materials.



mappings, accordingly the computation cost, in each iteration. So in this subsection we propose a
nonmonotone APG to speed up convergence.

In monotone APG, (15) is ensured. In nonmonotone APG, we allow x4 to make a larger objec-
tive function value than F'(x). Specifically, we allow x11 to yield an objective function value
smaller than ¢y, a relaxation of F(x;). ¢k should not be too far from F(xy). So the average of

F(xg), F(xx-1), -+, F(x1) is a good choice. Thus we follow [24] to define ¢, as a convex com-
bination of F(xg), F(xx—1),- - , F/(x1) with exponentially decreasing weights:
k _
Zj:l 0 TF(x5)
cp = E— (19)
2=

where 1) € [0, 1) controls the degree of nonmonotonicity. In practice ¢ can be efficiently computed
by the following recursion:

Gr+1 = nqr + 1, (20)
F

Chat = NqkCr + (Xk-&-l)’ 1)
gk+1

where ¢; = 1 and ¢; = F(x1).

According to (14), we can split (15) into two parts by the different choices of x4 ;. Accordingly, in
nonmonotone APG we consider the following two conditions to replace (15):

F(zk41) <k — 0l zsr — vl (22)
F(Vk+1) S Cr — 6Hvk+1 — Xk||2. (23)

We choose (22) as the criteria mentioned before. When (22) holds, we deem that yj is a good
extrapolation and accept zy; directly. Then we do not compute vy in this case. However, (22)
does not hold all the time. When it fails, we deem that y; may not be a good extrapolation. In this
case, we compute v by (12) satisfying (23), and then monitor and correct z 1 by (14). (23) is
ensured when o, < 1/L. When backtracking line search is used, such v that satisfies (23) can
be found in finite steps”.

Combing (20), (21), (22) and X1 = Zg41 We have

d|Xk+1 _Yk||2

Clk+1 S Cr — (24)
qk+1
Similarly, replacing (22) and xj+1 = Zg+1 by (23) and Xg41 = Vi1, respectively, we have
5} _ 2
Ch1 < cp — M (25)

qk+1

This means that we replace the sufficient descent condition of F'(xy,) in (15) by the sufficient descent
of Ck-

We summarize the nonmonotone APG in Algorithm 26, Similar to monotone APG, nonmonotone
APG also enjoys the convergence property in the nonconvex case and the O (k%) convergence rate
in the convex case. We present our convergence result in Theorem 4. Theorem 2 still holds for
Algorithm 2 with no modification. So we omit it here.

Define Oy = {ki, ko, - ,kj,---} and Qp = {mq,mg,--- ,m;,-- -}, such that in Algorithm 2,
(22) holds and x;4+1 = 241 is executed for all k = k; € Q. Forall k = m; € s, (22) does
not hold and (14) is executed. Then we have Q1 Q2 = 0, Q1 U = {1,2,3,---,} and the
following theorem holds.

Theorem 4. Let f be a proper function with Lipschitz continuous gradients and g be proper and
lower semicontinuous. For nonconvex f and nonconvex nonsmooth g, assume that F(x) is coercive.
Then {xy}, {vi} and {yy, } where k; € Q generated by Algorithm 2 are bounded, and

1. if Q1 or Qg is finite, then for any accumulation point {x*} of {x\.}, we have 0 € OF (x*).

SSee Lemma 2 in Supplementary Materials.
SPlease see Supplementary Materials for nonmonotone APG with line search.



Algorithm 2 Nonmonotone APG

Initialize z; = x; = Xg,t1 = 1,to = 0,1 € [0,1),d > 0,¢c; = F(x1),q1 = 1,0, <
1

fork=123 - do
Vi =Xk + 51 (21 — X5) + S5 (kg — Xp1),
Zip41 = Prox, o(yrx — oy VF(yr))
if F(zg11) < cr — 6||Zry1 — y||? then
Xk+1 = Zk41-
else
Vi1 = prox, ,(Xk — oz Vf(xk)),

_ { Zr1, if F(zpy1) < F(Vie),
Xk+1 =

1
0y <

Vi+1, otherwise.

end if
4(tg)2+1+1
tgt1 = T E—
qrk+1 = Nqk + 1,
_ ngrcr+F(Xp41)
Ck+1 - qk+1
end for

2. if Q1 and Qs are both infinite, then for any accumulation point X* of {Xp, 11}, y* of {yx, }
where k; € Q1 and any accumulation point v* of {Vy,, y1}, X* of {ij]( where m; € (1,
we have 0 € OF (x*), 0 € OF (y*) and 0 € OF (v*).

4 Numerical Results

In this section, we test the performance of our algorithm on the problem of Sparse Logistic Re-
gression (LR)’.Sparse LR is an attractive extension to LR as it can reduce overfitting and perform
feature selection simultaneously. Sparse LR is widely used in areas such as bioinformatics [25] and
text categorization [26]. In this subsection, we follow Gong et al. [19] to consider Sparse LR with a
nonconvex regularizer:

1 n
in=) log(1 —yixt . 26
min 3 log(1+ exp(—yx]w)) 4 r(w) 26)

We choose 7(w) as the capped {1 penalty [3], defined as
d
r(w) =AY min(jw,6), 6> 0. (27)
i=1

We compare monotone APG (mAPG) and nonmonotone APG (nmAPG) with monotone GIST®
(mGIST), nonmonotone GIST (nmGIST) [19] and IFB [22]. We test the performance on the real-sim
data set’, which contains 72309 samples of 20958 dimensions. We follow [19] to set A = 0.0001,
6 = 0.1 and the starting point as zero vectors. In nmAPG we set = 0.8. In IFB the inertial
parameter 3 is set at 0.01 and the Lipschitz constant is computed by backtracking. To make a
fair comparison, we first run mGIST. The algorithm is terminated when the relative change of two
consecutive objective function values is less than 10~° or the number of iterations exceeds 1000.
This termination condition is the same as in [19]. Then we run nmGIST, mAPG, nmAPG and
IFB. These four algorithms are terminated when they achieve an equal or smaller objective function
value than that by mGIST or the number of iterations exceeds 1000. We randomly choose 90% of
the data as training data and the rest as test data. The experiment result is averaged over 10 runs. All
algorithms are run on Matlab 2011a and Windows 7 with an Intel Core i3 2.53 GHz CPU and 4GB
memory. The result is reported in Table 2. We also plot the curves of objective function values vs.
iteration number and CPU time in Figure 1.

"For the sake of space limitation we leave another experiment, Sparse PCA, in Supplementary Materials.
8http://www.public.asu.edu/ yje02/Software/GIST
“http://www.csie.ntu.tw/cjlin/libsvmtools/datasets



Table 2: Comparisons of APG, GIST and IFB on the sparse logistic regression problem. The quan-
tities include number of iterations, averaged number of line searches in each iteration, computing
time (in seconds) and test error. They are averaged over 10 runs.

Method [ #lter. | #Line search | Time [ test error

mGIST 994 2.19 30042 | 2.94%
nmGIST || 806 1.69 22222 | 2.94%
IFB 635 2.59 21582 | 2.96%
mAPG 175 2.99 133.23 | 2.93%
nmAPG 146 1.01 42.99 2.97%

We have the following observations: (1) APG-type methods need much fewer iterations and less
computing time than GIST and IFB to reach the same (or smaller) objective function values. As
GIST is indeed a Proximal Gradient method (PG) and IFB is an extension of PG, this verifies that
APG can indeed accelerate the convergence in practice. (2) nmAPG is faster than mAPG. We give
two reasons: nmAPG avoids the computation of v in most of the time and reduces the number
of line searches in each iteration. We mention that in mAPG line search is performed in both (11)
and (12), while in nmAPG only the computation of zx; needs line search in every iteration. v
is computed only when necessary. We note that the average number of line searches in nmAPG is
nearly one. This means that (22) holds in most of the time. So we can trust that z;, can work well in
most of the time and only in a few times vy, is computed to correct z;, and y. On the other hand,
nonmonotonicity allows for larger stepsizes, which results in fewer line searches.

-0.8r -0.8r

—s—mGIST —=— mGIST

-1 == nmGIST o1 == nmGIST
IFB IFB

= = =mAPG = = =mAPG

nmAPG -

-1.2

nmAPG

Function Value
Function Value

-2.6
0

200 400 600 800 1000 - [ 50 100 150 200 250 300
Iteration CPU Time

(a) Objective function value v.s. iteration (b) Objective function value v.s. time

Figure 1: Compare the objective function value produced by APG, GIST and IFB.

5 Conclusions

In this paper, we propose two APG-type algorithms for efficiently solving general nonconvex non-
smooth problems, which are abundant in machine learning. We provide a detailed convergence
analysis, showing that every accumulation point is a critical point for general nonconvex nonsmooth
programs and the convergence rate is maintained at O (k%) for convex programs. Nonmonotone
APG allows for larger stepsizes and needs less computation cost in each iteration and thus is faster
than monotone APG in practice. Numerical experiments testify to the advantage of the two algo-
rithms.
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