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Abstract

This paper establishes a statistical versus computational trade-off for solving
a basic high-dimensional machine learning problem via a basic convex re-
laxation method. Specifically, we consider the Sparse Principal Component
Analysis (Sparse PCA) problem, and the family of Sum-of-Squares (SoS, aka
Lasserre/Parillo) convex relaxations. It was well known that in large dimension p,
a planted k-sparse unit vector can be in principle detected using only n ≈ k log p
(Gaussian or Bernoulli) samples, but all efficient (polynomial time) algorithms
known require n ≈ k2 samples. It was also known that this quadratic gap cannot
be improved by the the most basic semi-definite (SDP, aka spectral) relaxation,
equivalent to a degree-2 SoS algorithms. Here we prove that also degree-4 SoS al-
gorithms cannot improve this quadratic gap. This average-case lower bound adds
to the small collection of hardness results in machine learning for this powerful
family of convex relaxation algorithms. Moreover, our design of moments (or
“pseudo-expectations”) for this lower bound is quite different than previous lower
bounds. Establishing lower bounds for higher degree SoS algorithms for remains
a challenging problem.

1 Introduction

We start with a general discussion of the tension between sample size and computational efficiency in
statistical and learning problems. We then describe the concrete model and problem at hand: Sum-
of-Squares algorithms and the Sparse-PCA problem. All are broad topics studied from different
viewpoints, and the given references provide more information.

1.1 Statistical vs. computational sample-size

Modern machine learning and statistical inference problems are often high dimensional, and it is
highly desirable to solve them using far less samples than the ambient dimension. Luckily, we often
know, or assume, some underlying structure of the objects sought, which allows such savings in
principle. Typical such assumption is that the number of real degrees of freedom is far smaller
than the dimension; examples include sparsity constraints for vectors, and low rank for matrices
and tensors. The main difficulty that occurs in nearly all these problems is that while information
theoretically the sought answer is present (with high probability) in a small number of samples,
actually computing (or even approximating) it from these many samples is a computationally hard
problem. It is often expressed as a non-convex optimization program which is NP-hard in the worst
case, and seemingly hard even on random instances.

Given this state of affairs, relaxed formulations of such non-convex programs were proposed, which
can be solved efficiently, but sometimes to achieve accurate results seem to require far more samples

∗Supported in part by Simons Award for Graduate Students in Theoretical Computer Science
†Supported in part by NSF grant CCF-1412958

1



than existential bounds provide. This phenomenon has been coined the “statistical versus computa-
tional trade-off” by Chandrasekaran and Jordan [1], who motivate and formalize one framework to
study it in which efficient algorithms come from the Sum-of-Squares family of convex relaxations
(which we shall presently discuss). They further give a detailed study of this trade-off for the basic
de-noising problem [2, 3, 4] in various settings (some exhibiting the trade-off and others that do
not). This trade-off was observed in other practical machine learning problems, in particular for the
Sparse PCA problem that will be our focus, by Berthet and Rigollet [5].

As it turns out, the study of the same phenomenon was proposed even earlier in computational
complexity, primarily from theoretical motivations. Decatur, Goldreich and Ron [6] initiate the study
of “computational sample complexity” to study statistical versus computation trade-offs in sample-
size. In their framework efficient algorithms are arbitrary polynomial time ones, not restricted to any
particular structure like convex relaxations. They point out for example that in the distribution-free
PAC-learning framework of Vapnik-Chervonenkis and Valiant, there is often no such trade-off. The
reason is that the number of samples is essentially determined (up to logarithmic factors, which we
will mostly ignore here) by the VC-dimension of the given concept class learned, and moreover,
an “Occam algorithm” (computing any consistent hypothesis) suffices for classification from these
many samples. So, in the many cases where efficiently finding a hypothesis consistent with the
data is possible, enough samples to learn are enough to do so efficiently! This paper also provide
examples where this is not the case in PAC learning, and then turns to an extensive study of possible
trade-offs for learning various concept classes under the uniform distribution. This direction was
further developed by Servedio [7].

The fast growth of Big Data research, the variety of problems successfully attacked by various
heuristics and the attempts to find efficient algorithms with provable guarantees is a growing area of
interaction between statisticians and machine learning researchers on the one hand, and optimiza-
tion and computer scientists on the other. The trade-offs between sample size and computational
complexity, which seems to be present for many such problems, reflects a curious “conflict” be-
tween these fields, as in the first more data is good news, as it allows more accurate inference and
prediction, whereas in the second it is bad news, as a larger input size is a source of increased com-
plexity and inefficiency. More importantly, understanding this phenomenon can serve as a guide to
the design of better algorithms from both a statistical and computational viewpoints, especially for
problems in which data acquisition itself is costly, and not just computation. A basic question is
thus for which problems is such trade-off inherent, and to establish the limits of what is achievable
by efficient methods.

Establishing a trade-off has two parts. One has to prove an existential, information theoretic upper
bound on the number of samples needed when efficiency is not an issue, and then prove a computa-
tional lower bound on the number of samples for the class of efficient algorithms at hand. Needless
to say, it is desirable that the lower bounds hold for as wide a class of algorithms as possible, and that
it will match the best known upper bound achieved by algorithms from this class. The most general
one, the computational complexity framework of [6, 7] allows all polynomial-time algorithms. Here
one cannot hope for unconditional lower bounds, and so existing lower bounds rely on computa-
tional assumptions, e.g.”cryptographic assumptions”, e.g. that factoring integers has no polynomial
time algorithm, or other average case assumptions. For example, hardness of refuting random 3CNF
was used for establishing the sample-computational tradeoff for learning halfspaces [8], and hard-
ness of finding planted clique in random graphs was used for tradeoff in sparse PCA [5, 9]. On the
other hand, in frameworks such as [1], where the class of efficient algorithms is more restricted (e.g.
a family of convex relaxations), one can hope to prove unconditional lower bounds, which are called
“integrality gaps” in the optimization and algorithms literature. Our main result is of this nature,
adding to the small number of such lower bounds for machine learning problems.

We now describe and motivate SoS convex relaxations algorithms, and the Sparse PCA problem.

1.2 Sum-of-Squares convex relaxations

Sum-of-Squares algorithms (sometimes called the Lasserre hierarchy) encompasses perhaps the
strongest known algorithmic technique for a diverse set of optimization problems. It is a family
of convex relaxations introduced independently around the year 2000 by Lasserre [10], Parillo [11],
and in the (equivalent) context of proof systems by Grigoriev [12]. These papers followed better
and better understanding in real algebraic geometry [13, 14, 15, 16, 17, 18, 19]of David Hilbert’s
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famous 17th problem on certifying the non-negativity of a polynomial by writing it as a sum of
squares (which explains the name of this method). We only briefly describe this important class of
algorithms; far more can be found in the book [20] and the excellent extensive survey [21].

The SoS method provides a principled way of adding constraints to a linear or convex program in a
way that obtains tighter and tighter convex sets containing all solutions of the original problem. This
family of algorithms is parametrized by their degree d (sometimes called the number of rounds); as
d gets larger, the approximation becomes better, but the running time becomes slower, specifically
nO(d). Thus in practice one hopes that small degree (ideally constant) would provide sufficiently
good approximation, so that the algorithm would run in polynomial time. This method extends
the standard semi-definite relaxation (SDP, sometimes called spectral), that is captured already by
degree-2 SoS algorithms. Moreover, it is more powerful than two earlier families of relaxations: the
Sherali-Adams [22] and Lovász-Scrijver [23] hierarchies.

The introduction of these algorithms has made a huge splash in the optimization community, and
numerous applications of it to problems in diverse fields were found that greatly improve solution
quality and time performance over all past methods. For large classes of problems they are consid-
ered the strongest algorithmic technique known. Relevant to us is the very recent growing set of
applications of constant-degree SoS algorithms to machine learning problems, such as [24, 25, 26].
The survey [27] contains some of these exciting developments. Section 2.1 contains some self-
contained material about the general framework SoS algorithms as well.

Given their power, it was natural to consider proving lower bounds on what SoS algorithms can do.
There has been an impressive progress on SoS degree lower bounds (via beautiful techniques) for
a variety of combinatorial optimization problems [28, 12, 29, 30]. However, for machine learning
problems relatively few such lower bounds (above SDP level) are known [26, 31] and follow via
reductions to the above bounds. So it is interesting to enrich the set of techniques for proving such
limits on the power of SoS for ML. The lower bound we prove indeed seem to follow a different
route than previous such proofs.

1.3 Sparse PCA

Sparse principal component analysis, the version of the classical PCA problem which assumes that
the direction of variance of the data has a sparse structure, is by now a central problem of high-
diminsional statistical analysis. In this paper we focus on the single-spiked covariance model intro-
duced by Johnstone [32]. One observes n samples from p-dimensional Gaussian distribution with
covariance Σ = λvvT + I where (the planted vector) v is assumed to be a unit-norm sparse vector
with at most k non-zero entries, and λ > 0 represents the strength of the signal. The task is to
find (or estimate) the sparse vector v. More general versions of the problem allow several sparse
directions/components and general covariance matrix [33, 34]. Sparse PCA and its variants have a
wide variety of applications ranging from signal processing to biology: see, e.g., [35, 36, 37, 38].

The hardness of Sparse PCA, at least in the worst case, can be seen through its connection to the
(NP-hard) Clique problem in graphs. Note that if Σ is a {0, 1} adjacency matrix of a graph (with 1’s
on the diagonal), then it has a k-sparse eigenvector v with eigenvalue k if and only if the graph has
a k-clique. This connection between these two problems is actually deeper, and will appear again
below, for our real, average case version above.

From a theoretical point of view, Sparse PCA is one of the simplest examples where we observe a
gap between the number of samples needed information theoretically and the number of samples
needed for a polynomial time estimator: It has been well understood [39, 40, 41] that information
theoretically, given n = O(k log p) samples1, one can estimate v up to constant error (in euclidean
norm), using a non-convex (therefore not polynomial time) optimization algorithm. On the other
hand, all the existing provable polynomial time algorithms [36, 42, 34, 43], which use either diago-
nal thresholding (for the single spiked model) or semidefinite programming (for general covariance),
first introduced for this problem in [44], need at least quadratically many samples to solve the prob-
lem, namely n = O(k2). Moreover, Krauthgamer, Nadler and Vilenchik [45] and Berthet and
Rigollet [41] have shown that for semi-definite programs (SDP) this bound is tight. Specifically,
the natural SDP cannot even solve the detection problem: to distinguish the data from covariance

1We treat λ as a constant so that we omit the dependence on it for simplicity throughout the introduction
section
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Σ = λvvT + I from the null hypothesis in which no sparse vector is planted, namely the n samples
are drawn from the Gaussian distribution with covariance matrix I .

Recall that the natural SDP for this problem (and many others) is just the first level of the SoS
hierarchy, namely degree-2. Given the importance of the Sparse PCA, it is an intriguing question
whether one can solve it efficiently with far fewer samples by allowing degree-d SoS algorithms with
larger d. A very interesting conditional negative answer was suggested by Berthet and Rigollet [41].
They gave an efficient reduction from Planted Clique2 problem to Sparse PCA, which shows in
particular that degree-d SoS algorithms for Sparse PCA will imply similar ones for Planted Clique.
Gao, Ma and Zhou [9] strengthen the result by establishing the hardness of the Gaussian single-
spiked covariance model, which is an interesting subset of models considered by [5]. These are
useful as nontrivial constant-degree SoS lower bounds for Planted Clique were recently proved
by [30, 46] (see there for the precise description, history and motivation for Planted Clique). As [41,
9] argue, strong yet believed bounds, if true, would imply that the quadratic gap is tight for any
constant d. Before the submission of this paper, the known lower bounds above for planted clique
were not strong enough yet to yield any lower bound for Sparse PCA beyond the minimax sample
complexity. We also note that the recent progress [47, 48] that show the tight lower bounds for
planted clique, together with the reductions of [5, 9], also imply the tight lower bounds for Sparse
PCA, as shown in this paper.

1.4 Our contribution

We give a direct, unconditional lower bound proof for computing Sparse PCA using degree-4 SoS
algorithms, showing that they too require n = Ω̃(k2) samples to solve the detection problem (Theo-
rem 3.1), which is tight up to polylogarithmic factors when the strength of the signal λ is a constant.
Indeed the theorem gives a lower bound for every strength λ, which becomes weaker as λ gets larger.
Our proof proceeds by constructing the necessary pseudo-moments for the SoS program that achieve
too high an objective value (in the jargon of optimization, we prove an “integrality gap” for these
programs). As usual in such proofs, there is tension between having the pseudo-moments satisfy the
constraints of the program and keeping them positive semidefinite (PSD). Differing from past lower
bound proofs, we construct two different PSD moments, each approximately satisfying one sets of
constraints in the program and is negligible on the rest. Thus, their sum give PSD moments which
approximately satisfy all constraints. We then perturb these moments to satisfy constraints exactly,
and show that with high probability over the random data, this perturbation leaves the moments
PSD.

We note several features of our lower bound proof which makes the result particularly strong and
general. First, it applies not only for the Gaussian distribution, but also for Bernoulli and other
distributions. Indeed, we give a set of natural (pseudorandomness) conditions on the sampled data
vectors under which the SoS algorithm is “fooled”, and show that these conditions are satisfied
with high probability under many similar distributions (possessing strong concentration of measure).
Next, our lower bound holds even if the hidden sparse vector is discrete, namely its entries come
from the set {0,± 1√

k
}. We also extend the lower bound for the detection problem to apply also

to the estimation problem, in the regime when the ambient dimension is linear in the number of
samples, namely n ≤ p ≤ Bn for constant B.

Organization: Section 2 provides more backgrounds of sparse PCA and SoS algorithms. We state
our main results in Section 3. A complete paper is available as supplementary material or on arxiv.

2 Formal description of the model and problem

Notation: We will assume that n, k, p are all sufficiently large3, and that n ≤ p. Throughout this
paper, by “with high probability some event happens”, we mean the failure probability is bounded
by p−c for every constant c, as p tends to infinity.

Sparse PCA estimation and detection problems We will consider the simplest setting of sparse
PCA, which is called single-spiked covariance model in literature [32] (note that restricting to a

2An average case version of the Clique problem in which the input is a random graph in which a much
larger than expected clique is planted.

3Or we assume that they go to infinity as typically done in statistics.
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special case makes our lower bound hold in all generalizations of this simple model). In this model,
the task is to recover a single sparse vector from noisy samples as follows. The “hidden data” is
an unknown k-sparse vector v ∈ Rp with |v|0 = k and ‖v‖ = 1. To make the task easier (and so
the lower bound stronger), we even assume that v has discrete entries, namely that vi ∈ {0,± 1√

k
}

for all i ∈ [p]. We observe n noisy samples X1, . . . , Xn ∈ Rp that are generated as follows. Each
is independently drawn as Xj =

√
λgjv + ξj from a distribution which generalizes both Gaussian

and Bernoulli noise to v. Namely, the gj’s are i.i.d real random variable with mean 0 and variance
1, and ξj’s are i.i.d random vectors which have independent entries with mean zero and variance 1.
Therefore under this model, the covariance ofXi is equal to λvvT +I . Moreover, we assume that gj
and entries of ξj are sub-gaussian4 with variance proxy O(1). Given these samples, the estimation
problem is to approximate the unknown sparse vector v (up to sign flip).

It is also interesting to also consider the sparse component detection problem [41, 5], which is the
decision problem of distinguishing from random samples the following two distributions

H0: data Xj = ξj is purely random

Hv: data Xj = ξj +
√
λgjv contains a hidden sparse signal with strength λ.

Rigollet [49] observed that a polynomial time algorithm for estimation version of sparse PCA with
constant error implies that an algorithm for the detection problem with twice number of the samples.
Thus, for polynomial time lower bounds, it suffices to consider the detection problem. We will use
X as a shorthand for the p × n matrix

[
X1, . . . , Xn

]
. We denote the rows of X as XT

1 , . . . , X
T
p ,

therefore Xi’s are n-dimensional column vectors. The empirical covariance matrix is defined as
Σ̂ = 1

nXX
T .

Statistically optimal estimator/detector It is well known that the following non-convex program
achieves optimal statistical minimax rate for the estimation problem and the optimal sample com-
plexity for the detection problem. Note that we scale the variables x up by a factor of

√
k for

simplicity (the hidden vector now has entries from {0,±1}).

λkmax(Σ̂) =
1

k
·max 〈Σ̂, xxT 〉 (2.1)

subject to ‖x‖22 = k, ‖x‖0 = k (2.2)

Proposition 2.1 ([42], [41], [39] informally stated). The non-convex program (2.1) statistically
optimally solves the sparse PCA problem when n ≥ Ck/λ2 log p for some sufficiently large C.
Namely, the following hold with high probability. If X is generated from Hv , then optimal solution
xopt of program (2.1) satisfies ‖ 1k · xoptx

T
opt − vvT ‖ ≤ 1

3 , and the objective value λkmax(Σ̂) is at least
1 + 2λ

3 . On the other hand, if X is generated from null hypothesis H0, then λkmax(Σ̂) is at most
1 + λ

3 .

Therefore, for the detection problem, once can simply use the test λkmax(Σ̂) > 1 + λ
2 to distinguish

the case of H0 and Hv , with n = Ω̃(k/λ2) samples. However, this test is highly inefficient, as the
best known ways for computing λkmax(Σ̂) take exponential time! We now turn to consider efficient
ways of solving this problem.

2.1 Sum of Squares (Lasserre) Relaxations

Here we will only briefly introduce the basic ideas of Sum-of-Squares (Lasserre) relaxation that will
be used for this paper. We refer readers to the extensive [20, 21, 27] for detailed discussions of sum
of squares algorithms and proofs and their applications to algorithm design.

Let R[x]d denote the set of all real polynomials of degree at most d with n variables x1, . . . , xn.
We start by defining the notion of pseudo-moment (sometimes called pseudo-expectation ). The
intuition is that these pseudo-moments behave like the actual first d moments of a real probability
distribution.

4A real random variable X is subgaussian with variance proxy σ2 if it has similar tail behavior as gaussian
distribution with variance σ2. More formally, if for any t ∈ R, E[exp(tX)] ≤ exp(t2σ2/2)
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Definition 2.2 (pseudo-moment). A degree-d pseudo-moments M is a linear operator that maps
R[x]d to R and satisfies M(1) = 1 and M(p2(x)) ≥ 0 for all real polynomials p(x) of degree at
most d/2.

For a mutli-set S ⊂ [n], we use xS to denote the monomial
∏
i∈S xi. SinceM is a linear operator, it

can be clearly described by all the values ofM on the monomial of degree d, that is, all the values of
M(xS) for mutli-set S of size at most d uniquely determines M . Moreover, the nonnegativity con-
straint M(p(x)2) ≥ 0 is equivalent to the positive semidefiniteness of the matrix-form (as defined
below), and therefore the set of all pseudo-moments is convex.
Definition 2.3 (matrix-form). For an even integer d and any degree-d pseudo-moments M , we
define the matrix-form of M as the trivial way of viewing all the values of M on monomials as a
matrix: we use mat(M) to denote the matrix that is indexed by multi-subset S of [n] with size at
most d/2, and mat(M)S,T = M(xSxT ).

Given polynomials p(x) and q1(x), . . . , qm(x) of degree at most d, and a polynomial program,

Maximize p(x) (2.3)
Subject to qi(x) = 0,∀i ∈ [m]

We can write a sum of squares based relaxation in the following way: Instead of searching over
x ∈ Rn, we search over all the possible “pseudo-moments” M of a hypothetical distribution over
solutions x, that satisfy the constraints above. The key of the relaxation is to consider only moments
up to degree d. Concretely, we have the following semidefinite program in roughly nd variables.

Variables M(xS) ∀S : |S| ≤ d
Maximize M(p(x)) (2.4)

Subject to M(qi(x)xK) = 0 ∀i,K : |K|+ deg(qi) ≤ d
mat(M) � 0

Note that (2.4) is a valid relaxation because for any solution x∗ of (2.3), if we define M(xS) to be
M(xS) = xS∗ , then M satisfies all the constraints and the objective value is p(x∗). Therefore it is
guaranteed that the optimal value of (2.4) is always larger than that of (2.3).

Finally, the key point is that this program can be solved efficiently, in polynomial time in its size,
namely in time nO(d). As d grows, the constraints added make the “pseudo-distribution” defined by
the moments closer and closer to an actual distribution, thus providing a tighter relaxation, at the
cost of a larger running time to solve it. In the next section we apply this relaxation to the Sparse
PCA problem and state our results.

3 Main Results

To exploit the sum of squares relaxation framework as described in Section 2.1], we first convert the
statistically optimal estimator/detector (2.1) into the “polynomial” program version below.

Maximize〈Σ̂, xxT 〉 (3.1)

subject to‖x‖22 = k, and x3i = xi,∀i ∈ [p] (3.2& 3.3)
|x|1 ≤ k (3.4)

The non-convex sparsity constraint (2.2) is replaced by the polynomial constraint (3.3), which en-
sures that any solution vector x has entries in {0,±1}, and so together with the constraint (3.2)
guarantees that it has precisely k non-zero ±1 entries. The constraint (.3.3) implies other natural
constraints that one may add to the program in order to make it stronger: for example, the upper
bound on each entry xi, the lower bound on the non-zero entries of xi, and the constraint ‖x‖4 ≥ k
which is used as a surrogate for k-sparse vectors in [25, 24]. Note that we also added an `1 spar-
sity constraint (3.4) (which is convex) as is often used in practice and makes our lower bound even
stronger. Of course, it is formally implied by the other constraints, but not in low-degree SoS.

Now we are ready to apply the sum-of-squares relaxation scheme described in Section 2.1) to the
polynomial program above as . For degree-4 relaxation we obtain the following semidefinite pro-
gram SoS4(Σ̂), which we view as an algorithm for both detection and estimation problems. Note
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that the same objective function, with only the three constraints (C1&2), (C6) gives the degree-2
relaxation, which is precisely the standard SDP relaxation of Sparse PCA studied in [42, 41, 45]. So
clearly SoS4(Σ̂) subsumes the SDP relaxation.

Algorithm 1 SoS4(Σ̂): Degree-4 Sum of Squares Relaxation

Solve the following SDP and obtain optimal objective value SoS4(Σ̂) and maximizer M∗.
Variables: M(S), for all mutli-sets S of size at most 4.

SoS4(Σ̂) = max
∑
i,j

M(xixj)Σ̂ij (Obj)

subject to
∑
i∈[p]

M(x2i ) = k and
∑
i,j∈[p]

|M(xixj)| ≤ k2 (C1&2)

M(x3ixj) = M(xixj), and
∑
`∈[p]

M(x2`xixj) = kM(xixj),∀i, j ∈ [p] (C4)

∑
i,j,s,t∈[p]

|M(xixjxsxt)| ≤ k4 and M � 0 (C5&6)

Output: 1. For detection problem : output Hv if SoS4(Σ̂) > (1 + 1
2λ)k, H0 otherwise

2. For estimation problem: output M∗2 = (M∗(xixj))i,j∈[p]

Before stating the lower bounds for both detection and estimation in the next two subsections, we
comment on the choices made for the outputs of the algorithm in both, as clearly other choices can be
made that would be interesting to investigate. For detection, we pick the natural threshold (1+ 1

2λ)k
from the statistically optimal detection algorithm of Section 2. Our lower bound of the objective
under H0 is actually a large constant multiple of λk, so we could have taken a higher threshold.
To analyze even higher ones would require analyzing the behavior of SoS4 under the (planted)
alternative distribution Hv . For estimation we output the maximizer M∗2 of the objective function,
and prove that it is not too correlated with the rank-1 matrix vvT in the planted distribution Hv .
This suggest, but does not prove, that the leading eigenvector of M∗2 (which is a natural estimator
for v) is not too correlated with v. We finally note that Rigollet’s efficient reduction from detection
to estimation is not in the SoS framework, and so our detection lower bound does not automatically
imply the one for estimation.

For the detection problem, we prove that SoS4(Σ̂) gives a large objective on null hypothesis H0.

Theorem 3.1. There exists absolute constant C and r such that for 1 ≤ λ < min{k1/4,
√
n} and

any p ≥ Cλn, k ≥ Cλ7/6
√
n logr p, the following holds. When the data X is drawn from the null

hypothesisH0, then with high probability (1−p−10), the objective value of degree-4 sum of squares
relaxation SoS4(Σ̂) is at least 10λk. Consequently, Algorithm 1 can’t solve the detection problem.

To parse the theorem and to understand its consequence, consider first the case when λ is a constant
(which is also arguably the most interesting regime). Then the theorem says that when we have only
n� k2 samples, degree-4 SoS relaxation SoS4 still overfits heavily to the randomness of the dataX
under the null hypothesis H0. Therefore, using SoS4(Σ̂) > (1 + λ

2 )k (or even 10λk) as a threshold
will fail with high probability to distinguish H0 and Hv .

We note that for constant λ our result is essentially tight in terms of the dependencies between
n, k, p. The condition p = Ω̃(n) is necessary since otherwise when p = o(n), even without the
sum of squares relaxation, the objective value is controlled by (1 + o(1))k since Σ̂ has maximum
eigenvalue 1 + o(1) in this regime. Furthermore, as mentioned in the introduction, k ≥ Ω̃(

√
n) is

also necessary (up to poly-logarithmic factors), since when n� k2, a simple diagonal thresholding
algorithm works for this simple single-spike model.

When λ is not considered as a constant, the dependence of the lower bound on λ is not optimal, but
close. Ideally one could expect that as long as k � λ

√
n, and p ≥ λn, the objective value on the

null hypothesis is at least Ω(λk). Tightening the λ1/6 slack, and possibly extending the range of
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λ are left to future study. Finally, we note that he result can be extended to a lower bound for the
estimation problem, which is presented in the supplementary material.
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