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Abstract

Orthogonal Nonnegative Matrix Factorization (ONMF) aims to approximate a
nonnegative matrix as the product of two k-dimensional nonnegative factors, one
of which has orthonormal columns. It yields potentially useful data represen-
tations as superposition of disjoint parts, while it has been shown to work well
for clustering tasks where traditional methods underperform. Existing algorithms
rely mostly on heuristics, which despite their good empirical performance, lack
provable performance guarantees.

We present a new ONMF algorithm with provable approximation guarantees. For
any constant dimension k, we obtain an additive EPTAS without any assumptions
on the input. Our algorithm relies on a novel approximation to the related Non-
negative Principal Component Analysis (NNPCA) problem; given an arbitrary
data matrix, NNPCA seeks k nonnegative components that jointly capture most
of the variance. Our NNPCA algorithm is of independent interest and generalizes
previous work that could only obtain guarantees for a single component.

We evaluate our algorithms on several real and synthetic datasets and show that
their performance matches or outperforms the state of the art.

1 Introduction

Orthogonal NMF The success of Nonnegative Matrix Factorization (NMF) in a range of disci-
plines spanning data mining, chemometrics, signal processing and more, has driven an extensive
practical and theoretical study [1, 2, 3, 4, 5, 6, 7, 8]. Its power lies in its potential to generate
meaningful decompositions of data into non-subtractive combinations of a few nonnegative parts.

Orthogonal NMF (ONMF) [9] is a variant of NMF with an additional orthogonality constraint: given
a real nonnegative m× n matrix M and a target dimension k, typically much smaller than m and n,
we seek to approximate M by the product of an m× k nonnegative matrix W with orthogonal
(w.l.o.g, orthonormal) columns, and an n× k nonnegative matrix H. In the form of an optimization,

(ONMF) E⋆ , min
W≥0, H≥0

W
⊤
W=Ik

‖M−WH
⊤‖2F . (1)

Since W is nonnegative, its columns are orthogonal if and only if they have disjoint supports. In
turn, each row of M is approximated by a scaled version of a single (transposed) column of H.

Despite the admittedly limited representational power compared to NMF, ONMF yields sparser part-
based representations that are potentially easier to interpret, while it naturally lends itself to certain
applications. In a clustering setting, for example, W serves as a cluster membership matrix and the
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columns of H correspond to k cluster centroids [9, 10, 11]. Empirical evidence shows that ONMF
performs remarkably well in certain clustering tasks, such as document classification [6, 11, 12, 13,
14, 15]. In the analysis of textual data where M is a words by documents matrix, the orthogonal
columns of W can be interpreted as topics defined by disjoint subsets of words. In the case of an
image dataset, with each column of M corresponding to an image evaluated on multiple pixels, each
of the orthogonal base vectors highlights a disjoint segment of the image area.

Nonnegative PCA For any given factor W ≥ 0 with orthonormal columns, the second ONMF fac-
tor H is readily determined: H = M

⊤
W ≥ 0. This follows from the fact that M is by assumption

nonnegative. Based on the above, it can be shown that the ONMF problem (1) is equivalent to

(NNPCA) V⋆ , max
W∈Wk

‖M⊤
W‖2F , (2)

where
Wk ,

{
W ∈ R

m×k : W ≥ 0, W⊤
W = Ik

}
.

For arbitrary —i.e., not necessarily nonnegative— matrices M, the non-convex maximization (2)
coincides with the Nonnegative Principal Component Analysis (NNPCA) problem [16]. Similarly
to vanilla PCA, NNPCA seeks k orthogonal components that jointly capture most of the variance
of the (centered) data in M. The nonzero entries of the extracted components, however, must be
positive, which renders the problem NP-hard even in the case of a single component (k = 1) [17].

Our Contributions We present a novel algorithm for NNPCA. Our algorithm approximates the
solution to (2) for any real input matrix and is accompanied with global approximation guarantees.
Using the above as a building block, we develop an algorithm to approximately solve the ONMF
problem (1) on any nonnegative matrix. Our algorithm outputs a solution that strictly satisfies both
the nonnegativity and the orthogonality constraints. Our main results are as follows:

Theorem 1. (NNPCA) For any m× n matrix M, desired number of components k, and accuracy
parameter ǫ ∈ (0, 1), our NNPCA algorithm computes W ∈ Wk such that

∥∥M⊤
W

∥∥2
F

≥ (1− ǫ) · V⋆ − k · σ2
r+1(M),

where σr+1(M) is the (r + 1)th singular value of M, in time TSVD(r) +O
((

1

ǫ

)r·k
· k ·m

)
.

Here, TSVD(r) denotes the time required to compute a rank-r approximation M of the input M using
the truncated singular value decomposition (SVD). Our NNPCA algorithm operates on the low-rank

matrix M. The parameter r controls a natural trade-off; higher values of r lead to tighter guarantees,
but impact the running time of our algorithm. Finally, note that despite the exponential dependence
in r and k, the complexity scales polynomially in the ambient dimension of the input.

If the input matrix M is nonnegative, as in any instance of the ONMF problem, we can compute an
approximate orthogonal nonnegative factorization in two steps: first obtain an orthogonal factor W
by (approximately) solving the NNPCA problem on M, and subsequently set H = M

⊤
W.

Theorem 2. (ONMF) For any m× n nonnegative matrix M, target dimension k, and desired ac-
curacy ǫ ∈ (0, 1), our ONMF algorithm computes an ONMF pair W,H, such that

‖M−WH
⊤‖2F ≤ E⋆ + ǫ · ‖M‖2F ,

in time TSVD(
k
ǫ ) +O

((
1

ǫ

)k2/ǫ
· k ·m

)
.

For any constant dimension k, Theorem 2 implies an additive EPTAS for the relative ONMF approx-
imation error. This is, to the best our knowledge, the first general ONMF approximation guarantee
since we impose no assumptions on M beyond nonnegativity.

We evaluate our NNPCA and ONMF algorithms on synthetic and real datasets. As we discuss in
Section 4, for several cases we show improvements compared to the previous state of the art.

Related Work ONMF as a variant of NMF first appeared implicitly in [18]. The formulation
in (1) was introduced in [9]. Several algorithms in a subsequent line of work [12, 13, 19, 20, 21, 22]
approximately solve variants of that optimization problem. Most rely on modifying approaches for
NMF to accommodate the orthogonality constraint; either exploiting the additional structural prop-
erties in the objective [13], introducing a penalization term [9], or updating the current estimate
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in suitable directions [12], they typically reduce to a multiplicative update rule which attains or-
thogonality only in a limit sense. In [11], the authors suggest two alternative approaches: an EM
algorithm motivated by connections to spherical k-means, and an augmented Lagrangian formula-
tion that explicitly enforces orthogonality, but only achieves nonnegativity in the limit. Despite their
good performance in practice, existing methods only guarantee local convergence.

W·H⊤O
N

M
F

W·H⊤

S
ep

.
N

M
F

Figure 1: ONMF and Separable NMF, upon ap-
propriate permutation of the rows of M. In the
first case, each row of M is approximated by
a single row of H⊤, while in the second, by a
nonnegative combination of all k rows of H⊤.

A significant body of work [23, 24, 25, 26] has fo-
cused on Separable NMF, a variant of NMF par-
tially related to ONMF. Sep. NMF seeks to de-
compose M into the product of two nonnegative
matrices W and H

⊤ where W contains a permu-
tation of the k × k identity matrix. Intuitively, the
geometric picture of Sep. NMF should be quite
different from that of ONMF: in the former, the
rows of H⊤ are the extreme rays of a convex cone
enclosing all rows of M, while in the latter they
should be scattered in the interior of that cone so that each row of M has one representative in small
angular distance. Algebraically, ONMF factors approximately satisfy the structural requirement of
Sep. NMF, but the converse is not true: a Sep. NMF solution is not a valid ONMF solution (Fig. 1).

In the NNPCA front, nonnegativity as a constraint on PCA first appeared in [16], which proposed
a coordinate-descent scheme on a penalized version of (2) to compute a set of nonnegative com-
ponents. In [27], the authors developed a framework stemming from Expectation-Maximization
(EM) on a generative model of PCA to compute a nonnegative (and optionally sparse) component.
In [17], the authors proposed an algorithm based on sampling points from a low-dimensional sub-
space of the data covariance and projecting them on the nonnegative orthant. [27] and [17] focus
on the single-component problem; multiple components can be computed sequentially employing
a heuristic deflation step. Our main theoretical result is a generalization of the analysis of [17] for
multiple components. Finally, note that despite the connection between the two problems, existing
algorithms for ONMF are not suitable for NNPCA as they only operate on nonnegative matrices.

2 Algorithms and Guarantees

2.1 Overview

We first develop an algorithm to approximately solve the NNPCA problem (2) on any arbitrary —
i.e., not necessarily nonnegative— m× n matrix M. The core idea is to solve the NNPCA problem

not directly on M, but a rank-r approximation M instead. Our main technical contribution is a
procedure that approximates the solution to the constrained maximization (2) on a rank-r matrix
within a multiplicative factor arbitrarily close to 1, in time exponential in r, but polynomial in the
dimensions of the input. Our Low Rank NNPCA algorithm relies on generating a large number of
candidate solutions, one of which provably achieves objective value close to optimal.

The k nonnegative components W ∈ Wk returned by our Low Rank NNPCA algorithm on the

sketch M are used as a surrogate for the desired components of the original input M. Intuitively, the
performance of the extracted nonnegative components depends on how well M is approximated by

the low rank sketch M; a higher rank approximation leads to better results. However, the complexity
of our low rank solver depends exponentially in the rank of its input. A natural trade-off arises
between the quality of the extracted components and the running time of our NNPCA algorithm.

Using our NNPCA algorithm as a building block, we propose a novel algorithm for the ONMF
problem (1). In an ONMF instance, we are given an m× n nonnegative matrix M and a target di-
mension k < m,n, and seek to approximate M with a product WH

⊤ of two nonnegative matrices,
where W additionally has orthonormal columns. Computing such a factorization is equivalent to
solving the NNPCA problem on the nonnegative matrix M. (See Appendix A.1 for a formal ar-
gument.) Once a nonnegative orthogonal factor W is obtained, the second ONMF factor is readily
determined: H = M

⊤
W minimizes the Frobenius approximation error in (1) for a given W. Under

an appropriate configuration of the accuracy parameters, for any nonnegative m × n input M and
constant target dimension k, our algorithm yields an additive EPTAS for the relative approximation
error, without any additional assumptions on the input data.
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2.2 Main Results

Algorithm 1 LowRankNNPCA

input real m× n rank-r matrix M, k, ǫ ∈ (0, 1)
output W ∈ Wk ⊂ R

m×k {See Lemma 1}
1: C ← {} {Candidate solutions}
2:

[
U,Σ,V

]
← SVD(M, r) {Trunc. SVD}

3: for each C ∈ N⊗k
ǫ/2

(
S
r−1

2

)
do

4: A← UΣC {A ∈ R
m×k}

5: Ŵ← LocalOptW(A) {Alg. 3}

6: C ← C ∪
{
Ŵ

}

7: end for
8: W← argmaxW∈C ‖M

⊤
W‖2F

Low Rank NNPCA We develop an algo-
rithm to approximately solve the NNPCA

problem on an m×n real rank-r matrix M:

W⋆, argmax
W∈Wk

‖M
⊤
W‖. (3)

The procedure, which lies in the core of
our subsequent developments, is encoded in
Alg. 1. We describe it in detail in Section 3.
The key observation is that irrespectively of
the dimensions of the input, the maximiza-
tion in (3) can be reduced to k · r unknowns.
The algorithm generates a large number of
k-tuples of r-dimensional points; the collec-
tion of tuples is denoted by N⊗k

ǫ/2

(
S
r−1

2

)
, the kth Cartesian power of an ǫ/2-net of the r-dimensional

unit sphere. Using these points, we effectively sample the column-space of the input M. Each tuple
yields a feasible solution W ∈ Wk through a computationally efficient subroutine (Alg. 3). The best

among those candidate solutions is provably close to the optimal W⋆ with respect to the objective
in (2). The approximation guarantees are formally established in the following lemma.

Lemma 1. For any real m×n matrix M with rank r, desired number of components k, and accuracy
parameter ǫ ∈ (0, 1), Algorithm 1 outputs W ∈ Wk such that

‖M
⊤
W‖2F ≥ (1− ǫ) · ‖M

⊤
W⋆‖

2
F ,

where W⋆ is the optimal solution defined in (3), in time TSVD(r) +O
((

2

ǫ

)r·k
· k ·m

)
.

Proof. (See Appendix A.2.)

Nonnegative PCA Given an arbitrary real m × n matrix M, we can generate a rank-r sketch M

and solve the low rank NNPCA problem on M using Algorithm 1. The output W ∈ Wk of the
low rank problem can be used as a surrogate for the desired components of the original input M.

For simplicity, here we consider the case where M is the rank-r approximation of M obtained by
the truncated SVD. Intuitively, the performance of the extracted components on the original data

matrix M will depend on how well the latter is approximated by M, and in turn by the spectral
decay of the input data. For example, if M exhibits a sharp spectral decay, which is frequently the
case in real data, a moderate value of r suffices to obtain a good approximation. This leads to our
first main theorem which formally establishes the guarantees of our NNPCA algorithm.

Theorem 1. For any real m × n matrix M, let M be its best rank-r approximation. Algorithm 1
with input M, and parameters k and ǫ ∈ (0, 1), outputs W ∈ Wk such that

∥∥M⊤
W

∥∥2
F

≥ (1− ǫ) ·
∥∥M⊤

W⋆

∥∥2
F
− k ·

∥∥M−M
∥∥2
2
,

where W⋆, argmax
W∈Wk

∥∥M⊤
W

∥∥2
F
, in time TSVD(r) +O

((
1

ǫ

)r·k
· k ·m

)
.

Proof. The proof follows from Lemma 1. It is formally provided in Appendix A.3.

Theorem 1 establishes a trade-off between the computational complexity of the proposed NNPCA
approach and the tightness of the approximation guarantees; higher values of r imply smaller
‖M−M‖22 and in turn a tighter bound (assuming that the singular values of M decay), but have
an exponential impact on the running time. Despite the exponential dependence on r and k, our
approach is polynomial in the dimensions of the input M, dominated by the truncated SVD.

In practice, Algorithm 1 can be terminated early returning the best computed result at the time
of termination, sacrificing the theoretical approximation guarantees. In Section 4 we empirically
evaluate our algorithm on real datasets and demonstrate that even for small values of r, our NNPCA
algorithms significantly outperforms existing approaches.
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Orthogonal NMF The NNPCA algorithm straightforwardly yields an algorithm for the ONMF
problem (1). In an ONMF instance, the input matrix M is by assumption nonnegative. Given any
m × k orthogonal nonnegative factor W, the optimal choice for the second factor is H = M

⊤
W.

Hence, it suffices to determine W, which can be obtained by solving the NNPCA problem on M.

Algorithm 2 ONMFS

input : m× n real M ≥ 0, r, k, ǫ ∈ (0, 1)

1: M← SVD(M, r)

2: W← LowRankNNPCA
(
M, k, ǫ

)
{Alg. 1}

3: H←M
⊤
W

output W,H

The proposed ONMF algorithm is outlined in
Alg. 2. Given a nonnegative m×n matrix M,

we first obtain a rank-r approximation M via
the truncated SVD, where r is an accuracy pa-

rameter. Using Alg. 1 on M, we compute an

orthogonal nonnegative factor W ∈ Wk that
approximately maximizes (3) within a desired

accuracy. The second ONMF factor H is read-
ily determined as described earlier.

The accuracy parameter r once again controls a trade-off between the quality of the ONMF factors
and the complexity of the algorithm. We note, however, that for any target dimension k and de-
sired accuracy parameter ǫ, setting r = ⌈k/ǫ⌉ suffices to achieve an additive ǫ error on the relative
approximation error of the ONMF problem. More formally,

Theorem 2. For any m× n real nonnegative matrix M, target dimension k, and desired accuracy
ǫ ∈ (0, 1), Algorithm 2 with parameter r = ⌈k/ǫ⌉ outputs an ONMF pair W,H, such that

‖M−WH
⊤‖2F ≤ E⋆ + ε · ‖M‖2F ,

in time TSVD(
k
ǫ ) +O

((
1

ǫ

)k2/ǫ
· (k ·m)

)
.

Proof. (See Appendix A.4.)

Theorem 2 implies an additive EPTAS1 for the relative approximation error in the ONMF problem
for any constant target dimension k; Algorithm 2 runs in time polynomial in the dimensions of the
input M. Finally, note that it did not require any assumption on M beyond nonnegativity.

3 The Low Rank NNPCA Algorithm

In this section, we re-visit Alg. 1, which plays a central role in our developments, as it is the key
piece of our NNPCA and in turn our ONMF algorithm. Alg. 1 approximately solves the NNPCA

problem (3) on a rank-r, m× n matrix M. It operates by producing a large, but tractable number of
candidate solutions W ∈ Wk, and returns the one that maximizes the objective value in (2). In the
sequel, we provide a brief description of the ideas behind the algorithm.

We are interested in approximately solving the low rank NNPCA problem (3). Let M = UΣV
⊤

denote the truncated SVD of M. For any W ∈ R
m×k,

‖M
⊤
W‖2F = ‖ΣU

⊤
W‖2F =

k∑

j=1

‖ΣU
⊤
wj‖

2
2 =

k∑

j=1

max
cj∈S

r−1

2

〈
wj , UΣcj

〉2
, (4)

where S
r−1

2 denotes the r-dimensional ℓ2-unit sphere. Let C denote the r × k variable formed by
stacking the unit-norm vectors cj , j = 1, . . . , k. The key observation is that for a given C, we can
efficiently compute a W ∈ Wk that maximizes the right-hand side of (4). The procedure for that
task is outlined in Alg. 3. Hence, the NNPCA problem (3) is reduced to determining the optimal
value of the low-dimensional variable C. But, first let us we provide a brief description of Alg. 3.

1 Additive EPTAS (Efficient Polynomial Time approximation Scheme [28, 29]) refers to an algorithm that
can approximate the solution of an optimization problem within an arbitrarily small additive error ǫ and has
complexity that scales polynomially in the input size n, but possibly exponentially in 1/ǫ. EPTAS is more
efficient than a PTAS because it enforces a polynomial dependency on n for any ǫ, i.e., a running time f(1/ǫ) ·

p(n), where p(n) is polynomial. For example, a running time of O(n
1/ǫ) is considered PTAS, but not EPTAS.
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Algorithm 3 LocalOptW

input : real m× k matrix A

output Ŵ = argmax
W∈Wk

∑k
j=1

〈
wj , aj

〉
2

1: CW ← {}
2: for each s ∈ {±1}k do
3: A

′ ← A · diag(s)
4: Ij ← {}, j = 1, . . . , k
5: for i = 1 . . . ,m do
6: j⋆ ← argmaxj A

′
ij

7: if A′
ij⋆ ≥ 0 then

8: Ij⋆ ← Ij⋆ ∪ {i}
9: end if

10: end for
11: W← 0m×k

12: for j = 1, . . . , k do
13: [wj ]Ij

← [a′
j ]Ij

/‖[a′
j ]Ij
‖

14: end for
15: CW ← CW ∪W

16: end for
17: Ŵ← argmax

W∈CW

∑k
j=1

〈
wj , aj

〉
2

For a fixed r × k matrix C, Algorithm 3 computes

Ŵ , argmax
W∈Wk

k∑

j=1

〈
wj , aj

〉2
, (5)

where A,UΣC. The challenge is to determine
the support of the optimal solution Ŵ; if an oracle
revealed the optimal supports Ij , j = 1, . . . , k of
its columns, then the exact value of the nonzero en-
tries would be determined by the Cauchy-Schwarz
inequality, and the contribution of the jth summand
in (5) would be equal to

∑
i∈Ij

A2
ij . Due to the non-

negativity constrains in Wk, the optimal support Ij
of the jth column must contain indices correspond-
ing to only nonnegative or nonpositive entries of
aj , but not a combination of both. Algorithm 3

considers all 2k possible sign combinations for the
support sets implicitly by solving (5) on all 2k ma-
trices A

′ = A · diag(s), s ∈ {±1}k. Hence, we
may assume without loss of generality that all sup-
port sets correspond to nonnegative entries of A.
Moreover, if index i ∈ [m] is assigned to Ij , then the contribution of the entire ith row of A to the

objective is equal to A2
ij . Based on the above, Algorithm 3 constructs the collection of the support

sets by assigning index i to Ij if and only if Aij is nonnegative and the largest among the entries of

the ith row of A. The algorithm runs in time2 O(2k · k · m) and guarantees that the output is the
optimal solution to (5). A more formal analysis of the Alg. 3 is provided in Section A.5.

Thus far, we have seen that any given value of C can be associated with a feasible solution W ∈ Wk

via the maximization (5) and Alg. 3. If we could efficiently consider all possible values in the
(continuous) domain of C, we would be able to recover the pair that maximizes (4) and, in turn, the
optimal solution of (3). However, that is not possible. Instead, we consider a fine discretization of the
domain of C and settle for an approximate solution. In particular, let Nǫ(S

r−1

2 ) denote a finite ǫ-net

of the r-dimensional ℓ2-unit sphere; for any point in S
r−1

2 , the net contains a point within distance

ǫ from the former. (see Appendix C for the construction of such a net). Further, let [Nǫ(S
r−1

2 )]⊗k

denote the kth Cartesian power of the previous net; the latter is a collection of r × k matrices C.
Alg. 1 operates on this collection: for each C it identifies a candidate solution W ∈ Wk via the
maximization (5) using Algorithm 3. By the properties of the ǫ-nets, it can be shown that at least
one of the computed candidate solutions must attain an objective value close to the optimal of (3).

The guarantees of Alg. 1 are formally established in Lemma 1. A detailed analysis of the algorithm
is provided in the corresponding proof in Appendix A.2. This completes the description of our
algorithmic developments.

4 Experimental Evaluation

NNPCA We compare our NNPCA algorithm against three existing approaches: NSPCA [16],
EM [27] and NNSPAN [17] on real datasets. NSPCA computes multiple nonnegative, but not nec-
essarily orthogonal components; a parameter α penalizes the overlap among their supports. We
set a high penalty (α = 1e10) to promote orthogonality. EM and NNSPAN compute only a single
nonnegative component. Multiple components are computed consecutively, interleaving an appro-
priate deflation step. To ensure orthogonality, the deflation step effectively zeroes out the variables
used in previously extracted components. Finally, note that both the EM and NSPCA algorithms
are randomly initialized. All depicted values are the best results over multiple random restarts. For
our algorithm, we use a sketch of rank r = 4 of the (centered) input data. Further we apply an
early termination criterion; execution is terminated if no improvement is observed in a number of
consecutive iterations (samples). This can only hurt the performance of our algorithm.

2 When used as a subroutine in Alg. 1, Alg. 3 can be simplified into an O(k ·m) procedure (lines 4-14).
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Figure 2: Cumul. variance captured by k nonnegative components; CBCL dataset [30]. In Fig. 2(a),
we set k = 8 and plot the cumul. variance versus the number of components. EM and NNSPAN
extract components greedily; first components achieve high value, but subsequent ones contribute
less to the objective. Our algorithm jointly optimizes the k = 8 components, achieving a 59.95%
improvement over the second best method. Fig. 2(b) depicts the cumul. variance for various values
of k. We note the percentage improvement of our algorithm over the second best method.

CBCL Dataset. The CBCL dataset [30] contains 2429, 19× 19 pixel, gray scale face images. It has
been used in the evaluation of all three methods [16, 17, 27]. We extract k orthogonal nonnegative
components using all methods and compare the total explained variance, i.e., the objective in (2).
We note that input data has been centered and it is hence not nonnegative.

Fig. 2(a) depicts the cumulative explained variance versus the number of components for k = 8.
EM and NNSPAN extract components greedily with a deflation step; the first component achieves
high value, but subsequent ones contribute less to the total variance. On the contrary, our algorithm
jointly optimizes the k = 8 components, achieving an approximately 60% increase in the total vari-
ance compared to the second best method. We repeat the experiment for k = 2, . . . , 8. Fig. 2(b)
depicts the total variance captured by each method for each value of k. Our algorithm significantly
outperforms the existing approaches.

Additional Datasets. We solve the NNPCA problem on various datasets obtained from [31]. We
arbitrarily set the target number of components to k = 5 and configure our algorithm to use a rank-4
sketch of the input. Table 1 lists the total variance captured by the extracted components for each
method. Our algorithm consistently outperforms the other approaches.

ONMF We compare our algorithm with several state-of-the-art ONMF algorithms i) the O-PNMF
algorithm of [13] (for 1000 iterations), and ii) the more recent ONP-MF iii) EM-ONMF algorithms
of [11, 32] (for 1000 iterations). We also compare to clustering methods (namely, vanilla and spher-
ical k-means) since such algorithms also yield an approximate ONMF.

NSPCA EM NNSPAN ONMFS

AMZN COM. REV (1500×10000) 5.44e+ 01 7.32e+ 03 7.32e+ 03 7.86e+ 03 (+7.37%)
ARCENCE TRAIN (100×10000) 4.96e+ 04 3.01e+ 07 3.00e+ 07 3.80e+ 07 (+26.7%)
ISOLET-5 (1559×617) 5.83e− 01 3.54e+ 01 3.55e+ 01 4.55e+ 01 (+28.03%)
LEUKEMIA (72×12582) 3.02e+ 07 7.94e+ 09 8.02e+ 09 1.04e+ 10 (+29.57%)
MFEAT PIX (2000×240) 2.00e+ 01 3.20e+ 02 3.25e+ 02 5.24e+ 02 (+61.17%)
LOW RES. SPEC. (531×100) 3.98e+ 06 2.29e+ 08 2.29e+ 08 2.41e+ 08 (+5.34%)
BOW:KOS (3430×6906) 4.96e− 02 2.96e+ 01 3.00e+ 01 4.59e+ 01 (+52.95%)

Table 1: Total variance captured by k = 5 nonnegative components on various datasets [31]. For
each dataset, we list (#samples×#variables) and the variance captured by each method; higher values
are better. Our algorithm (labeled ONMFS) operates on a rank-4 sketch in all cases, and consistently
achieves the best results. We note the percentage improvement over the second best method.
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Figure 3: Relative Frob. approximation error on
synthetic data. Data points (samples) are gen-
erated by randomly scaling and adding noise to
one of five base points that have been randomly
selected from the unit hypercube in 100 dimen-
sions. We run ONMF methods with target dimen-
sion k = 5. Our algorithm is labeled as ONMFS.

Synthetic data. We generate a synthetic
dataset as follows. We select five base vec-
tors cj , j = 1, . . . , 5 randomly and indepen-
dently from the unit hypercube in 100 dimen-
sions. Then, we generate data points xi =
ai ·cj +p ·ni, for some j ∈ {1, . . . , 5}, where
ai ∼ U([0.1, 1]), ni ∼ N(0, I), and p is a
parameter controlling the noise variance. Any
negative entries of xi are set to zero.

We vary p in [10−2, 1]. For each p value, we
compute an approximate ONMF on 10 ran-
domly generated datasets and measure the rel-
ative Frobenius approximation error. For the
methods that involved random initialization,
we run 10 averaging iterations per Monte-
Carlo trial. Our algorithm is configured to op-
erate on a rank-5 sketch. Figure 3 depicts the
relative error achieved by each method (aver-
aged over the random trials) versus the noise
variance p. Our algorithm, labeled ONMFS

achieves competitive or higher accuracy for
most values in the range of p.

Real Datasets. We apply the ONMF algorithms on various nonnegative datasets obtained from [31].
We arbitrarily set the target number of components to k = 6. Table 2 lists the relative Frobenius
approximation error achieved by each algorithm. We note that on the text datasets (e.g., Bag of
Words [31]) we run the algorithms on the uncentered word-by-document matrix. Our algorithm
performs competitively compared to other methods.

5 Conclusions

We presented a novel algorithm for approximately solving the ONMF problem on a nonnegative
matrix. Our algorithm relied on a new method for solving the NNPCA problem. The latter jointly
optimizes multiple orthogonal nonnegative components and provably achieves an objective value
close to optimal. Our ONMF algorithm is the first one to be equipped with theoretical approxi-
mation guarantees; for a constant target dimension k, it yields an additive EPTAS for the relative
approximation error. Empirical evaluation on synthetic and real datasets demonstrates that our algo-
rithms outperform or match existing approaches in both problems.

Acknowledgments DP is generously supported by NSF awards CCF-1217058 and CCF-1116404
and MURI AFOSR grant 556016. This research has been supported by NSF Grants CCF 1344179,
1344364, 1407278, 1422549 and ARO YIP W911NF-14-1-0258.

K-MEANS O-PNMF ONP-MF EM-ONMF ONMFS

AMZN COM. REV (10000×1500) 0.0547 0.1153 0.1153 0.0467 0.0462(5)
ARCENCE TRAIN (100×10000) 0.0837 − 0.1250 0.0856 0.0788(4)
MFEAT PIX (2000×240) 0.2489 0.2974 0.3074 0.2447 0.2615 (4)
PEMS TRAIN (267×138672) 0.1441 0.1439 0.1380 0.1278 0.1283 (5)
BOW:KOS (3430×6906) 0.8193 0.7692 0.7671 0.7671 0.7609(4)
BOW:ENRON (28102×39861) 0.9946 − 0.6728 0.7148 0.6540(4)
BOW:NIPS (1500×12419) 0.8137 0.7277 0.7277 0.7375 0.7252(5)
BOW:NYTIMES (102660×3 · 105) − − 0.9199 0.9238 0.9199(5)

Table 2: ONMF approximation error on nonnegative datasets [31]. For each dataset, we list the size
(#samples×#variables) and the relative Frobenius approximation error achieved by each method;
lower values are better. We arbitrarily set the target dimension k = 6. Dashes (-) denote an invalid
solution/non-convergence. For our method, we note in parentheses the approximation rank r used.
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