
Path-SGD: Path-Normalized Optimization in
Deep Neural Networks

Behnam Neyshabur
Toyota Technological Institute at Chicago

bneyshabur@ttic.edu

Ruslan Salakhutdinov
Departments of Statistics and Computer Science

University of Toronto
rsalakhu@cs.toronto.edu

Nathan Srebro
Toyota Technological Institute at Chicago

nati@ttic.edu

Abstract

We revisit the choice of SGD for training deep neural networks by reconsidering
the appropriate geometry in which to optimize the weights. We argue for a geom-
etry invariant to rescaling of weights that does not affect the output of the network,
and suggest Path-SGD, which is an approximate steepest descent method with re-
spect to a path-wise regularizer related to max-norm regularization. Path-SGD is
easy and efficient to implement and leads to empirical gains over SGD and Ada-
Grad.

1 Introduction

Training deep networks is a challenging problem [16, 2] and various heuristics and optimization
algorithms have been suggested in order to improve the efficiency of the training [5, 9, 4]. However,
training deep architectures is still considerably slow and the problem has remained open. Many
of the current training methods rely on good initialization and then performing Stochastic Gradient
Descent (SGD), sometimes together with an adaptive stepsize or momentum term [16, 1, 6].

Revisiting the choice of gradient descent, we recall that optimization is inherently tied to a choice of
geometry or measure of distance, norm or divergence. Gradient descent for example is tied to the `2
norm as it is the steepest descent with respect to `2 norm in the parameter space, while coordinate
descent corresponds to steepest descent with respect to the `1 norm and exp-gradient (multiplicative
weight) updates is tied to an entropic divergence. Moreover, at least when the objective function is
convex, convergence behavior is tied to the corresponding norms or potentials. For example, with
gradient descent, or SGD, convergence speeds depend on the `2 norm of the optimum. The norm
or divergence can be viewed as a regularizer for the updates. There is therefore also a strong link
between regularization for optimization and regularization for learning: optimization may provide
implicit regularization in terms of its corresponding geometry, and for ideal optimization perfor-
mance the optimization geometry should be aligned with inductive bias driving the learning [14].

Is the `2 geometry on the weights the appropriate geometry for the space of deep networks? Or
can we suggest a geometry with more desirable properties that would enable faster optimization and
perhaps also better implicit regularization? As suggested above, this question is also linked to the
choice of an appropriate regularizer for deep networks.

Focusing on networks with RELU activations, we observe that scaling down the incoming edges to
a hidden unit and scaling up the outgoing edges by the same factor yields an equivalent network

1

0 100 200 3000

0.5

1

1.5

2

2.5

Epoch
O

bj
ec

tiv
e

Balanced
Unbalanced

(a) Training on MNIST

100

10-4

SGD
Update

100

~100

~104

~100

1

1
Rescaling

1

u

v

u

v

u

v

≈

(b) Weight explosion in an unbalanced network

8

6
8

3
7

7
8

4 vu
6

1
1

1
4

2
1

1 vu
60.2

10.5
70.1

10.2
30.4

20.5
70.1

30.1 vu
60

10
0.1

10
0.4

20
0.1

0.1
vu

SGD
Update

SGD
Update ≈Rescaling

(c) Poor updates in an unbalanced network
Figure 1: (a): Evolution of the cross-entropy error function when training a feed-forward network on MNIST
with two hidden layers, each containing 4000 hidden units. The unbalanced initialization (blue curve) is gener-
ated by applying a sequence of rescaling functions on the balanced initializations (red curve). (b): Updates for
a simple case where the input is x = 1, thresholds are set to zero (constant), the stepsize is 1, and the gradient
with respect to output is δ = −1. (c): Updated network for the case where the input is x = (1, 1), thresholds
are set to zero (constant), the stepsize is 1, and the gradient with respect to output is δ = (−1,−1).

computing the same function. Since predictions are invariant to such rescalings, it is natural to seek
a geometry, and corresponding optimization method, that is similarly invariant.

We consider here a geometry inspired by max-norm regularization (regularizing the maximum norm
of incoming weights into any unit) which seems to provide a better inductive bias compared to the
`2 norm (weight decay) [3, 15]. But to achieve rescaling invariance, we use not the max-norm itself,
but rather the minimum max-norm over all rescalings of the weights. We discuss how this measure
can be expressed as a “path regularizer” and can be computed efficiently.

We therefore suggest a novel optimization method, Path-SGD, that is an approximate steepest de-
scent method with respect to path regularization. Path-SGDis rescaling-invariant and we demon-
strate that Path-SGDoutperforms gradient descent and AdaGrad for classifications tasks on several
benchmark datasets.

Notations A feedforward neural network that computes a function f : RD → RC can be repre-
sented by a directed acyclic graph (DAG) G(V,E) with D input nodes vin[1], . . . , vin[D] ∈ V , C
output nodes vout[1], . . . , vout[C] ∈ V , weights w : E → R and an activation function σ : R → R
that is applied on the internal nodes (hidden units). We denote the function computed by this
network as fG,w,σ . In this paper we focus on RELU (REctified Linear Unit) activation function
σRELU(x) = max{0, x}. We refer to the depth d of the network which is the length of the longest
directed path in G. For any 0 ≤ i ≤ d, we define V iin to be the set of vertices with longest path of
length i to an input unit and V iout is defined similarly for paths to output units. In layered networks
V iin = V d−iout is the set of hidden units in a hidden layer i.

2 Rescaling and Unbalanceness

One of the special properties of RELU activation function is non-negative homogeneity. That is,
for any scalar c ≥ 0 and any x ∈ R, we have σRELU(c · x) = c · σRELU(x). This interesting
property allows the network to be rescaled without changing the function computed by the network.
We define the rescaling function ρc,v(w), such that given the weights of the network w : E → R, a
constant c > 0, and a node v, the rescaling function multiplies the incoming edges and divides the
outgoing edges of v by c. That is, ρc,v(w) maps w to the weights w̃ for the rescaled network, where
for any (u1 → u2) ∈ E:

w̃(u1→u2) =


c.w(u1→u2) u2 = v,
1
cw(u1→u2) u1 = v,

w(u1→u2) otherwise.
(1)

2

It is easy to see that the rescaled network computes the same function, i.e. fG,w,σRELU =
fG,ρc,v(w),σRELU . We say that the two networks with weights w and w̃ are rescaling equivalent
denoted by w ∼ w̃ if and only if one of them can be transformed to another by applying a sequence
of rescaling functions ρc,v .

Given a training set S = {(x1, yn), . . . , (xn, yn)}, our goal is to minimize the following objective
function:

L(w) =
1

n

n∑
i=1

`(fw(xi), yi). (2)

Let w(t) be the weights at step t of the optimization. We consider update step of the following form
w(t+1) = w(t) + ∆w(t+1). For example, for gradient descent, we have ∆w(t+1) = −η∇L(w(t)),
where η is the step-size. In the stochastic setting, such as SGD or mini-batch gradient descent, we
calculate the gradient on a small subset of the training set.

Since rescaling equivalent networks compute the same function, it is desirable to have an update rule
that is not affected by rescaling. We call an optimization method rescaling invariant if the updates
of rescaling equivalent networks are rescaling equivalent. That is, if we start at either one of the two
rescaling equivalent weight vectors w̃(0) ∼ w(0), after applying t update steps separately on w̃(0)

and w(0), they will remain rescaling equivalent and we have w̃(t) ∼ w(t).

Unfortunately, gradient descent is not rescaling invariant. The main problem with the gradient up-
dates is that scaling down the weights of an edge will also scale up the gradient which, as we see
later, is exactly the opposite of what is expected from a rescaling invariant update.

Furthermore, gradient descent performs very poorly on “unbalanced” networks. We say that a net-
work is balanced if the norm of incoming weights to different units are roughly the same or within
a small range. For example, Figure 1(a) shows a huge gap in the performance of SGD initialized
with a randomly generated balanced networkw(0), when training on MNIST, compared to a network
initialized with unbalanced weights w̃(0). Here w̃(0) is generated by applying a sequence of random
rescaling functions on w(0) (and therefore w(0) ∼ w̃(0)).

In an unbalanced network, gradient descent updates could blow up the smaller weights, while keep-
ing the larger weights almost unchanged. This is illustrated in Figure 1(b). If this were the only
issue, one could scale down all the weights after each update. However, in an unbalanced network,
the relative changes in the weights are also very different compared to a balanced network. For
example, Figure 1(c) shows how two rescaling equivalent networks could end up computing a very
different function after only a single update.

3 Magnitude/Scale measures for deep networks

Following [12], we consider the grouping of weights going into each node of the network. This
forms the following generic group-norm type regularizer, parametrized by 1 ≤ p, q ≤ ∞:

µp,q(w) =

∑
v∈V

 ∑
(u→v)∈E

∣∣w(u→v)
∣∣pq/p


1/q

. (3)

Two simple cases of above group-norm are p = q = 1 and p = q = 2 that correspond to overall
`1 regularization and weight decay respectively. Another form of regularization that is shown to
be very effective in RELU networks is the max-norm regularization, which is the maximum over
all units of norm of incoming edge to the unit1 [3, 15]. The max-norm correspond to “per-unit”
regularization when we set q =∞ in equation (4) and can be written in the following form:

µp,∞(w) = sup
v∈V

 ∑
(u→v)∈E

∣∣w(u→v)
∣∣p1/p

(4)

1This definition of max-norm is a bit different than the one used in the context of matrix factorization [13].
The later is similar to the minimum upper bound over `2 norm of both outgoing edges from the input units and
incoming edges to the output units in a two layer feed-forward network.

3

Weight decay is probably the most commonly used regularizer. On the other hand, per-unit regu-
larization might not seem ideal as it is very extreme in the sense that the value of regularizer corre-
sponds to the highest value among all nodes. However, the situation is very different for networks
with RELU activations (and other activation functions with non-negative homogeneity property). In
these cases, per-unit `2 regularization has shown to be very effective [15]. The main reason could be
because RELU networks can be rebalanced in such a way that all hidden units have the same norm.
Hence, per-unit regularization will not be a crude measure anymore.

Since µp,∞ is not rescaling invariant and the values of the scale measure are different for rescal-
ing equivalent networks, it is desirable to look for the minimum value of a regularizer among all
rescaling equivalent networks. Surprisingly, for a feed-forward network, the minimum `p per-unit
regularizer among all rescaling equivalent networks can be efficiently computed by a single forward
step. To see this, we consider the vector π(w), the path vector, where the number of coordinates
of π(w) is equal to the total number of paths from the input to output units and each coordinate of
π(w) is the equal to the product of weights along a path from an input nodes to an output node. The
`p-path regularizer is then defined as the `p norm of π(w) [12]:

φp(w) = ‖π(w)‖p =

 ∑
vin[i]

e1→v1
e2→v2...

ed→vout[j]

∣∣∣∣∣
d∏
k=1

wek

∣∣∣∣∣
p


1/p

(5)

The following Lemma establishes that the `p-path regularizer corresponds to the minimum over all
equivalent networks of the per-unit `p norm:

Lemma 3.1 ([12]). φp(w) = min
w̃∼w

(
µp,∞(w̃)

)d
The definition (5) of the `p-path regularizer involves an exponential number of terms. But it can be
computed efficiently by dynamic programming in a single forward step using the following equiva-
lent form as nested sums:

φp(w) =

 ∑
(vd−1→vout[j])∈E

∣∣w(vd−1→vout[j])

∣∣p ∑
(vd−2→vd−1)∈E

. . .
∑

(vin[i]→v1)∈E

∣∣w(vin[i]→v1)
∣∣p1/p

A straightforward consequence of Lemma 3.1 is that the `p path-regularizer φp is invariant to rescal-
ing, i.e. for any w̃ ∼ w, φp(w̃) = φp(w).

4 Path-SGD: An Approximate Path-Regularized Steepest Descent

Motivated by empirical performance of max-norm regularization and the fact that path-regularizer
is invariant to rescaling, we are interested in deriving the steepest descent direction with respect to
the path regularizer φp(w):

w(t+1) = arg min
w

η
〈
∇L(w(t)), w

〉
+

1

2

∥∥∥π(w)− π(w(t))
∥∥∥2
p

(6)

= arg min
w

η
〈
∇L(w(t)), w

〉
+

1

2

 ∑
vin[i]

e1→v1
e2→v2...

ed→vout[j]

∣∣∣∣∣
d∏
k=1

wek −
d∏
k=1

w(t)
ek

∣∣∣∣∣
p


2/p

= arg min
w
J (t)(w)

The steepest descent step (6) is hard to calculate exactly. Instead, we will update each coordinate we
independently (and synchronously) based on (6). That is:

w(t+1)
e = arg min

we

J (t)(w) s.t. ∀e′ 6=e we′ = w
(t)
e′ (7)

Taking the partial derivative with respect to we and setting it to zero we obtain:

0 = η
∂L

∂we
(w(t)) +

(
we − w(t)

e

) ∑
vin[i]···

e→...vout[j]

∏
e′ 6=e

∣∣∣w(t)
e′

∣∣∣p
2/p

4

Algorithm 1 Path-SGDupdate rule

1: ∀v∈V 0
in
γin(v) = 1 . Initialization

2: ∀v∈V 0
out
γout(v) = 1

3: for i = 1 to d do
4: ∀v∈V i

in
γin(v) =

∑
(u→v)∈E γin(u)

∣∣w(u,v)

∣∣p
5: ∀v∈V i

out
γout(v) =

∑
(v→u)∈E

∣∣w(v,u)

∣∣p γout(u)

6: end for
7: ∀(u→v)∈E γ(w(t), (u, v)) = γin(u)2/pγout(v)2/p

8: ∀e∈Ew(t+1)
e = w

(t)
e − η

γ(w(t),e)
∂L
∂we

(w(t)) . Update Rule

where vin[i] · · · e→ . . . vout[j] denotes the paths from any input unit i to any output unit j that includes
e. Solving for we gives us the following update rule:

ŵ(t+1)
e = w(t)

e −
η

γp(w(t), e)

∂L

∂w
(w(t)) (8)

where γp(w, e) is given as

γp(w, e) =

 ∑
vin[i]···

e→...vout[j]

∏
e′ 6=e

|we′ |p
2/p

(9)

We call the optimization using the update rule (8) path-normalized gradient descent. When used in
stochastic settings, we refer to it as Path-SGD.

Now that we know Path-SGDis an approximate steepest descent with respect to the path-regularizer,
we can ask whether or not this makes Path-SGDa rescaling invariant optimization method. The next
theorem proves that Path-SGDis indeed rescaling invariant.

Theorem 4.1. Path-SGDis rescaling invariant.

Proof. It is sufficient to prove that using the update rule (8), for any c > 0 and any v ∈ E, if w̃(t) =
ρc,v(w

(t)), then w̃(t+1) = ρc,v(w
(t+1)). For any edge e in the network, if e is neither incoming nor

outgoing edge of the node v, then w̃(e) = w(e), and since the gradient is also the same for edge e
we have w̃(t+1)

e = w
(t+1)
e . However, if e is an incoming edge to v, we have that w̃(t)(e) = cw(t)(e).

Moreover, since the outgoing edges of v are divided by c, we get γp(w̃(t), e) =
γp(w

(t),e)
c2 and

∂L
∂we

(w̃(t)) = ∂L
c∂we

(w(t)). Therefore,

w̃(t+1)
e = cw(t)

e −
c2η

γp(w(t), e)

∂L

c∂we
(w(t))

= c

(
w(t) − η

γp(w(t), e)

∂L

∂we
(w(t))

)
= cw(t+1)

e .

A similar argument proves the invariance of Path-SGDupdate rule for outgoing edges of v. There-
fore, Path-SGDis rescaling invariant.

Efficient Implementation: The Path-SGD update rule (8), in the way it is written, needs to con-
sider all the paths, which is exponential in the depth of the network. However, it can be calculated in
a time that is no more than a forward-backward step on a single data point. That is, in a mini-batch
setting with batch sizeB, if the backpropagation on the mini-batch can be done in timeBT , the run-
ning time of the Path-SGD on the mini-batch will be roughly (B + 1)T – a very moderate runtime
increase with typical mini-batch sizes of hundreds or thousands of points. Algorithm 1 shows an
efficient implementation of the Path-SGD update rule.

We next compare Path-SGDto other optimization methods in both balanced and unbalanced settings.

5

Table 1: General information on datasets used in the experiments.

Data Set Dimensionality Classes Training Set Test Set
CIFAR-10 3072 (32× 32 color) 10 50000 10000

CIFAR-100 3072 (32× 32 color) 100 50000 10000
MNIST 784 (28× 28 grayscale) 10 60000 10000
SVHN 3072 (32× 32 color) 10 73257 26032

5 Experiments

In this section, we compare `2-Path-SGDto two commonly used optimization methods in deep learn-
ing, SGD and AdaGrad. We conduct our experiments on four common benchmark datasets: the stan-
dard MNIST dataset of handwritten digits [8]; CIFAR-10 and CIFAR-100 datasets of tiny images
of natural scenes [7]; and Street View House Numbers (SVHN) dataset containing color images of
house numbers collected by Google Street View [10]. Details of the datasets are shown in Table 1.

In all of our experiments, we trained feed-forward networks with two hidden layers, each containing
4000 hidden units. We used mini-batches of size 100 and the step-size of 10−α, where α is an
integer between 0 and 10. To choose α, for each dataset, we considered the validation errors over
the validation set (10000 randomly chosen points that are kept out during the initial training) and
picked the one that reaches the minimum error faster. We then trained the network over the entire
training set. All the networks were trained both with and without dropout. When training with
dropout, at each update step, we retained each unit with probability 0.5.

We tried both balanced and unbalanced initializations. In balanced initialization, incoming weights
to each unit v are initialized to i.i.d samples from a Gaussian distribution with standard deviation
1/
√

fan-in(v). In the unbalanced setting, we first initialized the weights to be the same as the
balanced weights. We then picked 2000 hidden units randomly with replacement. For each unit, we
multiplied its incoming edge and divided its outgoing edge by 10c, where c was chosen randomly
from log-normal distribution.

The optimization results without dropout are shown in Figure 2. For each of the four datasets, the
plots for objective function (cross-entropy), the training error and the test error are shown from
left to right where in each plot the values are reported on different epochs during the optimization.
Although we proved that Path-SGDupdates are the same for balanced and unbalanced initializations,
to verify that despite numerical issues they are indeed identical, we trained Path-SGDwith both
balanced and unbalanced initializations. Since the curves were exactly the same we only show a
single curve.

We can see that as expected, the unbalanced initialization considerably hurts the performance of
SGD and AdaGrad (in many cases their training and test errors are not even in the range of the plot
to be displayed), while Path-SGDperforms essentially the same. Another interesting observation is
that even in the balanced settings, not only does Path-SGDoften get to the same value of objective
function, training and test error faster, but also the final generalization error for Path-SGDis some-
times considerably lower than SGD and AdaGrad (except CIFAR-100 where the generalization error
for SGD is slightly better compared to Path-SGD). The plots for test errors could also imply that
implicit regularization due to steepest descent with respect to path-regularizer leads to a solution that
generalizes better. This view is similar to observations in [11] on the role of implicit regularization
in deep learning.

The results for training with dropout are shown in Figure 3, where here we suppressed the (very poor)
results on unbalanced initializations. We observe that except for MNIST, Path-SGDconvergences
much faster than SGD or AdaGrad. It also generalizes better to the test set, which again shows the
effectiveness of path-normalized updates.

The results suggest that Path-SGDoutperforms SGD and AdaGrad in two different ways. First, it can
achieve the same accuracy much faster and second, the implicit regularization by Path-SGDleads to
a local minima that can generalize better even when the training error is zero. This can be better
analyzed by looking at the plots for more number of epochs which we have provided in the supple-
mentary material. We should also point that Path-SGD can be easily combined with AdaGrad to take

6

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

.

0 20 40 60 80 100
0

1

2

3

4

5

.

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

.

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

Epoch

.

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

.

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

.

0 20 40 60 80 100
0

0.005

0.01

0.015

0.02

.

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

Epoch

.

0 20 40 60 80 100
0.4

0.45

0.5

0.55

0.6

.

Path−SGD − Unbalanced
SGD − Balanced
SGD − Unbalanced
AdaGrad − Balanced
AdaGrad − Unbalanced

0 20 40 60 80 100
0.65

0.7

0.75

0.8

0.85

.

0 20 40 60 80 100
0.015

0.02

0.025

0.03

0.035

.

0 20 40 60 80 100
0.14

0.15

0.16

0.17

0.18

0.19

0.2

Epoch

.

C
IF

A
R

-1
0

C
IF

A
R

-1
00

M
N

IS
T

SV
H

N

Cross-Entropy Training Loss 0/1 Training Error 0/1 Test Error

Figure 2: Learning curves using different optimization methods for 4 datasets without dropout. Left panel
displays the cross-entropy objective function; middle and right panels show the corresponding values of the
training and test errors, where the values are reported on different epochs during the course of optimization.
Best viewed in color.

advantage of the adaptive stepsize or used together with a momentum term. This could potentially
perform even better compare to Path-SGD.

6 Discussion

We revisited the choice of the Euclidean geometry on the weights of RELU networks, suggested an
alternative optimization method approximately corresponding to a different geometry, and showed
that using such an alternative geometry can be beneficial. In this work we show proof-of-concept
success, and we expect Path-SGD to be beneficial also in large-scale training for very deep convolu-
tional networks. Combining Path-SGD with AdaGrad, with momentum or with other optimization
heuristics might further enhance results.

Although we do believe Path-SGD is a very good optimization method, and is an easy plug-in for
SGD, we hope this work will also inspire others to consider other geometries, other regularizers and
perhaps better, update rules. A particular property of Path-SGD is its rescaling invariance, which we

7

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

.

0 20 40 60 80 100
0

1

2

3

4

5

.

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

.

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

Epoch

.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

.

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

Epoch

.

0 20 40 60 80 100
0.35

0.4

0.45

0.5

0.55

.

Path−SGD + Dropout
SGD + Dropout
AdaGrad + Dropout

0 20 40 60 80 100
0.6

0.65

0.7

0.75

0.8

.

0 20 40 60 80 100
0.015

0.02

0.025

0.03

0.035

.

0 20 40 60 80 100
0.12

0.13

0.14

0.15

0.16

0.17

0.18

Epoch

.

C
IF

A
R

-1
0

C
IF

A
R

-1
00

M
N

IS
T

SV
H

N

Cross-Entropy Training Loss 0/1 Training Error 0/1 Test Error

Figure 3: Learning curves using different optimization methods for 4 datasets with dropout. Left panel dis-
plays the cross-entropy objective function; middle and right panels show the corresponding values of the train-
ing and test errors. Best viewed in color.

argue is appropriate for RELU networks. But Path-SGD is certainly not the only rescaling invariant
update possible, and other invariant geometries might be even better.

Path-SGD can also be viewed as a tractable approximation to natural gradient, which ignores the ac-
tivations, the input distribution and dependencies between different paths. Natural gradient updates
are also invariant to rebalancing but are generally computationally intractable.

Finally, we choose to use steepest descent because of its simplicity of implementation. A better
choice might be mirror descent with respect to an appropriate potential function, but such a con-
struction seems particularly challenging considering the non-convexity of neural networks.

Acknowledgments

Research was partially funded by NSF award IIS-1302662 and Intel ICRI-CI. We thank Ryota
Tomioka and Hao Tang for insightful discussions and Leon Bottou for pointing out the connection
to natural gradient.

8

References

[1] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. The Journal of Machine Learning Research, 12:2121 – 2159,
2011.

[2] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In AISTATS, 2010.

[3] Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron C. Courville, and Yoshua Bengio.
Maxout networks. In Proceedings of the 30th International Conference on Machine Learning,
ICML, pages 1319–1327, 2013.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rec-
tifiers: Surpassing human-level performance on imagenet classification. arXiv preprint
arXiv:1502.01852, 2015.

[5] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In arXiv, 2015.

[6] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980,
2014.

[7] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Computer Science Department, University of Toronto, Tech. Rep, 1(4):7, 2009.

[8] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[9] James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored ap-
proximate curvature. In ICML, 2015.

[10] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng.
Reading digits in natural images with unsupervised feature learning. In NIPS workshop on
deep learning and unsupervised feature learning, 2011.

[11] Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive bias:
On the role of implicit regularization in deep learning. International Conference on Learning
Representations (ICLR) workshop track, 2015.

[12] Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capacity control in
neural networks. COLT, 2015.

[13] Nathan Srebro and Adi Shraibman. Rank, trace-norm and max-norm. In Learning Theory,
pages 545–560. Springer, 2005.

[14] Nathan Srebro, Karthik Sridharan, and Ambuj Tewari. On the universality of online mirror
descent. In Advances in neural information processing systems, pages 2645–2653, 2011.

[15] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. Dropout: A simple way to prevent neural networks from overfitting. The Journal of
Machine Learning Research, 15(1):1929–1958, 2014.

[16] I. Sutskever, J. Martens, George Dahl, and Geoffery Hinton. On the importance of momentum
and initialization in deep learning. In ICML, 2013.

9

