Adversarial Prediction Games for Multivariate Losses

Hong Wang Wei Xing Kaiser Asif Brian D. Ziebart
Department of Computer Science
University of Illinois at Chicago
Chicago, IL 60607
{hwang27, wxing3, kasif2, bziebart}@uic.edu

Abstract

Multivariate loss functions are used to assess performance in many modern pre-
diction tasks, including information retrieval and ranking applications. Convex
approximations are typically optimized in their place to avoid NP-hard empir-
ical risk minimization problems. We propose to approximate the training data
instead of the loss function by posing multivariate prediction as an adversarial
game between a loss-minimizing prediction player and a loss-maximizing evalua-
tion player constrained to match specified properties of training data. This avoids
the non-convexity of empirical risk minimization, but game sizes are exponential
in the number of predicted variables. We overcome this intractability using the
double oracle constraint generation method. We demonstrate the efficiency and
predictive performance of our approach on tasks evaluated using the precision at
k, the F-score and the discounted cumulative gain.

1 Introduction

For many problems in information retrieval and learning to rank, the performance of a predictor is
evaluated based on the combination of predictions it makes for multiple variables. Examples in-
clude the precision when limited to k positive predictions (P@k), the harmonic mean of precision
and recall (F-score), and the discounted cumulative gain (DCG) for assessing ranking quality. These
stand in contrast to measures like the accuracy and (log) likelihood, which are additive over indepen-
dently predicted variables. Many multivariate performance measures are not concave functions of
predictor parameters, so maximizing them over empirical training data (or, equivalently, empirical
risk minimization over a corresponding non-convex multivariate loss function) is computationally
intractable [[11] and can only be accomplished approximately using local optimization methods [10].
Instead, convex surrogates for the empirical risk are optimized using either an additive [21} [12} [22]
or a multivariate approximation [14} 24] of the loss function. For both types of approximations,
the gap between the application performance measure and the surrogate loss measure can lead to
substantial sub-optimality of the resulting predictions [4]].

Rather than optimizing an approximation of the multivariate loss for available training data, we take
an alternate approach [26, 9| [1]] that robustly minimizes the exact multivariate loss function using
approximations of the training data. We formalize this using a zero-sum game between a predictor
player and an adversarial evaluator player. Learned weights parameterize this game’s payoffs and
enable generalization from training data to new predictive settings. The key computational challenge
this approach poses is that the size of multivariate prediction games grows exponentially in the
number of variables. We leverage constraint generation methods developed for solving large zero-
sum games [20] and efficient methods for computing best responses [6] to tame this complexity.
In many cases, the structure of the multivariate loss function enables the zero-sum game’s Nash
equilibrium to be efficiently computed. We formulate parameter estimation as a convex optimization
problem and solve it using standard convex optimization methods. We demonstrate the benefits of
this approach on prediction tasks with P@k, F-score and DCG multivariate evaluation measures.



2 Background and Related Work

2.1 Notation and multivariate performance functions

We consider the general task of making a multivariate prediction for variables y =
{y1,92,.--,yn} € Y™ (with random variables denoted as Y = {¥1,Ys,...,Y,}) given some
contextual information x = {z1,z2,...,z,} € X = {X1, Xo,..., X, } (with random variable,
X). Each z; is the information relevant to predicted variable y;. We denote the estimator’s predicted
values as ¥ = {91, §2, - - . , Un }- The multivariate performance measure when predicting y when the
true multivariate value is actually y is represented as a scoring function: score(y,y). Equivalently,
a complementary loss function for any score function based on the maximal score can be defined as:

loss(y,y) = maxy y» score(y’,y") — score(y,y).

For information retrieval, a vector of retrieved items from the pool of n items can be represented
asy € {0,1}™ and a vector of relevant items as 'y € {0,1}" with x = {z1,22,...,2,} denot-
ing side contextual information (e.g., search terms and document contents). Precision and recall
are important measures for information retrieval systems. However, maximizing either leads to
degenerate solutions (predict all to maximize recall or predict none to maximize precision). The
precision when limited to exactly % positive predictions, P@k(y,y) = %¥ where ||y||: = &,
is one popular multivariate performance measure that avoids these extremes. Another is the F-
score, which is the harmonic mean of the precision and recall often used in information re-
trieval tasks. Using this notation, the F-score for a set of items can be simply represented as:

Fl(y7y) = H};Iiyw and F1(070) =1.

In other information retrieval tasks, a ranked list of retrieved items is desired. This can be rep-
resented as a permutation, o, where o (i) denotes the i"-ranked item (and o~'(j) denotes the
rank of the jM item). Evaluation measures that emphasize the top-ranked items are used, e.g.,
to produce search engine results attuned to actual usage. The discounted cumulative gain (DCG)
measures the performance of item rankings with k relevancy scores, y; € {0,...,k — 1} as:

A Yo (i) — o Ys (i
DCG(6.y) = 321" gy or DCG'(6,¥) = ys() + oits lg(z,)i'

2.2 Multivariate empirical risk minimization

Empirical risk minimization [28] is a common supervised learning approach that seeks a predictor
P(y|x) (from, e.g., a set of predictors I') that minimizes the loss under the empirical distribution of
training data, denoted P(y, x): min P Ep(y.x) Pix) [loss(Y,Y)]. Multivariate losses are of-
ten not convex and finding the optimal solution is computationally intractable for expressive classes
of predictors I typically specified by some set of parameters 6 (e.g., linear discriminant functions:
P(jlz) = 1if 0 - d(x,§) > 0 - ®(x,y') Vy' # P).

Given these difficulties, convex surrogates to the multivariate loss are instead employed that are
additive over ¢; and y; (i.e., loss(y,y) = >_,loss(;,¥;)). Employing the logarithmic loss,
loss(§;,v;) = —log p(ﬁ = y;) yields the logistic regression model [9]. Using the hinge loss
yields support vector machines [S]]. Structured support vector machines [27]] employ a convex ap-
proximation of the multivariate loss over a training dataset D using the hinge loss function:
iz 6] +a > & suchthat Vi, y' € Y,0- [B(x),y)) — &(x,y")] > A(y',y") - &.

In other words, linear parameters 6 for feature functions ®(-, -) are desired that make the example
label y(*) have a potential value 6 - @(x(i), y(i)) that is better than all alternative labels y’ by at
least the multivariate loss between y’ and y(*), denoted A(y’,y?)). When this is not possible for
a particular example, a hinge loss penalty ¢; is incurred that grows linearly with the difference in
potentials. Parameter o controls a trade-off between obtaining a predictor with lower hinge loss or
better discrimination between training examples (the margin). The size of set ) is often too large
for explicit construction of the constraint set to be computationally tractable. Instead, constraint

generation methods are employed to find a smaller set of active constraints. This can be viewed as
either finding the most-violated constraint [27] or as a loss-augmented inference problem [25]. Our



approach employs similar constraint generation techniques—in the inference procedure rather than
the parameter learning procedure—to improve its efficiency.

3 Multivariate Prediction Games

We formulate a minimax game for multivariate loss optimization, describe our approach for lim-
iting the computational complexity of solving this game, and describe algorithms for estimating
parameters of the game and making predictions using this framework.

3.1 Game formulation

Following a recent adversarial formulation for classification [1]], we view multivariate prediction as
a two-player game between player Y making predictions and player Y determining the evaluation
distribution. Player Y first stochastically chooses a predictive distribution of variable assignments,
P(y|x), to maximize a multivariate performance measure, then player Y stochastically chooses
an evaluation distribution, P(y\x), that minimizes the performance measure. Further, player Y

must choose the relevant items in a way that (approximately) matches in expectation with a set of
statistics, ®(x,y), measured from labeled data. We denote this set as =.

Definition 1. 7he multivariate prediction game (MPG) for n predicted variables is:

max min  Ep a0 5v1x {score(Y,Yv')}7 0
B3 Pylxyez | IPEROPER)

where P(y|x) and P(y|x) are distributions over combinations of labels for the n predicted vari-
ables and the set = corresponds to the constraint: Ep .\ p(y(x) [@(X,Y)] = Epy . [2(X,Y)].

Since the set = constrains the adversary’s multivariate label distribution over the entire distribution
of inputs P(x), solving this game directly is impractical when the number of training examples is
large. Instead, we employ the method of Lagrange multipliers in Theorem [T} which allows the set
of games to be independently solved given Lagrange multipliers 6.

Theorem 1. The multivariate prediction game’s value (Definition[I)) can be equivalently obtained
by solving a set of unconstrained maximin games parameterized by Lagrange multipliers 0:

i o~y | (@ . I
max min  Ez o proipoix [score(Y,Y)} = min  max Ep . poipvix [score(Y,Y)}
PEx) Pylxyes | CIPERIPEIX) PEICE Pyl T EIPEIRPIx)

© max Epyx 02X, Y)] + Z P(x) min max | score(y,y) —0-®(x,¥) , )

e P(y1%) P(3x)

(o)A
v,y

where: ®(x,y) is a vector of features characterizing the set of prediction variables {y;} and pro-
vided contextual variables {x;} each related to predicted variable y;.

Proof (sketch). Equality (a) is a consequence of duality in zero-sum games [29]. Equality (b) is
obtained by writing the Lagrangian and taking the dual. Strong Lagrangian duality is guaranteed
when a feasible solution exists on the relative interior of the convex constraint set = [2]. (A small
amount of slack corresponds to regularization of the € parameter in the dual and guarantees the
strong duality feasibility requirement is satisfied in practice.) O

The resulting game’s payoff matrix can be expressed as the original game scores of Eq. (I)) aug-

mented with Lagrangian potentials. The combination defines a new payoff matrix with entries
/ A~ - .

C, y = score(y,y) — 0 - ®(x,¥), as shown in Eq. [@2).

3.2 Example multivariate prediction games and small-scale solutions

Examples of the Lagrangian payoff matrices for the P@2, F-score, and DCG games are shown in Ta-
ble for three variables. We employ additive feature functions, ®(x,y) = > i, ¢(z;) I(9; = 1),



Table 1: The payoff matrices for the zero-sum games between player Y choosing columns and
player Y choosing rows with three variables for: precision at k (top); F-score (middle) and DCG
with binary relevance values, 3; € {0,1}, and we let Ig 3 = log, 3 (bottom).

P@2|000| 001 010 011 100 101 110 111
011 | 0 | 1—v3 | $—un 1—tho—13 0—¢ U1~ 31—t 1—th1—Pa—1)3
101 | 0 | 3—1ps | 0—hy 53— V23 31— 1=1—3 31—t 1—1—92—13
110 | 0 | 0—¢3 | 3— 3—2—13 3= $—U1—1s 1 —Y1—12 1—p1—92—13
Fy |000] 001 010 011 100 101 110 111
000 | 1 | 0—¢3 | O—=thy | O—tho—193 | 0=ty 0—91—73 0*1/)1*1112 0—91—2 — 3
001 | O | 1—th3 | O—tho | 2—tho—1hy | O—ty 2—4p—1h3 00—ty — U1~ — 3
010 | 0 | 0—¢3 | 1=thp | 5—ta—1b3 | 0=ty 0—91—73 21— 1/12 U1~ — 3
011 | 0 | 2—v3 | 2=t | 1=ty —ths | 0—tpy 5= 31—t F—U1—p — 3
100 | 0 | O—tp3 | O—9a | O—thp—thp3 | 1-9y 21—t 2*1111 2 U1~ — 3
101 | O | 2—p3 | O—pp | S—th2— 3 | 2—1 1 —1—3 21— —1hs S—Y1—ty — 3
110 | 0 | 0—tp3 | 2—tho | S—tho—tp3 | 2—1hy 13 1—tp1—1 S—Y1—ts — 3
11| 0 | 3—vs | 3—¢2 | 2—ta—1tbs | 53—t S—U1—1s 1=ty 1—tp1—1Py — 93

DCG|000| 001 010 011 100 101 110 111

123 | 0 | $—s 153 o %Jrlg%*%*% 1= S—U1—1s 1+1g%*1/11*¢2 %Jrlg%*wl*lﬁz*wa
132 | 0 |55 —¥2 |5t —Ve¥s| 191 |Lhpg—ti—¢s| 512 |S+pg—ti—va—s
213 | 0 | 593 | 1—¢y 5—Ve—ts  |pz—¥1 %ﬁg%ﬂ/}l*w's Iy —t1—vo | g —Y1—Ya—¢s
231 | 0 [5—vs| 1=ty |14+pgz—to—ts| 3— St —i—Us| 3—ti—va |z —ti—va—is
T3 T3 2 PRRPE 2 2T 1z3

312 | 0 glfw' 53— ggﬂl} —1 —1 1+i*1/ —3 |5+ g1~ §+i*1/ —thr—¢

3 B 2 2 2 3 1g3 1 g3 )1 3192 g3 1 )2 2 g3 )1 2 3
321 | 0 | 1-¢3 1?%3*% 1+1g%*1/12*¢3 53— S—n—s %+lg%*w1*1/)2 %Jrlg%*%*d}z*ws

in these examples (with indicator function I(-)). We compactly represent the Lagrangian potential
terms for each game with potential variables, 1); £9. o(X; = ;) when Y, =1 (and O otherwise).

Zero-sum games such as these can be solved using a pair of linear programs that have a constraint
for each pure action (set of variable assignments) in the game [29]:

max v such that v < Z P (¥y1x)Cy 5 Vy € Y and Z P(y\x) =1; 3)
v, P(§]|x)>0 yey yey

min v such that v > Z P(y|x)C% ., 5 Vy € YVand Z P(y|x) =1, 4)
v, P(y]x)>0 yey ey

where C' is the Lagrangian-augmented payoff and v is the value of the game. The second player to
act in a zero-sum game can maximize/minimize using a pure strategy (i.e., a single value assignment
to all variables). Thus, these LPs consider only the set of pure strategies of the opponent to find the
first player’s mixed equilibrium strategy. The equilibrium strategy for the predictor is a distribution
over rows and the equilibrium strategy for the adversary is a distribution over columns.

The size of each game’s payoff matrix grows exponentially with the number of variables, n: (2") (Z)
for the precision at k game; (2")? for the F-score game; and (n! k™) for the DCG game with k
possible relevance levels. These sizes make explicit construction of the game matrix impractical for
all but the smallest of problems.

3.3 Large-scale strategy inference

More efficient methods for obtaining Nash equilibria are needed to scale our MPG approach to
large prediction tasks with exponentially-sized payoff matrices. Though much attention has focused
on efficiently computing e-Nash equilibria (e.g., in O(1/¢) time or O(In(1/¢)) time [8]]), which
guarantee each player a payoff within e of optimal, we employ an approach for finding an exact
equilibrium that works well in practice despite not having as strong theoretical guarantees [20].



Consider the reduced game matrices of Table 2. The Nash equi- Table 2: The reduced preci-
librium for the precision at k game with Lagrangian potentials sjon ar k game with ¢, =
Y1 =Yy =93 = 04is: P(y|x) = [% 3 3] and P(¥|x) = 2 =13 = 0.4 (top) and F-
[1 i é] with a game value of —1—5 The Nash equilibrium for ~score game with ¢y = 1y =

3
the reduced F-score game with no learning (i.e., 1y = 1y = ¢h3 = ¥3 = 0 (bottom).

0) is: P(y]x) = [ 2] and P(y|x) = [+ 2 2 2];witha

game value of % The reduced game equilibrium is also an equilib- 011 | 101 | 110
rium of the original game. Though the exact size of the subgame 011 ] 02 | -031-03
and its specific actions depends on the values of v, often a compact

o X ST S . 101 [-03| 0.2 |-0.3
sub-game with identical equilibrium or close approximation exists
[18]. Motivated by the compactness of the reduced game, we em- 111]-03]-03]0.2

ploy a constraint generation approach known as the double oracle

algorithm [20] to iteratively construct an appropriate reduced game 000 | 001 | 010 | 100

that provides the correct equilibrium but avoids the computational 000| O 1 1 1

complexity of the original exponentially sized game. 111l 1 T [ 1|1
2 | 2] 3

Algorithm 1 Constraint generation game solver

Input: Lagrange potentials for each variable, 1 = {11, 12, ..., %, }; initial action sets Sy and S
Output: Nash equilibrium, (P(y|x), P(y|x))

1: Initialize Player Vs action set S «— S and Player Ys action set S « S

2: C' buildPayofﬂ\/Iatrix(S’ , S, ) > Using Eq. for the sub-game matrix of Sx S
3: repeat
4: []5(51|x), UNash; | solveZeroSumGameY/(C”) > Using the LP of Eq. (3)
5: [@, 7pr] < findBestResponseAction(P(y|x), ) > & denotes the best response action
6: if (UNash, 7 Upr) then > Check if best response provides improvement
7 S+ Sua s
8: C' + buildPayoffMatrix(S, .S, 1) > Add new row to game matrix
9: end if
10: [P(F]X), UNashy ] solveZeroSumGamey (C") > Using the LP of Eq. (@)

11: [a, tgr] < findBestResponseAction(P(y|x), 1)
12: if ('UNashg * @BR) then

13: S+ Sua o

14: C' buildPayoffMatrix(S, S, 1) > Add new column to game matrix
15: end if

16: until (UNash, = UNash, = UBR = UBR) > Stop if neither best response provides improvement

17: return [P(y|x), P(y|x)]

Neither player can improve upon their strategy with additional pure

strategies when Algorithm [I] terminates, thus the mixed strategies it returns are a Nash equilibrium
pair [20]]. Additionally, the algorithm is efficient in practice so long as each player’s strategy is
compact (i.e., the number of actions with non-zero probability is a polynomial subset of the la-
bel combinations) and best responses to opponents’ strategies can be obtained efficiently (i.e., in
polynomial time) for each player. Additionally, this algorithm can be modified to find approximate

equilibria by limiting the number of actions for each player’s set Sand S.

3.4 Efficiently computing best responses

The tractability of our approach largely rests on our ability to efficiently find best responses to oppo-
nent strategies: argmax;, Ep .y [C;Y] and argming .y Ep 5 [Clyy} For some combinations
of loss functions and features, finding the best response is trivial using, e.g., a greedy selection algo-
rithm. Other loss function/feature combinations require specialized algorithms or are NP-hard. We
illustrate each situation.

Precision at k best response Many best responses can be obtained using greedy algorithms that
are based on marginal probabilities of the opponent’s strategy. For example, the expected payoff in



the precision at k game for the estimator player setting §; = 1is P(ij; = 1|x). Thus, the set of top k
variables with the largest marginal label probability provides the best response. For the adversary’s
best response, the Lagrangian terms must also be included. Since £ is a known variable, as long as
the value of each included term, P(¢; = 1, ||§j||1 = k|) — k), is negative, the sum is the smallest,
and the corresponding response is the best for the adversary.

F-score game best response We leverage a recently developed method for efficiently maximizing
the F-score when a distribution over relevant documents is given [6]. The key insight is that the
problem can be separated into an inner greedy maximization over item sets of a certain size k and an
outer maximization to select the best set size k from {0, ..., n}. This method can be directly applied
to find the best response of the estimator player, Y, since the Lagrangian terms of the cost matrix
are invariant to the choice of §. Algorithm I obtains the best response for the adversary player, Y,
using slight modifications to incorporate the Lagrangian potentials into the objective function.

Algorithm 2 Lagrangian-augmented F-measure Maximizer for adversary player Y

Input: vector P of estimator probabilities and Lagrange potentlals 1/) 1,2, ..., p)

1: define matrix W with element W j, = S+k, s, ke{l,..

: construct matrix F = P x W — 51/)T x 1™ > 1" is the all ones 1 x n vector
:fork=1tondo
solve the inner optimization problem:

2
3
4:
50 al)’ = argmingey, 2300 aifin > Ay ={ae{0,1}" 30, a; = k}
6 by setting agk) = 1 for the k-th column of F’s smallest k elements, and a; = O for the rest;
7 store a value of B 5 () [F(y,a®")] =237, a( " fir

8: end for i X

9: for k = 0 take a*)" = 0®, and By pw o (y,0%)] =p(Y = 07x)

10: solve the outer optimization problem:

11: a* = argminge (a0 ammy By [F(y, a)]

12: returna* and E, v, [F(y,a")]

Order inversion best response Another common loss measure when comparing two rankings is
the number of pairs of items with inverted order across rankings (i.e., one variable may occur before
another in one ranking, but not in the other ranking). Only the marginal probabilities of pairwise
orderings, P(67(i) > 671(5)) £ 3, P(6) I(o~ (i) > U’l(j)) are needed to construct the
portion of the payoff received for & ranking item i over item j, P(67 (i) > 67'(j )L+ Yis ])
where ;- ; is a Lagrangian potential based on pair-wise features for ranking item 7 over item j.
One could construct a fully connected directed graph with edges weighted by these portions of the
payoff for ranking pairs of items. The best response for & corresponds to a set of acyclic edges
with the smallest sum of edge weights. Unfortunately, this problem is NP-hard in general because
the NP-complete minimum feedback arc set problem [[L5]], which seeks to form an acyclic graph by
removing the set of edges with the minimal sum of edge weights, can be reduced to it.

DCG best response  Although we cannot find an efficient algorithm to get the best response using
order inversion, solving best response of DCG has a known efficient algorithm. In this problem the
maximizer is a permutation of the documents while the minimizer is the relevance score of each
document pair. The estimator’s best response & maximizes:

. "L 20y — 1 »
;P(y (Zl (t+1) —0-¢ ) Zloggz—i— (ZP Qy”l)

where c is a constant that has no relationship with &. Since 1/log, (i + 1) is monotonically decreas-
ing, computing and sorting >, P(§|2)2% — 1 with descending order and greedily assign the order
to & is optimal. The adversary’s best response using additive features minimizes:

n zyg()_l n R 29 1 .
Z&:P Z log, (i Ze CROEDY (Z Pl e T '¢i($i7yi)> :

i=1 &



Thus, by using the expectation of a function of each variable’s rank, 1/(log, (=1 (i) + 1), which is
easily computed from P (o), each variable’s relevancy score §; can be independently chosen.

3.5 Parameter estimation

Predictive model parameters, 6, must be chosen to ensure that the adversarial distribution is similar
to training data. Though adversarial prediction can be posed as a convex optimization problem
[T], the objective function is not smooth. General subgradient methods require O(1/¢?) iterations
to provide an e approximation to the optima. We instead employ L-BFGS [19], which has been
empirically shown to converge at a faster rate in many cases despite lacking theoretical guarantees
for non-smooth objectives [16]]. We also employ Lo regularization to avoid overfitting to the training
data sample. The addition of the smooth regularizer often helps to improve the rate of convergence.

The gradient in these optimizations with Lo regularization, —3||6|[%, for training dataset D =

{(x®,y)} is the difference between feature moments with additional regularization term:
ol le@l (fb(x(i), YD) =Ygy PEIxD)o(x), y)) — \f. The adversarial strategies P(-|x("))
needed for calculating this gradient are computed via Alg. [T}

4 Experiments

We evaluate our approach, Multivariate Prediction Games (MPG), on the three performance mea-
sures of interest in this work: precision at k, F-score, and DCG. Our primary point of comparison
is with structured support vector machines (SSVM)[27] to better understand the trade-offs between
convexly approximating the loss function with the hinge loss versus adversarially approximating the
training data using our approach. We employ an optical recognition of handwritten digits (OPTDIG-
ITS) dataset [[17] (10 classes, 64 features, 3,823 training examples, 1,797 test examples), an income
prediction dataset (‘a4a’ ADUL [[L7] (two classes, 123 features, 3,185 training examples, 29,376
test examples), and query-document pairs from the million query TREC 2007 (MQ2007) dataset
of LETOR4.0 [23] (1700 queries, 41.15 documents on average per query, 46 features per docu-
ment). Following the same evaluation method used in [27] for OPTDIGITS, the multi-class dataset
is converted into multiple binary datasets and we report the macro-average of the performance of all
classes on test data. For OPTDIGITS/ADULT, we use a random % of the training data as a holdout

validation data to select the Ly regularization parameter trade-off C' € {276,275 ... 26}

We evaluate the performance of our approach and com-

parison methods (SSVM variantsE] and logistic regression  Table 3: Precision at k (top) and F-score
(LR)) using precision at k, where k is half the number of  performance (bottom).

positive examples (i.e. k = %POS), and F-score. For

precision at k, we restrict the pure strategies of the adver- Precision@k | OPTDIGITS | ADULT
sary to select k positive labels. This prevents adversary MPG 0.990 0.805
strategies with no positive labels. From the results in Ta- SSYM 0.956 0.638
ble 3] we see that our approach, MPG, works better than SSVM 0.989 0.805
SSVM on the OPTDGITS datasets: slightly better on pre- Fﬁg’é’e OP'ngIZ%ITS A(l))ggl;T
cision at k and more significantly better on F-measure. SSVM 0915 0673
For the ADULT dataset, MPG provides equivalent per- LR 0.914 0.639

formance for precision at k and better performance on F-
measure. The nature of the running time required for validation and testing is very different for
SSVM, which must find the maximizing set of variable assignments, and MPG, which must interac-
tively construct a game and its equilibrium. Model validation and testing require ~ 30 seconds for
SSVM on the OPTDIGITS dataset and ~ 3 seconds on the ADULT dataset, while requiring ~ 9
seconds and ~ 25 seconds for MPG precision at k£ and ~ 1397 seconds and ~ 252 seconds for
MPG F-measure optimization, respectively. For precision at k£, MPG is within an order of magni-

"http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html)

2For precision at k, the original SSVM’s implementation uses the restriction % during training, but not
during testing. We modified the code by ordering SSVM’s prediction value for each test example, and select
the top k predictions as positives, the rest are considered as negatives. We denote the original implementation
as SSVM, and the modified version as SSVM’.


http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

tude (better for OPTDIGITS, worse for ADULT). For the more difficult problem of maximizing the
F-score of ADULT over 29, 376 test examples, the MPG game becomes quite large and requires
significantly more computational time. Though our MPG method is not as finely optimized as ex-
isting SSVM implementations, this difference in run times will remain as the game formulation is
inherently more computationally demanding for difficult prediction tasks.

We compare the performance of our approach and com- 06
parison methods using five-fold cross validation on the e mank
MQ2007 dataset. We measure performance using Nor- e NDCG 7
malized DCG (NDCG), which divides the realized DCG 044l AdaRank-MA

by the maximum possible DCG for the dataset, based on a
slightly different variant of DCG employed by LETOR4.0: é 042

DCG"(6,y) = 2V =14+, 2291 The compari-

logg @
son methods are: RankSVM-Struct [[13]], part of SVM*™ 04l
which uses structured SVM to predict the rank; ListNet
[3l], a list-wise ranking algorithm employing cross en- ‘
tropy loss; AdaRank-NDCG [30], a boosting method us- R A
ing ‘weak rankers’ and data reweighing to achieve good
NDCG performance; AdaRank-MAP uses Mean Average  Figure 1: NDCG@K as K increases.
Precision (MAP) rather than NDCG; and RankBoost [7],
which reduces ranking to binary classification problems on instance pairs.

Table [] reports the NDCG@K averaged over all values of K

Table 4: MQ2007 NDCG Results. (between 1 and, on average 41) while Figure I|reports the re-
sults for each value of K between 1 and 10. From this, we can

Method Mean NDCG see that our MPG approach provides better rankings on aver-
MPG 0.5220 age than the baseline methods except when K is very small
RankSVM 0.4966 (K = 1,2). In other words, the adversary focuses most of its
ListNet 0.4988 effort in reducing the score received from the first item in the
AdaRank-NDCG 0.4914 . g
AdaRank-MAP 04891 ranking, but at the expense of providing a better overall NDCG
RankBoost 0.5003 score for the ranking as a whole.

5 Discussion

We have extended adversarial prediction games [1] to settings with multivariate performance mea-
sures in this paper. We believe that this is an important step in demonstrating the benefits of this
approach in settings where structured support vector machines [14] are widely employed. Our fu-
ture work will investigate improving the computational efficiency of adversarial methods and also
incorporating structured statistical relationships amongst variables in the constraint set in addition
to multivariate performance measures.
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