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Abstract

We propose a new primal-dual algorithmic framework for a prototypical con-
strained convex optimization template. The algorithmic instances of our frame-
work are universal since they can automatically adapt to the unknown Hölder
continuity degree and constant within the dual formulation. They are also guaran-
teed to have optimal convergence rates in the objective residual and the feasibility
gap for each Hölder smoothness degree. In contrast to existing primal-dual algo-
rithms, our framework avoids the proximity operator of the objective function. We
instead leverage computationally cheaper, Fenchel-type operators, which are the
main workhorses of the generalized conditional gradient (GCG)-type methods. In
contrast to the GCG-type methods, our framework does not require the objective
function to be differentiable, and can also process additional general linear inclu-
sion constraints, while guarantees the convergence rate on the primal problem.

1 Introduction
This paper constructs an algorithmic framework for the following convex optimization template:

f‹ :“ min
xPX

tfpxq : Ax´ b P Ku , (1)

where f : Rp Ñ RY t`8u is a convex function, A P Rnˆp, b P Rn, and X and K are nonempty,
closed and convex sets in Rp and Rn respectively. The constrained optimization formulation (1) is
quite flexible, capturing many important learning problems in a unified fashion, including matrix
completion, sparse regularization, support vector machines, and submodular optimization [1–3].

Processing the inclusion Ax´ b P K in (1) requires a significant computational effort in the large-
scale setting [4]. Hence, the majority of the scalable numerical solution methods for (1) are of
the primal-dual-type, including decomposition, augmented Lagrangian, and alternating direction
methods: cf., [4–9]. The efficiency guarantees of these methods mainly depend on three properties
of f : Lipschitz gradient, strong convexity, and the tractability of its proximal operator. For instance,
the proximal operator of f , i.e., proxf pxq :“ arg minz

 

fpzq ` p1{2q}z´ x}2
(

, is key in handling
non-smooth f while obtaining the convergence rates as if it had Lipschitz gradient.

When the set Ax´bPK is absent in (1), other methods can be preferable to primal-dual algorithms.
For instance, if f has Lipschitz gradient, then we can use the accelerated proximal gradient methods
by applying the proximal operator for the indicator function of the set X [10, 11]. However, as the
problem dimensions become increasingly larger, the proximal tractability assumption can be restric-
tive. This fact increased the popularity of the generalized conditional gradient (GCG) methods (or
Frank-Wolfe-type algorithms), which instead leverage the following Fenchel-type oracles [1,12,13]

rxs7X ,g :“ arg max
sPX

txx, sy ´ gpsqu , (2)

where g is a convex function. When g “ 0, we obtain the so-called linear minimization oracle [12].
When X ” Rp, then the (sub)gradient of the Fenchel conjugate of g, ∇g˚, is in the set rxs7g .
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The sharp-operator in (2) is often much cheaper to process as compared to the prox operator [1,
12]. While the GCG-type algorithms require O p1{εq-iterations to guarantee an ε -primal objective
residual/duality gap, they cannot converge when their objective is nonsmooth [14].

To this end, we propose a new primal-dual algorithmic framework that can exploit the sharp-operator
of f in lieu of its proximal operator. Our aim is to combine the flexibility of proximal primal-dual
methods in addressing the general template (1) while leveraging the computational advantages of
the GCG-type methods. As a result, we trade off the computational difficulty per iteration with the
overall rate of convergence. While we obtain optimal rates based on the sharp-operator oracles,
we note that the rates reduce to O

`

1{ε2
˘

with the sharp operator vs. O p1{εq with the proximal
operator when f is completely non-smooth (cf. Definition 1.1). Intriguingly, the convergence rates
are the same when f is strongly convex. Unlike GCG-type methods, our approach can now handle
nonsmooth objectives in addition to complex constraint structures as in (1).

Our primal-dual framework is universal in the sense the convergence of our algorithms can optimally
adapt to the Hölder continuity of the dual objective g (cf., (6) in Section 3) without having to know
its parameters. By Hölder continuity, we mean the (sub)gradient ∇g of a convex function g satisfies
}∇gpλq ´ ∇gpλ̃q} ď Mν}λ ´ λ̃}ν with parameters Mν ă 8 and ν P r0, 1s for all λ, λ̃ P Rn.
The case ν “ 0 models the bounded subgradient, whereas ν “ 1 captures the Lipschitz gradient.
The Hölder continuity has recently resurfaced in unconstrained optimization by [15] with universal
gradient methods that obtain optimal rates without having to know Mν and ν. Unfortunately, these
methods cannot directly handle the general constrained template (1). After our initial draft appeared,
[14] presented new GCG-type methods for composite minimization, i.e., minxPRp fpxq ` ψpxq,
relying on Hölder smoothness of f (i.e., ν P p0, 1s) and the sharp-operator of ψ. The methods
in [14] do not apply when f is non-smooth. In addition, they cannot process the additional inclusion
Ax´ b P K in (1), which is a major drawback for machine learning applications.

Our algorithmic framework features a gradient method and its accelerated variant that operates on
the dual formulation of (1). For the accelerated variant, we study an alternative to the universal
accelerated method of [15] based on FISTA [10] since it requires less proximal operators in the
dual. While the FISTA scheme is classical, our analysis of it with the Hölder continuous assumption
is new. Given the dual iterates, we then use a new averaging scheme to construct the primal-iterates
for the constrained template (1). In contrast to the non-adaptive weighting schemes of GCG-type
algorithms, our weights explicitly depend on the local estimates of the Hölder constants Mν at each
iteration. Finally, we derive the worst-case complexity results. Our results are optimal since they
match the computational lowerbounds in the sense of first-order black-box methods [16].
Paper organization: Section 2 briefly recalls primal-dual formulation of problem (1) with some
standard assumptions. Section 3 defines the universal gradient mapping and its properties. Section 4
presents the primal-dual universal gradient methods (both the standard and accelerated variants), and
analyzes their convergence. Section 5 provides numerical illustrations, followed by our conclusions.
The supplementary material includes the technical proofs and additional implementation details.
Notation and terminology: For notational simplicity, we work on the Rp{Rn spaces with the
Euclidean norms. We denote the Euclidean distance of the vector u to a closed convex set X by
dist pu,X q. Throughout the paper, } ¨ } represents the Euclidean norm for vectors and the spectral
norm for the matrices. For a convex function f , we use ∇f both for its subgradient and gradient, and
f˚ for its Fenchel’s conjugate. Our goal is to approximately solve (1) to obtain xε in the following
sense:
Definition 1.1. Given an accuracy level ε ą 0, a point xε P X is said to be an ε-solution of (1) if

|fpxεq ´ f
‹| ď ε, and dist pAxε ´ b,Kq ď ε.

Here, we call |fpxεq ´ f‹| the primal objective residual and dist pAxε ´ b,Kq the feasibility gap.

2 Primal-dual preliminaries

In this section, we briefly summarize the primal-dual formulation with some standard assumptions.
For the ease of presentation, we reformulate (1) by introducing a slack variable r as follows:

f‹ “ min
xPX ,rPK

tfpxq : Ax´ r “ bu , px‹ : fpx‹q “ f‹q. (3)

Let z :“rx, rs and Z :“XˆK. Then, we have D :“tz P Z : Ax´r“bu as the feasible set of (3).
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The dual problem: The Lagrange function associated with the linear constraint Ax ´ r “ b is
defined as Lpx, r,λq :“ fpxq ` xλ,Ax´ r´by, and the dual function d of (3) can be defined and
decomposed as follows:

dpλq :“ min
xPX
rPK

tfpxq ` xλ,Ax´ r´ byu “ min
xPX

tfpxq ` xλ,Ax´ byu
loooooooooooooooomoooooooooooooooon

dxpλq

`min
rPK

xλ,´ry
loooooomoooooon

drpλq

,

where λ P Rn is the dual variable. Then, we define the dual problem of (3) as follows:

d‹ :“ max
λPRn

dpλq “ max
λPRn

!

dxpλq ` drpλq
)

. (4)

Fundamental assumptions: To characterize the primal-dual relation between (1) and (4), we re-
quire the following assumptions [17]:
Assumption A. 1. The function f is proper, closed, and convex, but not necessarily smooth. The
constraint sets X and K are nonempty, closed, and convex. The solution set X ‹ of (1) is nonempty.
Either Z is polyhedral or the Slater’s condition holds. By the Slater’s condition, we mean ripZq X
tpx, rq : Ax´ r “ bu ‰ H, where ripZq stands for the relative interior of Z .

Strong duality: Under Assumption A.1, the solution set Λ‹ of the dual problem (4) is also
nonempty and bounded. Moreover, the strong duality holds, i.e., f‹ “ d‹.

3 Universal gradient mappings

This section defines the universal gradient mapping and its properties.

3.1 Dual reformulation

We first adopt the composite convex minimization formulation of (4) for better interpretability as

G‹ :“ min
λPRn

tGpλq :“ gpλq ` hpλqu , (5)

where G‹ “ ´d‹, and the correspondence between pg, hq and pdx, drq is as follows:
#

gpλq :“ max
xPX

txλ,b´Axy ´ fpxqu “ ´dxpλq,

hpλq :“ max
rPK

xλ, ry “ ´drpλq.
(6)

Since g and h are generally non-smooth, FISTA and its proximal-based analysis [10] are not directly
applicable. Recall the sharp operator defined in (2), then g can be expressed as

gpλq “ max
xPX

 

x´ATλ,xy ´ fpxq
(

` xλ,by,

and we define the optimal solution to the g subproblem above as follows:

x˚pλq P arg max
xPX

 

x´ATλ,xy ´ fpxq
(

” r´ATλs7X ,f . (7)

The second term, h, depends on the structure of K. We consider three special cases:

paq Sparsity/low-rankness: If K :“ tr P Rn : }r} ď κu for a given κ ě 0 and a given norm } ¨ },
then hpλq “ κ}λ}˚, the scaled dual norm of } ¨ }. For instance, if K :“ tr P Rn : }r}1 ď κu,
then hpλq “ κ}λ}8. While the `1-norm induces the sparsity of x, computing h requires the max
absolute elements of λ. If K :“ tr P Rq1ˆq2 : }r}˚ ď κu (the nuclear norm), then hpλq “ κ}λ},
the spectral norm. The nuclear norm induces the low-rankness of x. Computing h in this case leads
to finding the top-eigenvalue of λ, which is efficient.

pbq Cone constraints: If K is a cone, then h becomes the indicator function δK˚ of its dual cone
K˚. Hence, we can handle the inequality constraints and positive semidefinite constraints in (1). For
instance, if K ” Rn`, then hpλq “ δRn

´
pλq, the indicator function of Rn´ :“ tλ P Rn : λ ď 0u. If

K ” Sp`, then hpλq :“ δSp
´
pλq, the indicator function of the negative semidefinite matrix cone.

pcq Separable structures: If X and f are separable, i.e., X :“
śp
i“1 Xi and fpxq :“

řp
i“1 fipxiq,

then the evaluation of g and its derivatives can be decomposed into p subproblems.
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3.2 Hölder continuity of the dual universal gradient

Let ∇gp¨q be a subgradient of g, which can be computed as ∇gpλq “ b´Ax˚pλq. Next, we define

Mν“Mνpgq :“ sup
λ,λ̃PRn,λ‰λ̃

#

}∇gpλq´∇gpλ̃q}
}λ´ λ̃}ν

+

, (8)

where ν ě 0 is the Hölder smoothness order. Note that the parameter Mν explicitly depends on
ν [15]. We are interested in the case ν P r0, 1s, and especially the two extremal cases, where
we either have the Lipschitz gradient that corresponds to ν “ 1, or the bounded subgradient that
corresponds to ν “ 0.

We require the following condition in the sequel:
Assumption A. 2. M̂pgq :“ inf

0ďνď1
Mνpgq ă `8.

Assumption A.2 is reasonable. We explain this claim with the following two examples. First, if g is
subdifferentiable and X is bounded, then ∇gp¨q is also bounded. Indeed, we have

}∇gpλq} “ }b´Ax˚pλq} ď DA
X :“ supt}b´Ax} : x P X u.

Hence, we can choose ν “ 0 and M̂νpgq “ 2DA
X ă 8.

Second, if f is uniformly convex with the convexity parameter µf ą 0 and the degree q ě 2, i.e.,
x∇fpxq ´∇fpx̃q,x ´ x̃y ě µf }x ´ x̃}q for all x, x̃ P Rp, then g defined by (6) satisfies (8) with

ν “ 1
q´1 and M̂νpgq “

`

µ´1
f }A}

2
˘

1
q´1 ă `8, as shown in [15]. In particular, if q “ 2, i.e., f

is µf -strongly convex, then ν “ 1 and Mνpgq “ µ´1
f }A}

2, which is the Lipschitz constant of the
gradient ∇g.

3.3 The proximal-gradient step for the dual problem

Given λ̂k P Rn and Mk ą 0, we define

QMk
pλ; λ̂kq :“ gpλ̂kq ` x∇gpλ̂kq,λ´ λ̂ky `

Mk

2
}λ´ λ̂k}

2

as an approximate quadratic surrogate of g. Then, we consider the following update rule:

λk`1 :“ arg min
λPRn

 

QMk
pλ; λ̂kq ` hpλq

(

” proxM´1
k h

´

λ̂k ´M
´1
k ∇gpλ̂kq

¯

. (9)

For a given accuracy ε ą 0, we define

ĎMε :“

„

1´ ν

1` ν

1

ε



1´ν
1`ν

M
2

1`ν
ν . (10)

We need to choose the parameter Mk ą 0 such that QMk
is an approximate upper surrogate of g,

i.e., gpλq ď QMk
pλ;λkq ` δk for some λ P Rn and δk ě 0. If ν and Mν are known, then we can

set Mk “ ĎMε defined by (10). In this case, Q
ĎMε

is an upper surrogate of g. In general, we do not
know ν and Mν . Hence, Mk can be determined via a backtracking line-search procedure.

4 Universal primal-dual gradient methods

We apply the universal gradient mappings to the dual problem (5), and propose an averaging scheme
to construct tx̄ku for approximating x‹. Then, we develop an accelerated variant based on the FISTA
scheme [10], and construct another primal sequence t¯̄xku for approximating x‹.

4.1 Universal primal-dual gradient algorithm

Our algorithm is shown in Algorithm 1. The dual steps are simply the universal gradient method
in [15], while the new primal step allows to approximate the solution of (1).

Complexity-per-iteration: First, computing x˚pλkq at Step 1 requires the solution x˚pλkq P

r´ATλks
7

X ,f . For many X and f , we can compute x˚pλkq efficiently and often in a closed form.
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Algorithm 1 (Universal Primal-Dual Gradient Method pUniPDGradq)
Initialization: Choose an initial point λ0 P Rn and a desired accuracy level ε ą 0.
Estimate a value M´1 such that 0 ăM´1 ď ĎMε. Set S´1 “ 0 and x̄´1 “ 0p.
for k “ 0 to kmax

1. Compute a primal solution x˚pλkq P r´ATλks
7

X ,f .
2. Form ∇gpλkq “ b´Ax˚pλkq.
3. Line-search: Set Mk,0 “ 0.5Mk´1. For i “ 0 to imax, perform the following steps:

3.a. Compute the trial point λk,i “ proxM´1
k,ih

´

λk ´M
´1
k,i∇gpλkq

¯

.
3.b. If the following line-search condition holds:

gpλk,iq ď QMk,i
pλk,i;λkq ` ε{2,

then set ik “ i and terminate the line-search loop. Otherwise, set Mk,i`1 “ 2Mk,i.
End of line-search

4. Set λk`1 “ λk,ik and Mk “Mk,ik . Compute wk“ 1
Mk

, Sk“Sḱ 1`wk, and γk“ wk
Sk

.
5. Compute x̄k “ p1´ γkqx̄k´1 ` γkx

˚pλkq.
end for
Output: Return the primal approximation x̄k for x‹.

Second, in the line-search procedure, we require the solution λk,i at Step 3.a, and the evaluation of
gpλk,iq. The total computational cost depends on the proximal operator of h and the evaluations of
g. We prove below that our algorithm requires two oracle queries of g on average.
Theorem 4.1. The primal sequence tx̄ku generated by the Algorithm 1 satisfies

´}λ‹}dist pAx̄k ´ b,Kq ď fpx̄kq ´ f‹ ď
ĎMε}λ0}

2

k ` 1
`
ε

2
, (11)

dist pAx̄k ´ b,Kq ď 4ĎMε

k ` 1
}λ0 ´ λ‹} `

d

2ĎMεε

k ` 1
, (12)

where ĎMε is defined by (10), λ‹ P Λ‹ is an arbitrary dual solution, and ε is the desired accuracy.

The worst-case analytical complexity: We establish the total number of iterations kmax to achieve
an ε-solution x̄k of (1). The supplementary material proves that

kmax “

—

—

—

—

–

»

–

4
?

2}λ‹}

´1`
b

1` 8 }λ‹}
}λ‹}r1s

fi

fl

2

inf
0ďνď1

ˆ

Mν

ε

˙
2

1`ν

ffi

ffi

ffi

ffi

fl

, (13)

where }λ‹}r1s “ max t}λ‹}, 1u. This complexity is optimal for ν “ 0, but not for ν ą 0 [16].

At each iteration k, the linesearch procedure at Step 3 requires the evaluations of g. The supple-
mentary material bounds the total number N1pkq of oracle queries, including the function G and its
gradient evaluations, up to the kth iteration as follows:

N1pkq ď 2pk ` 1q ` 1´ log2pM´1q` inf
0ďνď1

"

1´ν

1`ν
log2

ˆ

p1´νq

p1`νqε

˙

`
2

1`ν
log2Mν

*

. (14)

Hence, we haveN1pkq « 2pk`1q, i.e., we require approximately two oracle queries at each iteration
on the average.

4.2 Accelerated universal primal-dual gradient method

We now develop an accelerated scheme for solving (5). Our scheme is different from [15] in two
key aspects. First, we adopt the FISTA [10] scheme to obtain the dual sequence since it requires
less prox operators compared to the fast scheme in [15]. Second, we perform the line-search after
computing ∇gpλ̂kq, which can reduce the number of the sharp-operator computations of f and X .
Note that the application of FISTA to the dual function is not novel per se. However, we claim that
our theoretical characterization of this classical scheme based on the Hölder continuity assumption
in the composite minimization setting is new.
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Algorithm 2 (Accelerated Universal Primal-Dual Gradient Method pAccUniPDGradq)

Initialization: Choose an initial point λ0 “ λ̂0 P Rn and an accuracy level ε ą 0.
Estimate a value M´1 such that 0 ăM´1ďĎMε. Set Ŝ´1 “ 0, t0 “ 1 and ¯̄x´1 “ 0p.
for k “ 0 to kmax

1. Compute a primal solution x˚pλ̂kq P r´AT λ̂s7X ,f .
2. Form ∇gpλ̂kq “ b´Ax˚pλ̂kq.
3. Line-search: Set Mk,0 “Mk´1. For i “ 0 to imax, perform the following steps:

3.a. Compute the trial point λk,i “ proxM´1
k,ih

`

λ̂k ´M
´1
k,i∇gpλ̂kq

˘

.
3.b. If the following line-search condition holds:

gpλk,iq ď QMk,i
pλk,i; λ̂kq ` ε{p2tkq,

then ik “ i, and terminate the line-search loop. Otherwise, set Mk,i`1 “ 2Mk,i.
End of line-search

4. Set λk`1 “ λk,ik and Mk “Mk,ik . Compute wk“ tk
Mk

, Ŝk“ Ŝḱ 1`wk, and γk“wk{Ŝk.

5. Compute tk`1 “ 0.5
“

1`
a

1` 4t2k
‰

and update λ̂k`1 “ λk`1 `
tk´1
tk`1

`

λk`1 ´ λk
˘

.

6. Compute ¯̄xk “ p1´ γkq¯̄xk´1 ` γkx
˚pλ̂kq.

end for
Output: Return the primal approximation ¯̄xk for x‹.

Complexity per-iteration: The per-iteration complexity of Algorithm 2 remains essentially the same
as that of Algorithm 1.

Theorem 4.2. The primal sequence t¯̄xku generated by the Algorithm 2 satisfies

´}λ‹}dist pA¯̄xk´b,Kqďfp¯̄xkq´f‹ ď ε

2
`

4ĎMε}λ0}
2,

pk`2q
1`3ν
1`ν

(15)

dist pA¯̄xk´b,Kq ď 16ĎMε

pk`2q
1`3ν
1`ν

}λ0´λ‹} `

d

8ĎMεε

pk`2q
1`3ν
1`ν

, (16)

where ĎMε is defined by (10), λ‹ P Λ‹ is an arbitrary dual solution, and ε is the desired accuracy.

The worst-case analytical complexity: The supplementary material proves the following worst-case
complexity of Algorithm 2 to achieve an ε-solution ¯̄xk:

kmax “

—

—

—

—

–

»

–

8
?

2}λ‹}

´1`
b

1` 8 }λ}
}λ}r1s

fi

fl

2`2ν
1`3ν

inf
0ďνď1

ˆ

Mν

ε

˙
2

1`3ν

ffi

ffi

ffi

ffi

fl

. (17)

This worst-case complexity is optimal in the sense of first-order black box models [16].

The line-search procedure at Step 3 of Algorithm 2 also terminates after a finite number of iterations.
Similar to Algorithm 1, Algorithm 2 requires 1 gradient query and ik function evaluations of g at
each iteration. The supplementary material proves that the number of oracle queries in Algorithm 2
is upperbounded as follows:

N2pkq ď 2pk ` 1q ` 1`
1´ ν

1` ν
rlog2pk ` 1q ´ log2pεqs `

2

1` ν
log2pMνq ´ log2pM´1q. (18)

Roughly speaking, Algorithm 2 requires approximately two oracle query per iteration on average.

5 Numerical experiments

This section illustrates the scalability and the flexibility of our primal-dual framework using some
applications in the quantum tomography (QT) and the matrix completion (MC).
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5.1 Quantum tomography with Pauli operators

We consider the QT problem which aims to extract information from a physical quantum system. A
q-qubit quantum system is mathematically characterized by its density matrix, which is a complex
pˆp positive semidefinite Hermitian matrix X6 P Sp`, where p “ 2q . Surprisingly, we can provably
deduce the state from performing compressive linear measurements b “ ApXq P Cn based on Pauli
operators A [18]. While the size of the density matrix grows exponentially in q, a significantly fewer
compressive measurements (i.e., n “ Opp log pq) suffices to recover a pure state q-qubit density
matrix as a result of the following convex optimization problem:

ϕ‹“min
XPSp

`

"

ϕpXq :“
1

2
}ApXq´b}22 : trpXq “ 1

*

, pX‹ : ϕpX‹q “ ϕ‹q, (19)

where the constraint ensures that X‹ is a density matrix. The recovery is also robust to noise [18].

Since the objective function has Lipschitz gradient and the constraint (i.e., the Spectrahedron) is
tuning-free, the QT problem provides an ideal scalability test for both our framework and GCG-type
algorithms. To verify the performance of the algorithms with respect to the optimal solution in large-
scale, we remain within the noiseless setting. However, the timing and the convergence behavior of
the algorithms remain qualitatively the same under polarization and additive Gaussian noise.
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Figure 1: The convergence behavior of algorithms for the q “ 14 qubits QT problem. The solid lines
correspond to the theoretical weighting scheme, and the dashed lines correspond to the line-search
(in the weighting step) variants.

To this end, we generate a random pure quantum state (e.g., rank-1 X6), and we take n “ 2p log p
random Pauli measurements. For q “ 14 qubits system, this corresponds to a 26814351456 dimen-
sional problem with n “ 3171983 measurements. We recast (19) into (1) by introducing the slack
variable r “ ApXq ´ b.

We compare our algorithms vs. the Frank-Wolfe method, which has optimal convergence rate guar-
antees for this problem, and its line-search variant. Computing the sharp-operator rxs7 requires a
top-eigenvector e1 of A˚pλq, while evaluating g corresponds to just computing the top-eigenvalue
σ1 of A˚pλq via a power method. All methods use the same subroutine to compute the sharp-
operator, which is based on MATLAB’s eigs function. We set ε “ 2ˆ 10´4 for our methods and
have a wall-time 2ˆ104s in order to stop the algorithms. However, our algorithms seems insensitive
to the choice of ε for the QT problem.

Figure 1 illustrates the iteration and the timing complexities of the algorithms. UniPDGrad al-
gorithm, with an average of 1.978 line-search steps per iteration, has similar iteration and timing
performance as compared to the standard Frank-Wolfe scheme with step-size γk “ 2{pk ` 2q. The
line-search variant of Frank-Wolfe improves over the standard one; however, our accelerated variant,
with an average of 1.057 line-search steps, is the clear winner in terms of both iterations and time.
We can empirically improve the performance of our algorithms even further by adapting a similar
line-search strategy in the weighting step as Frank-Wolfe, i.e., by choosing the weights wk in a
greedy fashion to minimize the objective function. The practical improvements due to line-search
appear quite significant.

5.2 Matrix completion with MovieLens dataset

To demonstrate the flexibility of our framework, we consider the popular matrix completion (MC)
application. In MC, we seek to estimate a low-rank matrix X P Rpˆl from its subsampled entries
b P Rn, where Ap¨q is the sampling operator, i.e., ApXq “ b.
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Figure 2: The performance of the algorithms for the MC problems. The dashed lines correspond to
the line-search (in the weighting step) variants, and the empty and the filled markers correspond to
the formulation (20) and (21), respectively.

Convex formulations involving the nuclear norm have been shown to be quite effective in estimating
low-rank matrices from limited number of measurements [19]. For instance, we can solve

min
XPRpˆl

"

ϕpXq“
1

n
}ApXq ´ b}2 : }X}˚ ď κ

*

, (20)

with Frank-Wolfe-type methods, where κ is a tuning parameter, which may not be available a priori.
We can also solve the following parameter-free version

min
XPRpˆl

"

ψpXq “
1

n
}X}2˚ : ApXq “ b

*

. (21)

While the nonsmooth objective of (21) prevents the tuning parameter, it clearly burdens the compu-
tational efficiency of the convex optimization algorithms.

We apply our algorithms to (20) and (21) using the MovieLens 100K dataset. Frank-Wolfe algo-
rithms cannot handle (21) and only solve (20). For this experiment, we did not pre-process the data
and took the default ub test and training data partition. We start out algorithms form λ0 “ 0n, we
set the target accuracy ε “ 10´3, and we choose the tuning parameter κ “ 9975{2 as in [20]. We
use lansvd function (MATLAB version) from PROPACK [21] to compute the top singular vectors,
and a simple implementation of the power method to find the top singular value in the line-search,
both with 10´5 relative error tolerance.

The first two plots in Figure 2 show the performance of the algorithms for (20). Our metrics are
the normalized objective residual and the root mean squared error (RMSE) calculated for the test
data. Since we do not have access to the optimal solutions, we approximated the optimal values,
ϕ‹ and RMSE‹, by 5000 iterations of AccUniPDGrad. Other two plots in Figure 2 compare the
performance of the formulations (20) and (21) which are represented by the empty and the filled
markers, respectively. Note that, the dashed line for AccUniPDGrad corresponds to the line-search
variant, where the weights wk are chosen to minimize the feasibility gap. Additional details about
the numerical experiments can be found in the supplementary material.

6 Conclusions
This paper proposes a new primal-dual algorithmic framework that combines the flexibility of prox-
imal primal-dual methods in addressing the general template (1) while leveraging the computational
advantages of the GCG-type methods. The algorithmic instances of our framework are universal
since they can automatically adapt to the unknown Hölder continuity properties implied by the tem-
plate. Our analysis technique unifies Nesterov’s universal gradient methods and GCG-type methods
to address the more broadly applicable primal-dual setting. The hallmarks of our approach includes
the optimal worst-case complexity and its flexibility to handle nonsmooth objectives and complex
constraints, compared to existing primal-dual algorithm as well as GCG-type algorithms, while es-
sentially preserving their low cost iteration complexity.
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