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Abstract

Deep structured output learning shows great promise in tasks like semantic im-
age segmentation. We proffer a new, efficient deep structured model learning
scheme, in which we show how deep Convolutional Neural Networks (CNNs)
can be used to directly estimate the messages in message passing inference for
structured prediction with Conditional Random Fields (CRFs). With such CNN
message estimators, we obviate the need to learn or evaluate potential functions
for message calculation. This confers significant efficiency for learning, since oth-
erwise when performing structured learning for a CRF with CNN potentials it is
necessary to undertake expensive inference for every stochastic gradient iteration.
The network output dimension of message estimators is the same as the number
of classes, rather than exponentially growing in the order of the potentials. Hence
it is more scalable for cases that involve a large number of classes. We apply
our method to semantic image segmentation and achieve impressive performance,
which demonstrates the effectiveness and usefulness of our CNN message learn-
ing method.

1 Introduction

Learning deep structured models has attracted considerable research attention recently. One popu-
lar approach to deep structured model is formulating conditional random fields (CRFs) using deep
Convolutional Neural Networks (CNNs) for the potential functions. This combines the power of
CNNs for feature representation learning and of the ability for CRFs to model complex relations.
The typical approach for the joint learning of CRFs and CNNs [1, 2, 3, 4, 5], is to learn the CNN
potential functions by optimizing the CRF objective, e.g., maximizing the log-likelihood. The CNN
and CRF joint learning has shown impressive performance for semantic image segmentation.

For the joint learning of CNNs and CRFs, stochastic gradient descent (SGD) is typically applied for
optimizing the conditional likelihood. This approach requires the marginal inference for calculating
the gradient. For loopy graphs, marginal inference is generally expensive even when using approxi-
mate solutions. Given that learning the CNN potential functions typically requires a large number of
gradient iterations, repeated marginal inference would make the training intractably slow. Applying
an approximate training objective is a solution to avoid repeat inference; pseudo-likelihood learning
[6] and piecewise learning [7, 3] are examples of this kind of approach. In this work, we advocate a
new direction for efficient deep structured model learning.

In conventional CRF approaches, the final prediction is the result of inference based on the learned
potentials. However, our ultimate goal is the final prediction (not the potentials themselves), so we
propose to directly optimize the inference procedure for the final prediction. Our focus here is on
the extensively studied message passing based inference algorithms. As discussed in [8], we can
directly learn message estimators to output the required messages in the inference procedure, rather



than learning the potential functions as in conventional CRF learning approaches. With the learned
message estimators, we then obtain the final prediction by performing message passing inference.

Our main contributions are as follows:

1) We explore a new direction for efficient deep structured learning. We propose to directly learn the
messages in message passing inference as training deep CNNs in an end-to-end learning fashion.
Message learning does not require any inference step for the gradient calculation, which allows
efficient training. Furthermore, when cast as a tradiational classification task, the network output
dimension for message estimation is the same as the number of classes (K), while the network
output for general CNN potential functions in CRFs is Ka, which is exponential in the order (a)
of the potentials (for example, a = 2 for pairwise potentials, a = 3 for triple-cliques, etc). Hence
CNN based message learning has significantly fewer network parameters and thus is more scalable,
especially in cases which involve a large number of classes.

2) The number of iterations in message passing inference can be explicitly taken into consideration
in the message learning procedure. In this paper, we are particularly interested in learning messages
that are able to offer high-quality CRF prediction results with only one message passing iteration,
making the message passing inference very fast.

3) We apply our method to semantic image segmentation on the PASCAL VOC 2012 dataset and
achieve impressive performance.

Related work Combining the strengths of CNNs and CRFs for segmentation has been explored in
several recent methods. Some methods resort to a simple combination of CNN classifiers and CRFs
without joint learning. DeepLab-CRF in [9] first train fully CNN for pixel classification and applies
a dense CRF [10] method as a post-processing step. Later the method in [2] extends DeepLab
by jointly learning the dense CRFs and CNNs. RNN-CRF in [1] also performs joint learning of
CNNs and the dense CRFs. They implement the mean-field inference as Recurrent Neural Networks
which facilitates the end-to-end learning. These methods usually use CNNs for modelling the unary
potentials only. The work in [3] trains CNNs to model both the unary and pairwise potentials in
order to capture contextual information. Jointly learning CNNs and CRFs has also been explored
for other applications like depth estimation [4, 11]. The work in [5] explores joint training of Markov
random fields and deep networks for predicting words from noisy images and image classification.

All these above-mentioned methods that combine CNNs and CRFs are based upon conventional
CRF approaches. They aim to jointly learn or incorporate pre-trained CNN potential functions, and
then perform inference/prediction using the potentials. In contrast, our method here directly learns
CNN message estimators for the message passing inference, rather than learning the potentials.

The inference machine proposed in [8] is relevant to our work in that it has discussed the idea of
directly learning message estimators instead of learning potential functions for structured predic-
tion. They train traditional logistic regressors with hand-crafted features as message estimators.
Motivated by the tremendous success of CNNs, we propose to train deep CNNs based message es-
timators in an end-to-end learning style without using hand-crafted features. Unlike the approach in
[8] which aims to learn variable-to-factor message estimators, our proposed method aims to learn
the factor-to-variable message estimators. Thus we are able to naturally formulate the variable
marginals – which is the ultimate goal for CRF inference – as the training objective (see Sec. 3.3).
The approach in [12] jointly learns CNNs and CRFs for pose estimation, in which they learn the
marginal likelihood of body parts but ignore the partition function in the likelihood. Message learn-
ing is not discussed in that work, and the exact relationship between this pose estimation approach
and message learning remains unclear.

2 Learning CRF with CNN potentials

Before describing our message learning method, we review the CRF-CNN joint learning approach
and discuss limitations. An input image is denoted by x ∈ X and the corresponding labeling mask
is denoted by y ∈ Y. The energy function is denoted by E(y,x), which measures the score of the
prediction y given the input image x. We consider the following form of conditional likelihood:

P (y|x) =
1

Z(x)
exp [−E(y,x)] =

exp [−E(y,x)]∑
y′ exp [−E(y′,x)]

. (1)



Here Z is the partition function. The CRF model is decomposed by a factor graph over a set of
factors F. Generally, the energy function is written as a sum of potential functions (factor functions):

E(y,x) =
∑
F∈F EF (yF ,xF ). (2)

Here F indexes one factor in the factor graph; yF denotes the variable nodes which are connected
to the factor F ; EF is the (log-) potential function (factor function). The potential function can be
a unary, pairwise, or high-order potential function. The recent method in [3] describes examples of
constructing general CNN based unary and pairwise potentials.

Take semantic image segmentation as an example. To predict the pixel labels of a test image, we can
find the mode of the joint label distribution by solving the maximum a posteriori (MAP) inference
problem: y? = argmax y P (y|x). We can also obtain the final prediction by calculating the label
marginal distribution of each variable, which requires to solve a marginal inference problem:

∀p ∈ N : P (yp|x) =
∑
y\yp P (y|x). (3)

Here y\yp indicates the output variables y excluding yp. For a general CRF graph with cycles,
the above inference problems is known to be NP-hard, thus approximate inference algorithms are
applied. Message passing is a type of widely applied algorithms for approximate inference: loopy
belief propagation (BP) [13], tree-reweighted message passing [14] and mean-field approximation
[13] are examples of the message passing methods.

CRF-CNN joint learning aims to learn CNN potential functions by optimizing the CRF objective,
typically, the negative conditional log-likelihood, which is:

− log P (y|x;θ) = E(y,x;θ) + log Z(x;θ). (4)

The energy function E(y,x) is constructed by CNNs, for which all the network parameters are
denoted by θ. Adding regularization, minimizing negative log-likelihood for CRF learning is:

minθ
λ
2 ‖θ‖

2
2 +

∑N
i=1[E(y(i),x(i);θ) + log Z(x(i);θ)]. (5)

Here x(i), y(i) denote the i-th training image and its segmentation mask;N is the number of training
images; λ is the weight decay parameter. We can apply stochastic gradient descent (SGD) to opti-
mize the above problem for learning θ. The energy function E(y,x;θ) is constructed from CNNs,
and its gradient∇θE(y,x;θ) can be easily computed by applying the chain rule as in conventional
CNNs. However, the partition function Z brings difficulties for optimization. Its gradient is:

∇θ log Z(x;θ) =
∑
y

exp [−E(y,x;θ)]∑
y′ exp [−E(y′,x;θ)]

∇θ[−E(y,x;θ)]

=− Ey∼P (y|x;θ)∇θE(y,x;θ). (6)

Direct calculation of the above gradient is computationally infeasible for general CRF graphs. Usu-
ally it is necessary to perform approximate marginal inference to calculate the gradients at each SGD
iteration [13]. However, repeated marginal inference can be extremely expensive, as discussed in
[3]. CNN training usually requires a huge number of SGD iterations (hundreds of thousands, or even
millions), hence this inference based learning approach is in general not scalable or even infeasible.

3 Learning CNN message estimators

In conventional CRF approaches, the potential functions are first learned, and then inference is
performed based on the learned potential functions to generate the final prediction. In contrast, our
approach directly optimizes the inference procedure for final prediction. We propose to learn CNN
estimators to directly output the required intermediate values in an inference algorithm.

Here we focus on the message passing based inference algorithm which has been extensively studied
and widely applied. In the CRF prediction procedure, the “message” vectors are recursively calcu-
lated based on the learned potentials. We propose to construct and learn CNNs to directly estimate
these messages in the message passing procedure, rather than learning the potential functions. In
particular, we directly learn factor-to-variable message estimators. Our message learning framework



is general and can accommodate all message passing based algorithms such as loopy belief propa-
gation (BP) [13], mean-field approximation [13] and their variants. Here we discuss using loopy BP
for calculating variable marginals. As shown by Yedidia et al. [15], loopy BP has a close relation
with Bethe free energy approximation.

Typically, the message is a K-dimensional vector (K is the number of classes) which encodes the
information of the label distribution. For each variable-factor connection, we need to recursively
compute the variable-to-factor message: βp→F ∈ RK , and the factor-to-variable message: βF→p ∈
RK . The unnormalized variable-to-factor message is computed as:

β̄p→F (yp) =
∑
F ′∈Fp\F βF ′→p(yp). (7)

Here Fp is a set of factors connected to the variable p; Fp\F is the set of factors Fp excluding the
factor F . For loopy graphs, the variable-to-factor message is normalized at each iteration:

βp→F (yp) = log
exp β̄p→F (yp)∑
y′p

exp β̄p→F (y′p)
. (8)

The factor-to-variable message is computed as:

βF→p(yp) = log
∑

y′
F \y′p,y′p=yp

exp

[
− EF (y′F ) +

∑
q∈NF \p

βq→F (y′q)

]
. (9)

Here NF is a set of variables connected to the factor F ; NF \p is the set of variables NF excluding
the variable p. Once we get all the factor-to-variable messages of one variable node, we are able to
calculate the marginal distribution (beliefs) of that variable:

P (yp|x) =
∑
y\yp

P (y|x) =
1

Zp
exp

[ ∑
F∈Fp

βF→p(yp)

]
, (10)

in which Zp is a normalizer: Zp =
∑
yp

exp [
∑
F∈Fp

βF→p(yp)].

3.1 CNN message estimators

The calculation of factor-to-variable message βF→p depends on the variable-to-factor messages
βp→F . Substituting the definition of βp→F in (8), βF→p can be re-written as:

βF→p(yp) = log
∑

y′
F \y′p,y′p=yp

exp

{
− EF (y′F ) +

∑
q∈NF \p

[
log

exp β̄q→F (y′q)∑
y′′q

exp β̄q→F (y′′q )

]}

= log
∑

y′
F \y′q,y′p=yp

exp

{
− EF (y′F ) +

∑
q∈NF \p

[
log

exp
∑
F ′∈Fq\F βF ′→q(y

′
q)∑

y′′q
exp

∑
F ′∈Fq\F βF ′→q(y

′′
q )

]}
(11)

Here q denotes the variable node which is connected to the node p by the factor F in the factor
graph. We refer to the variable node q as a neighboring node of q. NF \p is a set of variables
connected to the factor F excluding the node p. Clearly, for a pairwise factor which only connects
to two variables, the set NF \p only contains one variable node. The above equations show that
the factor-to-variable message βF→p depends on the potential EF and βF ′→q . Here βF ′→q is the
factor-to-variable message which is calculated from a neighboring node q and a factor F ′ 6= F .

Conventional CRF learning approaches learn the potential function then follow the above equations
to compute the messages for calculating marginals. As discussed in [8], given that the goal is to
estimate the marginals, it is not necessary to exactly follow the above equations, which involve
learning potential functions, to calculate messages. We can directly learn message estimators, rather
than indirectly learning the potential functions as in conventional methods.

Consider the calculation in (11). The message βF→p depends on the observation xpF and the
messages βF ′→q . Here xpF denotes the observations that correspond to the node p and the factor
F . We are able to formulate a factor-to-variable message estimator which takes xpF and βF ′→q as



inputs and outputs the message vector, and we directly learn such estimators. Since one message
βF→p depends on a number of previous messages βF ′→q , we can formulate a sequence of message
estimators to model the dependence. Thus the output from a previous message estimator will be the
input of the following message estimator.

There are two message passing strategies for loopy BP: synchronous and asynchronous passing.
We here focus on the synchronous message passing, for which all messages are computed before
passing them to the neighbors. The synchronous passing strategy results in much simpler message
dependences than the asynchronous strategy, which simplifies the training procedure. We define one
inference iteration as one pass of the graph with the synchronous passing strategy.

We propose to learn CNN based factor-to-variable message estimator. The message estimator mod-
els the interaction between neighboring variable nodes. We denote by M a message estimator. The
factor-to-variable message is calculated as:

βF→p(yp) = MF (xpF ,dpF , yp). (12)

We refer to dpF as the dependent message feature vector which encodes all dependent messages
from the neighboring nodes that are connected to the node p by F . Note that the dependent messages
are the output of message estimators at the previous inference iteration. In the case of running only
one message passing iteration, there are no dependent messages for MF , and thus we do not need
to incorporate dpF . To have a general exposition, we here describe the case of running arbitrarily
many inference iterations.

We can choose any effective strategy to generate the feature vector dpF from the dependent mes-
sages. Here we discuss a simple example. According to (11), we define the feature vector dpF as a
K-dimensional vector which aggregates all dependent messages. In this case, dpF is computed as:

dpF (y) =
∑

q∈NF \p

[
log

exp
∑
F ′∈Fq\F MF ′(xqF ′ ,dqF ′ , y)∑

y′ exp
∑
F ′∈Fq\F MF ′(xqF ′ ,dqF ′ , y′)

]
. (13)

With the definition of dpF in (13) and βF→p in (12), it clearly shows that the message estima-
tion requires evaluating a sequence of message estimators. Another example is to concatenate all
dependent messages to construct the feature vector dpF .

There are different strategies to formulate the message estimators in different iterations. One strategy
is using the same message estimator across all inference iterations. In this case the message estimator
becomes a recursive function, and thus the CNN based estimator becomes a recurrent neural network
(RNN). Another strategy is to formulate different estimator for each inference iteration.

3.2 Details for message estimator networks

We formulate the estimator MF as a CNN, thus the estimation is the network outputs:

βF→p(yp) = MF (xpF ,dpF , yp;θF ) =
∑K
k=1δ(k = yp)zpF,k(x,dpF ;θF ). (14)

Here θF denotes the network parameter which we need to learn. δ(·) is the indicator function, which
equals 1 if the input is true and 0 otherwise. We denote by zpF ∈ RK as the K-dimensional output
vector (K is the number of classes) of the message estimator network for the node p and the factor
F ; zpF,k is the k-th value in the network output zpF corresponding to the k-th class.

We can consider any possible strategies for implementing zpF with CNNs. For example, we here
describe a strategy which is analogous to the network design in [3]. We denote by C(1) as a fully
convolutional network (FCNN) [16] for convolutional feature generation, and C(2) as a traditional
fully connected network for message estimation.

Given an input image x, the network output C(1)(x) ∈ RN1×N2×r is a convolutional feature map,
in which N1 ×N2 = N is the feature map size and r is the dimension of one feature vector. Each
spatial position (each feature vector) in the feature map C(1)(x) corresponds to one variable node
in the CRF graph. We denote by C(1)(x, p) ∈ Rr, the feature vector corresponding to the variable
node p. Likewise, C(1)(x,NF \p) ∈ Rr is the averaged vector of the feature vectors that correspond
to the set of nodes NF \p. Recall that NF \p is a set of nodes connected by the factor F excluding
the node p. For pairwise factors, NF \p contains only one node.



We construct the feature vector zC
(1)

pF ∈ R2r for the node-factor pair (p, F ) by concatenating

C(1)(x, p) and C(1)(x,NF \p). Finally, we concatenate the node-factor feature vector zC
(1)

pF and
the dependent message feature vector dpF as the input for the second network C(2). Thus the input
dimension for C(2) is (2r+K). For running only one inference iteration, the input for C(2) is zC

(1)

pF

alone. The final output from the second network C(2) is the K-dimensional message vector zpF .
To sum up, we generate the final message vector zpF as:

zpF = C(2){ [ C(1)(x, p)>; C(1)(x,NF \p )>; d>pF ]> }. (15)

For a general CNN based potential function in conventional CRFs, the potential network is usually
required to have a large number of output units (exponential in the order of the potentials). For
example, it requires K2 (K is the number of classes) outputs for the pairwise potentials [3]. A large
number of output units would significantly increase the number of network parameters. It leads to
expensive computations and tends to over-fit the training data. In contrast, for learning our CNN
message estimator, we only need to formulate K output units for the network. Clearly it is more
scalable in the cases of a large number of classes.

3.3 Training CNN message estimators

Our goal is to estimate the variable marginals in (3), which can be re-written with the estimators:

P (yp|x) =
∑
y\yp

P (y|x) =
1

Zp
exp

[ ∑
F∈Fp

βF→p(yp)

]
=

1

Zp
exp

∑
F∈Fp

MF (xpF ,dpF , yp;θF ).

Here Zp is the normalizer. The ideal variable marginal, for example, has the probability of 1 for the
ground truth class and 0 for the remaining classes. Here we consider the cross entropy loss between
the ideal marginal and the estimated marginal.

J(x, ŷ;θ) = −
∑
p∈N

K∑
yp=1

δ(yp = ŷp) log P (yp|x;θ)

= −
∑
p∈N

K∑
yp=1

δ(yp = ŷp) log
exp

∑
F∈Fp

MF (xpF ,dpF , yp;θF )∑
y′p

exp
∑
F∈Fp

MF (xpF ,dpF , y′p;θF )
, (16)

in which ŷp is the ground truth label for the variable node p. Given a set of N training images and
label masks, the optimization problem for learning the message estimator network is:

minθ
λ
2 ‖θ‖

2
2 +

∑N
i=1 J(x(i), ŷ(i);θ). (17)

The work in [8] proposed to learn the variable-to-factor message (βp→F ). Unlike their approach, we
aim to learn the factor-to-variable message (βF→p), for which we are able to naturally formulate the
variable marginals, which is the ultimate goal for prediction, as the training objective. Moreover, for
learning βp→F in their approach, the message estimator will depend on all neighboring nodes (con-
nected by any factors). Given that variable nodes will have different numbers of neighboring nodes,
they only consider a fixed number of neighboring nodes (e.g., 20) and concatenate their features to
generate a fixed-length feature vector for classification. In our case for learning βF→p, the message
estimator only depends on a fixed number of neighboring nodes (connected by one factor), thus we
do not have this problem. Most importantly, they learn message estimators by training traditional
probabilistic classifiers (e.g., simple logistic regressors) with hand-craft features, and in contrast, we
train deep CNNs in an end-to-end learning style without using hand-craft features.

3.4 Message learning with inference-time budgets

One advantage of message learning is that we are able to explicitly incorporate the expected number
of inference iterations into the learning procedure. The number of inference iterations defines the
learning sequence of message estimators. This is particularly useful if we aim to learn the estimators
which are capable of high-quality predictions within only a few inference iterations. In contrast,



Table 1: Segmentation results on the PASCAL VOC 2012 “val” set. We compare with several recent CNN
based methods with available results on the “val” set. Our method performs the best.

method training set # train (approx.) IoU val set
ContextDCRF [3] VOC extra 10k 70.3

Zoom-out [17] VOC extra 10k 63.5
Deep-struct [2] VOC extra 10k 64.1

DeepLab-CRF [9] VOC extra 10k 63.7
DeepLap-MCL [9] VOC extra 10k 68.7

BoxSup [18] VOC extra 10k 63.8
BoxSup [18] VOC extra + COCO 133k 68.1

ours VOC extra 10k 71.1
ours+ VOC extra 10k 73.3

conventional potential function learning in CRFs is not able to directly incorporate the expected
number of inference iterations.

We are particularly interested in learning message estimators for use with only one message passing
iteration, because of the speed of such inference. In this case it might be preferable to have large-
range neighborhood connections, so that large range interaction can be captured within one inference
pass.

4 Experiments

We evaluate the proposed CNN message learning method for semantic image segmentation. We
use the publicly available PASCAL VOC 2012 dataset [19]. There are 20 object categories and one
background category in the dataset. It contains 1464 images in the training set, 1449 images in the
“val” set and 1456 images in the test set. Following the common practice in [20, 9], the training
set is augmented to 10582 images by including the extra annotations provided in [21] for the VOC
images. We use intersection-over-union (IoU) score [19] to evaluate the segmentation performance.
For the learning and prediction of our method, we only use one message passing iteration.

The recent work in [3] (referred to as ContextDCRF) learns multi-scale fully convolutional CNNs
(FCNNs) for unary and pairwise potential functions to capture contextual information. We follow
this CRF learning method and replace the potential functions by the proposed message estimators.
We consider 2 types of spatial relations for constructing the pairwise connections of variable nodes.
One is the “surrounding” spatial relation, for which one node is connected to its surround nodes. The
other one is the “above/below” spatial relation, for which one node is connected to the nodes that lie
above. For the pairwise connections, the neighborhood size is defined by a range box. We learn one
type of unary message estimator and 3 types of pairwise message estimators in total. One type of
pairwise message estimator is for the “surrounding” spatial relations, and the other two are for the
“above/below” spatial relations. We formulate one network for one type of message estimator.

We formulate our message estimators as multi-scale FCNNs, for which we apply a similar network
configuration as in [3]. The networkC(1) (see Sec. 3.2 for details) has 6 convolution blocks andC(2)

has 2 fully connected layers (with K output units). Our networks are initialized using the VGG-16
model [22]. We train all layers using back-propagation. Our system is built on MatConvNet [23].

We first evaluate our method on the VOC 2012 “val” set. We compare with several recent CNN
based methods with available results on the “val” set. Results are shown in Table 1. Our method
achieves the best performance. The comparing method ContextDCRF follows a conventional CRF
learning and prediction scheme: they first learn potentials and then perform inference based on
the learned potentials to output final predictions. The result shows that learning the CNN message
estimators is able to achieve similar performance compared to learning CNN potential functions in
CRFs. Note that since here we only use one message passing iteration for the training and prediction,
the inference is particularly efficient.

To further improve the performance, we perform simple data augmentation in training. We generate
extra 4 scales ([0.8, 0.9, 1.1, 1.2]) of the training images and their flipped images for training. This
result is denoted by “ours+” in the result table.



Table 2: Category results on the PASCAL VOC 2012 test set. Our method performs the best.

method mean ae
ro

bi
ke

bi
rd

bo
at

bo
ttl

e

bu
s

ca
r

ca
t

ch
ai

r

co
w

ta
bl

e

do
g

ho
rs

e

m
bi

ke

pe
rs

on

po
tte

d

sh
ee

p

so
fa

tr
ai

n

tv

DeepLab-CRF [9] 66.4 78.4 33.1 78.2 55.6 65.3 81.3 75.5 78.6 25.3 69.2 52.7 75.2 69.0 79.1 77.6 54.7 78.3 45.1 73.3 56.2
DeepLab-MCL [9] 71.6 84.4 54.5 81.5 63.6 65.9 85.1 79.1 83.4 30.7 74.1 59.8 79.0 76.1 83.2 80.8 59.7 82.2 50.4 73.1 63.7

FCN-8s [16] 62.2 76.8 34.2 68.9 49.4 60.3 75.3 74.7 77.6 21.4 62.5 46.8 71.8 63.9 76.5 73.9 45.2 72.4 37.4 70.9 55.1
CRF-RNN [1] 72.0 87.5 39.0 79.7 64.2 68.3 87.6 80.8 84.4 30.4 78.2 60.4 80.5 77.8 83.1 80.6 59.5 82.8 47.8 78.3 67.1

ours 73.4 90.1 38.6 77.8 61.3 74.3 89.0 83.4 83.3 36.2 80.2 56.4 81.2 81.4 83.1 82.9 59.2 83.4 54.3 80.6 70.8

Table 3: Segmentation results on the PASCAL VOC 2012 test set. Compared to methods that use the same
augmented VOC dataset, our method has the best performance.

method training set # train (approx.) IoU test set
ContextDCRF [3] VOC extra 10k 70.7

Zoom-out [17] VOC extra 10k 64.4
FCN-8s [16] VOC extra 10k 62.2

SDS [20] VOC extra 10k 51.6
DeconvNet-CRF [24] VOC extra 10k 72.5

DeepLab-CRF [9] VOC extra 10k 66.4
DeepLab-MCL [9] VOC extra 10k 71.6

CRF-RNN [1] VOC extra 10k 72.0
DeepLab-CRF [25] VOC extra + COCO 133k 70.4

DeepLab-MCL [25] VOC extra + COCO 133k 72.7
BoxSup (semi) [18] VOC extra + COCO 133k 71.0

CRF-RNN [1] VOC extra + COCO 133k 74.7
ours VOC extra 10k 73.4

We further evaluate our method on the VOC 2012 test set. We compare with recent state-of-the-art
CNN methods with competitive performance. The results are described in Table 3. Since the ground
truth labels are not available for the test set, we evaluate our method through the VOC evaluation
server. We achieve very competitive performance on the test set: 73.4 IoU score1, which is to date
the best performance amongst methods that use the same augmented VOC training dataset [21]
(marked as “VOC extra” in the table). These results validate the effectiveness of direct message
learning with CNNs. We also include a comparison with methods which are trained on the much
larger COCO dataset (around 133K training images). Our performance is comparable with these
methods, even though we make use of many fewer training images.

The results for each category is shown in Table 2. We compare with several recent methods which
transfer layers from the same VGG-16 model and use the same training data. Our method performs
the best for 13 out of 20 categories.

5 Conclusion

We have proposed a new deep message learning framework for structured CRF prediction. Learning
deep message estimators for the message passing inference reveals a new direction for learning deep
structured model. Learning CNN message estimators is efficient, which does not involve expensive
inference steps for gradient calculation. The network output dimension for message estimation is
the same as the number of classes, which does not increase with the order of the potentials, and thus
CNN message learning has less network parameters and is more scalable in the number of classes
compared to conventional potential function learning. Our impressive performance for semantic
segmentation demonstrates the effectiveness and usefulness of the proposed deep message learning.
Our framework is general and can be readily applied to other structured prediction applications.
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http://host.robots.ox.ac.uk:8080/anonymous/DBD0SI.html


References
[1] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang, and

P. Torr, “Conditional random fields as recurrent neural networks,” 2015. [Online]. Available:
http://arxiv.org/abs/1502.03240

[2] A. Schwing and R. Urtasun, “Fully connected deep structured networks,” 2015. [Online]. Available:
http://arxiv.org/abs/1503.02351

[3] G. Lin, C. Shen, I. Reid, and A. van den Hengel, “Efficient piecewise training of deep structured models
for semantic segmentation,” 2015. [Online]. Available: http://arxiv.org/abs/1504.01013

[4] F. Liu, C. Shen, and G. Lin, “Deep convolutional neural fields for depth estimation from a single image,”
in Proc. IEEE Conf. Comp. Vis. Pattern Recogn., 2015.

[5] L. Chen, A. Schwing, A. Yuille, and R. Urtasun, “Learning deep structured models,” 2014. [Online].
Available: http://arxiv.org/abs/1407.2538

[6] J. Besag, “Efficiency of pseudolikelihood estimation for simple Gaussian fields,” Biometrika, 1977.

[7] C. Sutton and A. McCallum, “Piecewise training for undirected models,” in Proc. Conf. Uncertainty
Artificial Intelli, 2005.

[8] S. Ross, D. Munoz, M. Hebert, and J. Bagnell, “Learning message-passing inference machines for struc-
tured prediction,” in Proc. IEEE Conf. Comp. Vis. Pattern Recogn., 2011.

[9] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. Yuille, “Semantic image segmentation with deep
convolutional nets and fully connected CRFs,” 2014. [Online]. Available: http://arxiv.org/abs/1412.7062
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