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Abstract

Selecting a good column (or row) subset of massive data matrices has found many
applications in data analysis and machine learning. We propose a new adap-
tive sampling algorithm that can be used to improve any relative-error column
selection algorithm. Our algorithm delivers a tighter theoretical bound on the ap-
proximation error which we also demonstrate empirically using two well known
relative-error column subset selection algorithms. Our experimental results on
synthetic and real-world data show that our algorithm outperforms non-adaptive
sampling as well as prior adaptive sampling approaches.

1 Introduction

In numerous machine learning and data analysis applications, the input data are modelled as a matrix
A ∈ Rm×n, where m is the number of objects (data points) and n is the number of features. Often,
it is desirable to represent your solution using a few features (to promote better generalization and
interpretability of the solutions), or using a few data points (to identify important coresets of the
data), for example PCA, sparse PCA, sparse regression, coreset based regression, etc. [1, 2, 3, 4].
These problems can be reduced to identifying a good subset of the columns (or rows) in the data
matrix, the column subset selection problem (CSSP). For example, finding an optimal sparse linear
encoder for the data (dimension reduction) can be explicitly reduced to CSSP [5]. Motivated by the
fact that in many practical applications, the left and right singular vectors of a matrix A lacks any
physical interpretation, a long line of work [6, 7, 8, 9, 10, 11, 12, 13, 14, 15], focused on extracting
a subset of columns of the matrix A, which are approximately as good as Ak at reconstructing A.
To make our discussion more concrete, let us formally define CSSP.

Column Subset Selection Problem, CSSP: Find a matrix C ∈ Rm×c containing c columns of
A for which

∥∥A−CC+A
∥∥
F

is small.1 In the prior work, one measures the quality of a CSSP-
solution against Ak, the best rank-k approximation to A obtained via the singular value decompo-
sition (SVD), where k is a user specified target rank parameter. For example, [15] gives efficient
algorithms to find C with c ≈ 2k/ε columns, for which

∥∥A−CC+A
∥∥
F
≤ (1 + ε) ‖A−Ak‖F .

Our contribution is not to directly attack CSSP. We present a novel algorithm that can improve an
existing CSSP algorithm by adaptively invoking it, in a sense actively learning which columns to
sample next based on the columns you have already sampled. If you use the CSSP-algorithm from
[15] as a strawman benchmark, you can obtain c columns all at once and incur an error roughly
(1 + 2k/c) ‖A−Ak‖F . Or, you can invoke the algorithm to obtain, for example, c/2 columns,
and then allow the algorithm to adapt to the columns already chosen (for example by modifying A)
before choosing the remaining c/2 columns. We refer to the former as continued sampling and to the

1CC+A is the best possible reconstruction of A by projection into the space spanned by the columns of C.
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latter as adaptive sampling. We prove performance guarantees which show that adaptive sampling
improves upon continued sampling, and we present experiments on synthetic and real data that
demonstrate significant empirical performance gains.

1.1 Notation

A,B, . . . denote matrices and a,b, . . . denote column vectors; In is the n × n identity matrix.
[A,B] and [A;B] denote matrix concatenation operations in a column-wise and row-wise manner,
respectively. Given a set S ⊆ {1, . . . n}, AS is the matrix that contains the columns of A ∈ Rm×n
indexed by S. Let rank(A) = ρ ≤ min {m,n}. The (economy) SVD of A is

A = (Uk Uρ−k)

(
Σk 0
0 Σρ−k

)(
VT
k

VT
ρ−k

)
=

ρ∑
i=1

σi(A)uiv
T
i

where Uk ∈ Rm×k and Uρ−k ∈ Rm×(ρ−k) contain the left singular vectors ui, Vk ∈ Rn×k
and Vρ−k ∈ Rn×(ρ−k) contain the right singular vectors vi, and Σ ∈ Rρ×ρ is a diagonal matrix
containing the singular values σ1(A) ≥ . . . ≥ σρ(A) > 0. The Frobenius norm of A is ‖A‖2F =∑
i,j A2

ij ; Tr(A) is the trace of A; the pseudoinverse of A is A+ = VΣ−1UT ; and, Ak, the best

rank-k approximation to A under any unitarily invariant norm is Ak = UkΣkV
T
k =

∑k
i=1 σiuiv

T
i .

1.2 Our Contribution: Adaptive Sampling

We design a novel CSSP-algorithm that adaptively selects columns from the matrix A in rounds. In
each round we remove from A the information that has already been “captured” by the columns that
have been thus far selected. Algorithm 1 selects tc columns of A in t rounds, where in each round
c columns of A are selected using a relative-error CSSP-algorithm from prior work.

Input: A ∈ Rm×n; target rank k; # rounds t; columns per round c
Output: C ∈ Rm×tc, tc columns of A and S, the indices of those columns.

1: S = {}; E0 = A
2: for ` = 1, · · · , t do
3: Sample indices S` of c columns from E`−1 using a CSSP-algorithm.
4: S ← S ∪ S`.
5: Set C = AS and E` = A− (CC+A)`k.
6: return C, S

Algorithm 1: Adaptive Sampling

At round ` in Step 3, we compute column indices S (and C = AS) using a CSSP-algorithm on the
residual E`−1 of the previous round. To compute this residual, remove from A the best rank-(`−1)k
approximation to A in the span of the columns selected from the first `− 1 rounds,

E`−1 = A− (CC+A)(`−1)k.

A similar strategy was developed in [8] with sequential adaptive use of (additive error) CSSP-
algorithms. These (additive error) CSSP-algorithms select columns according to column norms [11].
In [8], the residual in step 5 is defined differently, as E` = A −CC+A. To motivate our result, it
helps to take a closer look at the reconstruction error E = A − CC+A after t adaptive rounds of
the strategy in [8] with the CSSP-algorithm in [11].

# rounds Continued sampling: tc columns using
CSSP-algorithm from [11]. (ε = k/c)

Adaptive sampling: t rounds of the strategy
in [8] with the CSSP-algorithm from [11].

t = 2 ‖E‖2F ≤ ‖A−Ak‖2F +
ε

2
‖A‖2F ‖E‖2F ≤ (1 + ε) ‖A−Ak‖2F + ε2 ‖A‖2F

t ‖E‖2F ≤ ‖A−Ak‖2F +
ε

t
‖A‖2F ‖E‖2F ≤ (1 +O(ε)) ‖A−Ak‖2F +εt ‖A‖2F
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Typically ‖A‖2F � ‖A−Ak‖2F and ε is small (i.e., c � k), so adaptive sampling à la [8] wins
over continued sampling for additive error CSSP-algorithms. This is especially apparent after t
rounds, where continued sampling only attenuates the big term ‖A‖2F by ε/t, but adaptive sampling
exponentially attenuates this term by εt.

Recently, powerful CSSP-algorithms have been developed which give relative-error guarantees [15].
We can use the adaptive strategy from [8] together with these newer relative error CSSP-algorithms.
If one carries out the analysis from [8] by replacing the additive error CSSP-algorithm from [11]
with the relative error CSSP-algorithm in [15], the comparison of continued and adaptive sampling
using the strategy from [8] becomes (t = 2 rounds suffices to see the problem):

# rounds Continued sampling: tc columns using
CSSP-algorithm from [15]. (ε = 2k/c)

Adaptive sampling: t rounds of the strategy
in [8] with the CSSP-algorithm from [15].

t = 2 ‖E‖2F ≤
(
1 +

ε

2

)
‖A−Ak‖2F ‖E‖2F ≤

(
1 +

ε

2
+
ε2

2

)
‖A−Ak‖2F

Adaptive sampling from [8] gives a worse theoretical guarantee than continued sampling for relative
error CSSP-algorithms. In a nutshell, no matter how many rounds of adaptive sampling you do,
the theoretical bound will not be better than (1 + k/c)‖A−Ak‖2F if you are using a relative error
CSSP-algorithm. This raises an obvious question: is it possible to combine relative-error CSSP-
algorithms with adaptive sampling to get (provably and empirically) improved CSSP-algorithms?
The approach of [8] does not achieve this objective. We provide a positive answer to this question.

Our approach is a subtle modification to the approach in [8]: in Step 5 of Algorithm 1. When we
compute the residual matrix in round `, we subtract (CC+A)`k from A, the best rank-`k approxi-
mation to the projection of A onto the current columns selected, as opposed to subtracting the full
projection CC+A. This subtle change, is critical in our new analysis which gives a tighter bound
on the final error, allowing us to boost relative-error CSSP-algorithms. For t = 2 rounds of adaptive
sampling, we get a reconstruction error of

‖E‖2F ≤ (1 + ε) ‖A−A2k‖2F + ε(1 + ε) ‖A−Ak‖2F ,

where ε = 2k/c. The critical improvement in the bound is that the dominant O(1)-term depends on
‖A−A2k‖2F , and the dependence on ‖A−Ak‖2F is nowO(ε). To highlight this improved theoret-
ical bound in an extreme case, consider a matrix A that has rank exactly 2k, then ‖A−A2k‖F = 0.
Continued sampling gives an error-bound (1+ ε

2 )‖A−Ak‖2F , where as our adaptive sampling gives
an error-bound (ε + ε2)‖A−Ak‖2F , which is clearly better in this extreme case. In practice, data
matrices have rapidly decaying singular values, so this extreme case is not far from reality (See
Figure 1).
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Figure 1: Figure showing the singular value decay for two real world datasets.

To state our main theoretical result, we need to more formally define a relative error CSSP-algorithm.

Definition 1 (Relative Error CSSP-algorithmA(X, k, c)). A relative error CSSP-algorithmA takes
as input a matrix X, a rank parameter k < rank(X) and a number of columns c, and outputs column
indices S with |S| = c, so that the columns C = XS satisfy:

EC

[
‖X− (CC+X)k‖

2

F

]
≤ (1 + ε(c, k))‖X−Xk‖2F ,
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where ε(c, k) depends on A and the expectation is over random choices made in the algorithm.2

Our main theorem bounds the reconstruction error when our adaptive sampling approach is used to
boost A. The boost in performance depends on the decay of the spectrum of A.
Theorem 1. Let A ∈ Rm×n be a matrix of rank ρ and let k < ρ be a target rank. If, in Step 3 of
Algorithm 1, we use the relative error CSSP-algorithm A with ε(c, k) = ε < 1, then

EC

[
‖A− (CC+A)tk‖

2

F

]
≤ (1 + ε) ‖A−Atk‖2F + ε

t−1∑
i=1

(1 + ε)t−i ‖A−Aik‖2F .

Comments.

1. The dominant O(1) term in our bound is ‖A−Atk‖F , not ‖A−Ak‖F . This is a major im-
provement since the former is typically much smaller than the latter in real data. Further, we
need a bound on the reconstruction error ‖A−CC+A‖F . Our theorem give a stronger result
than needed because ‖A−CC+A‖F ≤ ‖A− (CC+A)tk‖F .

2. We presented our result for the case of a relative error CSSP-algorithm with a guarantee on the
expected reconstruction error. Clearly, if the CSSP-algorithm is deterministic, then Theorem 1
will also hold deterministically. The result in Theorem 1 can also be boosted to hold with high
probability, by repeating the process log 1

δ times and picking the columns which performed best.
Then, with probability at least 1− δ,

‖A− (CC+A)tk‖
2

F ≤ (1 + 2ε) ‖A−Atk‖2F + 2ε

t−1∑
i=1

(1 + ε)t−i ‖A−Aik‖2F .

If the CSSP-algorithm itself only gives a high-probability (at least 1−δ) guarantee, then the bound
in Theorem 1 also holds with high probability, at least 1 − tδ, which is obtained by applying a
union bound to the probability of failure in each round.

3. Our results hold for any relative error CSSP-algorithm combined with our adaptive sampling
strategy. The relative error CSSP-algorithm in [15] has ε(c, k) ≈ 2k/c. The relative error CSSP-
algorithm in [16] has ε(c, k) = O(k log k/c). Other algorithms can be found in [8, 9, 17].
We presented the simplest form of the result, which can be generalized to sample a different
number of columns in each round, or even use a different CSSP-algorithm in each round. We
have not optimized the sampling schedule, i.e. how many columns to sample in each round. At
the moment, this is largely dictated by the CSSP algorithm itself, which requires a minimum
number of samples in each round to give a theoretical guarantee. From the empirical perspective
(for example using leverage score sampling to select columns), strongest performance may be
obtained by adapting after every column is selected.

4. In the context of the additive error CSSP-algorithm from [11], our adaptive sampling strategy
gives a theoretical performance guarantee which is at least as good as the adaptive sampling
strategy from [8].

Lastly, we also provide the first empirical evaluation of adaptive sampling algorithms. We imple-
mented our algorithm using two relative-error column selection algorithms (the near-optimal column
selection algorithm of [18, 15] and the leverage-score sampling algorithm of [19]) and compared it
against the adaptive sampling algorithm of [8] on synthetic and real-world data. The experimental
results show that our algorithm outperforms prior approaches.

1.3 Related Work

Column selection algorithms have been extensively studied in prior literature. Such algorithms
include rank-revealing QR factorizations [6, 20] for which only weak performance guarantees can
be derived. The QR approach was improved in [21] where the authors proposed a memory efficient
implementation. The randomized additive error CSSP-algorithm [11] was a breakthrough, which led
to a series of improvements producing relative CSSP-algorithms using a variety of randomized and

2For an additive-error CSSP algorithm, EC

[
‖X− (CC+X)k‖

2

F

]
≤ ‖X−Xk‖2F + ε(c, k)‖X‖2F .
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deterministic techniques. These include leverage score sampling [19, 16], volume sampling [8, 9,
17], the two-stage hybrid sampling approach of [22], the near-optimal column selection algorithms
of [18, 15], as well as deterministic variants presented in [23]. We refer the reader to Section 1.5
of [15] for a detailed overview of prior work. Our focus is not on CSSP-algorithms per se, but rather
on adaptively invoking existing CSSP-algorithms. The only prior adaptive sampling with a provable
guarantee was introduced in [8] and further analyzed in [24, 9, 25]; this strategy is specifically boosts
the additive error CSSP-algorithm, but does not work with relative error CSSP-algorithms which are
currently in use. Our modification of the approach in [8] is delicate, but crucial to the new analysis
we perform in the context of relative error CSSP-algorithms.

Our work is motivated by relative error CSSP-algorithms satisfying definition 1. Such algorithms
exist which give expected guarantees [15] as well as high probability guarantees [19]. Specifically,
given X ∈ Rm×n and a target rank k, the leverage-score sampling approach of [19] selects c =
O
((
k/ε2

)
log
(
k/ε2

))
columns of A to form a matrix C ∈ Rm×c to give a (1+ε)-relative error with

probability at least 1− δ. Similarly, [18, 15] proposed near-optimal relative error CSSP-algorithms
selecting c ≈ 2c/ε columns and giving a (1 + ε)-relative error guarantee in expectation, which can
be boosted to a high probability guarantee via independent repetition.

2 Proof of Theorem 1

We now prove the main result which analyzes the performance of our adaptive sampling in Algo-
rithm 1 for a relative error CSSP-algorithm. We will need the following linear algebraic Lemma.

Lemma 1. Let X,Y ∈ Rm×n and suppose that rank(Y) = r. Then,

σi(X−Y) ≥ σr+i(X).

Proof. Observe that σi(X−Y) = ‖(X−Y)− (X−Y)i−1‖2. The claim is now immediate from
the Eckart-Young theorem because Y + (X−Y)i−1 has rank at most r + i− 1, therefore

σi(X−Y) = ‖X− (Y + (X−Y)i−1)‖2 ≥ ‖X−Xr+i−1‖2 = σr+i(X).

We are now ready to prove Theorem 1 by induction on t, the number of rounds of adaptive sampling.
When t = 1, the claim is that

E
[
‖A− (CC+A)k‖

2

F

]
≤ (1 + ε) ‖A−Ak‖2F ,

which is immediate from the definition of the relative error CSSP-algorithm. Now for the induction.
Suppose that after t rounds, columns Ct are selected, and we have the induction hypothesis that

ECt

[
‖A− (CtCt+A)tk‖

2

F

]
≤ (1 + ε) ‖A−Atk‖2F + ε

t−1∑
i=1

(1 + ε)t−i ‖A−Aik‖2F . (1)

In the (t+ 1)th round, we use the residual Et = A− (CtCt+A)tk to select new columns C′. Our
relative error CSSP-algorithm A gives the following guarantee:

EC′

[
‖Et − (C′C′

+
Et)k‖

2

F

∣∣∣Et
]
≤ (1 + ε)

∥∥Et −Et
k

∥∥2
F

= (1 + ε)

(∥∥Et
∥∥2
F
−

k∑
i=1

σ2
i (E

t)

)

≤ (1 + ε)

(∥∥Et
∥∥2
F
−

k∑
i=1

σ2
tk+i(A)

)
. (2)

(The last step follows because σ2
i (E

t) = σ2
i (A − (CtCt+A)tk) and we can apply Lemma 1 with

X = A, Y = (CtCt+A)tk and r = rank(Y) = tk, to obtain σ2
i (E

t) ≥ σ2
tk+i(A).) We now take
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the expectation of both sides with respect to the columns Ct,

ECt

[
EC′

[
‖Et − (C′C′

+
Et)k‖

2

F

∣∣∣Et
]]

≤ (1 + ε)

(
ECt

[ ∥∥Et
∥∥2
F

]
−

k∑
i=1

σ2
tk+i(A)

)
.

(a)

≤ (1 + ε)2‖A−Atk‖2F + ε

t−1∑
i=1

(1 + ε)t+1−i ‖A−Aik‖2F − (1 + ε)

k∑
i=1

σ2
tk+i(A)

= (1 + ε)

(
‖A−Atk‖2F −

k∑
i=1

σ2
tk+i(A)

)
+ ε(1 + ε)‖A−Atk‖2F

+ε

t−1∑
i=1

(1 + ε)t+1−i ‖A−Aik‖2F

= (1 + ε)‖A−A(t+1)k‖
2

F
+ ε

t∑
i=1

(1 + ε)t+1−i ‖A−Aik‖2F (3)

(a) follows, because of the induction hypothesis (eqn. 1). The columns chosen after round t+ 1 are
Ct+1 = [Ct,C′]. By the law of iterated expectation,

ECt

[
EC′

[
‖Et − (C′C′

+
Et)k‖

2

F

∣∣∣Et
]]

= ECt+1

[
‖Et − (C′C′

+
Et)k‖

2

F

]
.

Observe that Et − (C′C′
+

Et)k = A− (CtCt+A)tk − (C′C′
+

Et)k = A−Y, where Y is in the
column space of Ct+1 = [Ct,C′]; further, rank(Y) ≤ (t+1)k. Since (Ct+1Ct+1+A)(t+1)k is the
best rank-(t+ 1)k approximation to A in the column space of Ct+1, for any realization of Ct+1,

‖A− (Ct+1Ct+1+A)(t+1)k‖
2

F
≤ ‖Et − (C′C′

+
Et)k‖

2

F . (4)
Combining (4) with (3), we have that

ECt+1

[
‖A− (Ct+1Ct+1+A)(t+1)k‖

2

F

]
≤ (1+ε)‖A−A(t+1)k‖

2

F
+ε

t∑
i=1

(1+ε)t+1−i ‖A−Aik‖2F .

This is the desired bound after t+ 1 rounds, concluding the induction.

It is instructive to understand where our new adaptive sampling strategy is needed for the proof to
go through. The crucial step is (2) where we use Lemma 1 – it is essential that the residual was a
low-rank perturbation of A.

3 Experiments

We compared three adaptive column sampling methods, using two real and two synthetic data sets.3

Adaptive Sampling Methods
ADP-AE: the prior adaptive method which uses the additive error CSSP-algorithm [8].
ADP-LVG: our new adaptive method using the relative error CSSP-algorithm [19].
ADP-Nopt: our adaptive method using the near optimal relative error CSSP-algorithm [15].

Data Sets
HGDP 22 chromosomes: SNPs human chromosome data from the HGDP database [26]. We
use all 22 chromosome matrices (1043 rows; 7,334-37,493 columns) and report the average.
Each matrix contains +1, 0,−1 entries, and we randomly filled in missing entries.
TechTC-300: 49 document-term matrices [27] (150-300 rows (documents); 10,000-40,000
columns (words)). We kept 5-letter or larger words and report averages over 49 data-sets.
Synthetic 1: Random 1000× 10000 matrices with σi = i−0.3 (power law).
Synthetic 2: Random 1000× 10000 matrices with σi = exp(1−i)/10 (exponential).

3ADP-Nopt: has two stages. The first stage is a deterministic dual set spectral-Frobenius column selection
in which ties could occur. We break ties in favor of the column not already selected with the maximum norm.
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For randomized algorithms, we repeat the experiments five times and take the average. We use the
synthetic data sets to provide a controlled environment in which we can see performance for different
types of singular value spectra on very large matrices. In prior work it is common to report on the
quality of the columns selected C by comparing the best rank-k approximation within the column-
span of C to Ak. Hence, we report the relative error

∥∥A− (CC+A)k
∥∥
F
/ ‖A−Ak‖F when

comparing the algorithms. We set the target rank k = 5 and the number of columns in each round to
c = 2k. We have tried several choices for k and c and the results are qualitatively identical so we only
report on one choice. Our first set of results in Figure 2 is to compare the prior adaptive algorithm
ADP-AE with the new adaptive ones ADP-LVG and ADP-Nopt which boose relative error CSSP-
algorithms. Our two new algorithms are both performing better the prior existing adaptive sampling
algorithm. Further, ADP-Nopt is performing better than ADP-LVG, and this is also not surprising,
because ADP-Nopt produces near-optimal columns – if you boost a better CSSP-algorithm, you get
better results. Further, by comparing the performance on Synthetic 1 with Synthetic 2, we see that
our algorithm (as well as prior algorithms) gain significantly in performance for rapidly decaying
singular values; our new theoretical analysis reflects this behavior, whereas prior results do not.

1 2 3 4 5
1

1.02

1.04

1.06

HGDP 22 chromosomes, k:10,c=2k

# of rounds

||
A

−
(C

C
+
A

) k
||

F
/|
|A

−
A

k
||

F

 

 

ADP−AE
ADP−LVG
ADP−Nopt

The theory bound depends on ε = c/k. The figure
to the right shows a result for k = 10; c = 2k
(k increases but ε is constant). Comparing the fig-
ure with the HGDP plot in Figure 2, we see that
the quantitative performance is approximately the
same, as the theory predicts (since c/k has not
changed). The percentage error stays the same
even though we are sampling more columns be-
cause the benchmark ‖A−Ak‖F also get smaller
when k increases. Since ADP-Nopt is the supe-
rior algorithm, we continue with results only for
this algorithm.

1 2 3 4 5
# of rounds

1

1.05

1.1

1.15

1.2

||A
-(

C
C

+
A

) k|| F
/||

A
-A

k|| F

TechTC-300 49 Datasets, k:5,c=2k

ADP-AE
ADP-LVG
ADP-Nopt

Our next experiment is to test which adaptive strat-
egy works better in practice given the same ini-
tial selection of columns. That is, in Figure 2,
ADP-AE uses an adaptive sampling based on the
residual A − CC+A and then adaptively sam-
ples according to the adaptive strategy in [8]; the
initial columns are chosen with the additive error
algorithm. Our approach chooses initial columns
with the relative error CSSP-algorithm and then
continues to sample adaptively based on the rel-
ative error CSSP-algorithm and the residual A −
(CC+A)tk. We now give all the adaptive sam-
pling algorithms the benefit of the near-optimal
initial columns chosen in the first round by the al-
gorithm from [15]. The result shown to the right confirms that ADP-Nopt is best even if all adaptive
strategies start from the same initial near-optimal columns.

1 2 3 4 5
# of rounds

1

1.005

1.01

1.015

1.02

||A
-(

C
C

+ A
) k|| F

/||
A

-A
k|| F

 TechTC300 49 datasets, k:5,c:2k

ADP-Nopt
SEQ-Nopt

Adaptive versus Continued Sequential Sam-
pling. Our last experiment is to demonstrate that
adaptive sampling works better than continued se-
quential sampling. We consider the relative error
CSSP-algorithm in [15] in two modes. The first
is ADP-Nopt, which is our adaptive sampling al-
gorithms which selects tc columns in t rounds of
c columns each. The second is SEQ-Nopt, which
is just the relative error CSSP-algorithm in [15]
sampling tc columns, all in one go. The results
are shown on the right. The adaptive boosting of
the relative error CSSP-algorithm can gives up to
a 1% improvement in this data set.
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Figure 2: Plots of relative error ratio
∥∥A− (CC+A)k

∥∥
F
/ ‖A−Ak‖F for various adaptive sampling al-

gorithms for k = 5 and c = 2k. In all cases, performance improves with more rounds of sampling, and rapidly
converges to a relative reconstruction error of 1. This is most so in data matrices with singular values that decay
quickly (such as TectTC and Synthetic 2). The HGDP singular values decay slowly because missing entries are
selected randomly, and Synthetic 1 has slowly decaying power-law singular values by construction.

4 Conclusion

We present a new approach for adaptive sampling algorithms which can boost relative error CSSP-
algorithms, in particular the near optimal CSSP-algorithm in [15]. We showed theoretical and exper-
imental evidence that our new adaptively boosted CSSP-algorithm is better than the prior existing
adaptive sampling algorithm which is based on the additive error CSSP-algorithm in [11]. We also
showed evidence (theoretical and empirical) that our adaptive sampling algorithms are better than
sequentially sampling all the columns at once. In particular, our theoretical bounds give a result
which is tighter for matrices whose singular values decay rapidly.

Several interesting questions remain. We showed that the simplest adaptive sampling algorithm
which samples a constant number of columns in each round improves upon sequential sampling all
at once. What is the optimal sampling schedule, and does it depend on the singular value spectrum
of the data matric? In particular, can improved theoretical bounds or empirical performance be
obtained by carefully choosing how many columns to select in each round?

It would also be interesting to see the improved adaptive sampling boosting of CSSP-algorithms in
the actual applications which require column selection (such as sparse PCA or unsupervised feature
selection). How do the improved theoretical estimates we have derived carry over to these problems
(theoretically or empirically)? We leave these directions for future work.

Acknowledgements
Most of the work was done when SP was a graduate student at RPI. PD was supported by IIS-
1447283 and IIS-1319280.

8



References
[1] Christos Boutsidis, Petros Drineas, and Malik Magdon-Ismail. Near optimal coresets for least-squares

regression. IEEE Transactions on Information Theory, 59(10), October 2013.
[2] C. Boutsidis and M. Magdon-Ismail. A note on sparse least-squares regression. Information Processing

Letters, 115(5):273–276, 2014.
[3] Christos Boutsidis and Malik Magdon-Ismail. Deterministic feature selection for k-means clustering.

IEEE Transactions on Information Theory, 59(9), September 2013.
[4] Christos Boutsidis, Petros Drineas, and Malik Magdon-Ismail. Sparse features for pca-like regression. In

Proc. 25th Annual Conference on Neural Information Processing Systems (NIPS), 2011. to appear.
[5] Malik Magdon-Ismail and Christos Boutsidis. Optimal sparse linear auto-encoders and sparse pca.

arXiv:1502.06626, 2015.
[6] T. F. Chan and P. C. Hansen. Some applications of the rank revealing QR factorization. SIAM J. Sci. Stat.

Comput., 13(3):727–741, 1992.
[7] A. Deshpande and L. Rademacher. Efficient volume sampling for row/column subset selection. In Pro-

ceedings of the IEEE 51st FOCS, pages 329–338, 2010.
[8] A. Deshpande and S. Vempala. Adaptive sampling and fast low-rank matrix approximation. In Approx-

imation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, pages 292–303.
Springer, 2006.

[9] A. Deshpande, L. Rademacher, S. Vempala, and G. Wang. Matrix approximation and projective clustering
via volume sampling. Theory of Computing, 2(1):225–247, 2006.

[10] P. Drineas, I. Kerenidis, and P. Raghavan. Competitive recommendation systems. In Proceedings of the
34th STOC, pages 82–90, 2002.

[11] A. Frieze, R. Kannan, and S. Vempala. Fast monte-carlo algorithms for finding low-rank approximations.
Journal of the ACM (JACM), 51(6):1025–1041, 2004.

[12] N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic algorithms
for constructing approximate matrix decompositions. SIAM Rev., 53(2):217–288, May 2011.

[13] E. Liberty, F. Woolfe, P.G. Martinsson, V. Rokhlin, and M. Tygert. Randomized algorithms for the low-
rank approximation of matrices. PNAS, 104(51):20167–20172, 2007.

[14] Michael W Mahoney and Petros Drineas. CUR matrix decompositions for improved data analysis. PNAS,
106(3):697–702, 2009.

[15] C. Boutsidis, P. Drineas, and M. Magdon-Ismail. Near-optimal column-based matrix reconstruction.
SIAM Journal of Computing, 43(2):687–717, 2014.

[16] P. Drineas, M. W Mahoney, and S Muthukrishnan. Subspace sampling and relative-error matrix approx-
imation: Column-based methods. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, pages 316–326. Springer, 2006.

[17] Venkatesan Guruswami and Ali Kemal Sinop. Optimal column-based low-rank matrix reconstruction. In
Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1207–1214, 2012.

[18] C. Boutsidis, P. Drineas, and M. Magdon-Ismail. Near optimal column-based matrix reconstruction. In
IEEE 54th Annual Symposium on FOCS, pages 305–314, 2011.

[19] Petros Drineas, Michael W Mahoney, and S Muthukrishnan. Relative-error cur matrix decompositions.
SIAM Journal on Matrix Analysis and Applications, 30(2):844–881, 2008.

[20] T.F. Chan. Rank revealing QR factorizations. Linear Algebra and its Applications, 8889(0):67 – 82, 1987.
[21] Crystal Maung and Haim Schweitzer. Pass-efficient unsupervised feature selection. In Advances in Neural

Information Processing Systems, pages 1628–1636, 2013.
[22] C. Boutsidis, M. W Mahoney, and P. Drineas. An improved approximation algorithm for the column

subset selection problem. In Proceedings of the 20th SODA, pages 968–977, 2009.
[23] D. Papailiopoulos, A. Kyrillidis, and C. Boutsidis. Provable deterministic leverage score sampling. In

Proc. SIGKDD, pages 997–1006, 2014.
[24] A. Deshpande, L. Rademacher, S. Vempala, and G. Wang. Matrix approximation and projective clustering

via volume sampling. In Proc. SODA, pages 1117–1126, 2006.
[25] P. Drineas and M. W Mahoney. A randomized algorithm for a tensor-based generalization of the singular

value decomposition. Linear algebra and its applications, 420(2):553–571, 2007.
[26] P. Paschou, J. Lewis, A. Javed, and P. Drineas. Ancestry informative markers for fine-scale individual

assignment to worldwide populations. Journal of Medical Genetics, 47(12):835–47, 2010.
[27] D. Davidov, E. Gabrilovich, and S. Markovitch. Parameterized generation of labeled datasets for text

categorization based on a hierarchical directory. In Proc. SIGIR, pages 250–257, 2004.

9


