Robust PCA with compressed data

Wooseok Ha Rina Foygel Barber
University of Chicago University of Chicago
haywse@Quchicago.edu rina@uchicago.edu
Abstract

The robust principal component analysis (RPCA) problem seeks to separate low-
rank trends from sparse outliers within a data matrix, that is, to approximate a nxd
matrix D as the sum of a low-rank matrix L and a sparse matrix S. We examine
the robust principal component analysis (RPCA) problem under data compression,
where the data Y is approximately given by (L+.S5)-C, that is, a low-rank + sparse
data matrix that has been compressed to size n x m (with m substantially smaller
than the original dimension d) via multiplication with a compression matrix C'.
We give a convex program for recovering the sparse component S along with the
compressed low-rank component L - C, along with upper bounds on the error of
this reconstruction that scales naturally with the compression dimension m and
coincides with existing results for the uncompressed setting m = d. Our results
can also handle error introduced through additive noise or through missing data.
The scaling of dimension, compression, and signal complexity in our theoretical
results is verified empirically through simulations, and we also apply our method
to a data set measuring chlorine concentration across a network of sensors to test
its performance in practice.

1 Introduction

Principal component analysis (PCA) is a tool for providing a low-rank approximation to a data
matrix D € R™*? with the aim of reducing dimension or capturing the main directions of variation
in the data. More recently, there has been increased focus on more general forms of PCA, that is
more robust to realistic flaws in the data such as heavy-tailed outliers. The robust PCA (RPCA)
problem formulates a decomposition of the data,

D~L+S,

into a low-rank component L (capturing trends across the data matrix) and a sparse component S
(capturing outlier measurements that may obscure the low-rank trends), which we seek to separate
based only on observing the data matrix D [3, 10]. Depending on the application, we may be
primarily interested in one or the other component:

e In some settings, the sparse component .S may represent unwanted outliers, e.g. corrupted
measurements—we may wish to clean the data by removing the outliers and recovering the
low-rank component L.

e In other settings, the sparse component S may contain the information of interest—for
instance, in image or video data, S may capture the foreground objects which are of interest,
while L may capture background components which we wish to subtract.

Existing methods to separate the sparse and low-rank components include convex [3, 10] and non-
convex [9] methods, and can handle extensions or additional challenges such as missing data [3],
column-sparse rather than elementwise-sparse structure [11], streaming data [6, 7], and different
types of structures superimposed with a low-rank component [1].

In this paper, we examine the possibility of demixing sparse and low rank structure, under the
additional challenge of working with data that has been compressed,

Y=D C~(L+8) CecR>™,

where L, S € R™*? comprise the (approximately) low-rank and (approximately) sparse components
of the original data matrix D, while C' € R?*™ is a random or fixed compression matrix. In general,
we think of the compression dimension m as being significantly smaller than d, motivated by several
considerations:

e Communication constraints: if the n X d data matrix consists of d-dimensional measure-
ments taken at n remote sensors, compression would allow the sensors to transmit infor-
mation of dimension m < d;

e Storage constraints: storing a matrix with nm many entries instead of nd many entries;

e Data privacy: if the data is represented as the n x d matrix, where n-dimensional features
were collected from d individuals, we can preserve privacy by compressing the data by a
random linear transformation and allow the access to database only through the compressed
data. This privacy-preserving method has been called matrix masking in the privacy litera-
ture and studied by [12] in the context of high-dimensional linear regression.

Random projection methods have been shown to be highly useful for reducing dimensionality with-
out much loss of accuracy for numerical tasks such as least squares regression [8] or low-rank
matrix computations [5]. Here we use random projections to compress data while preserving the
information about the underlying low-rank and sparse structure. [13] also applied random projection
methods to the robust PCA problem, but their purpose is to accelerate the computational task of
low-rank approximation, which is different from the aim of our work.

In the compressed robust PCA setting, we hope to learn about both the low-rank and sparse compo-
nents. Unlike compressed sensing problems where sparse structure may be reconstructed perfectly
with undersampling, here we face a different type of challenge:

e The sparse component .S is potentially identifiable from the compressed component S - C,
using the tools of compressed sensing; however,

e The low-rank component L is not identifiable from its compression L - C'. Specifically, if
we let Po € R%*? be the projection operator onto the column span of C, then the two
low-rank matrices L and L' = L - P cannot be distinguished after multiplication by C.

Therefore, our goal will be to recover both the sparse component S, and the compressed low-rank
component L - C'. Note that recovering L - C' is similar to the goal of recovering the column span
of L, which may be a useful interpretation if we think of the columns of the data matrix D as data
points lying in R™; the column span of L characterizes a low-rank subspace of R" that captures the
main trends in the data.

Notation We will use the following notation throughout the paper. We write [n] = {1,...,n} for
any n > 1. We write ||v||p or || M||o to denote the number of nonzero entries in a vector v or matrix
M (note that this is not in fact a norm). M;, denotes the ¢th row of a matrix M and is treated as
a column vector. We will use the matrix norms ||M||¢ (Frobenius norm), | M||; (elementwise ¢;
norm), || M ||~ (elementwise ¢, norm), || M || (spectral norm, i.e. largest singular value), and || M| .
(nuclear norm, also known as the trace norm, given by the sum of the singular values of M).

2 Problem and method

We begin by formally defining the problem at hand. The data, which takes the form of a n x d
matrix, is well-approximated by a sum L* + S*, where L* is low-rank and S* is sparse. However,
we can only access this data through a (noisy) compression: our observed data is the n X m matrix

Y=(L"+8*-C+7Z, (1)

where C' € RIX™ ig the compression matrix, and Z € R™*™ absorbs all sources of error and
noise—we discuss specific models for Z later on.

Given this model, our goal will be to learn about both the low-rank and sparse structure. In the
ordinary robust PCA setting, the task of separating the low-rank and sparse components has been
known to be possible when the underlying low-rank component L* satisfies certain conditions, e.g.
incoherence condition in [3] or spikiness condition in [1]. In order to successfully decompose the
low-rank and sparse component in the compressed data, we thus need the similar conditions to hold
for the compressed low-rank component, which we define as the product P* = L* - C. As we
will see, if L* satisfies the spikiness condition, i.e. ||L*||cc < g, then the compressed low-rank
component P* satisfies the similar spikiness condition, i.e. a bound on ||P*C||s. This motivates
the possibility to recover both the low-rank and sparse components in the case of compressed data.

As discussed above, while we can aim to recover the sparse component S*, there is no hope to
recover the original low-rank component L*, since L* is not identifiable in the compressed model.
Therefore, we propose a natural convex program for recovering the underlying compressed low-
rank component P* = L* - C and the sparse component S*. Note that as discussed in [5], random
projection preserves the column span of L*, and so we can recover the column span of L* via P*.

We define our estimators of the sparse component S*, and the low-rank product P*, as follows:

(P,S) = arg min {1Y—P—S-C||,2:+V||P*+/\||S||1} . (2)

(PS)|PCT a2
Note that we impose the spikiness condition |PCT||.c < « on P, in order to guarantee good
performance for demixing such two superimposed components—in later section, we will see that
the same condition holds for P*. This method is parametrized by the triple («, v, A), and natural
scalings for these tuning parameters are discussed alongside our theoretical results.

2.1 Sources of errors and noise

Next, we give several examples of models and interpretations for the error term Z in (1).

Random noise First, we may consider a model where the signal has an exact low-rank + sparse
decomposition, with well-behaved additive noise added before and/or after the compression step:

Y =(L"+ 5"+ Zye) - C+ Zpost 5

where the entries of the pre- and post-compression noise, Zyre and Zog:, are i.i.d. mean-zero sub-
gaussian random variables. In this case, the noise term Z in (1) is given by Z = Zyre - C + Zpost.

Misspecified model Next, we may consider a case where the original data can be closely approx-
imated by a low-rank + sparse decomposition, but this decomposition is not exact. In this case, we
could express the original (uncompressed) data as L* 4+ .S* + Zodel, Where Zyodel captures the error
of the low-rank + sparse decomposition. Then this model misspecification can be absorbed into the
noise term Z, i.e. Z = Zmodel - C.

Missing data Given an original data matrix D = L* 4+ §*, we might have access only to a partial
version of this matrix. We write Dq, to denote the available data, where 2 C [n] x [d] indexes the
entries where data is available, and (Dg)ij = D;; - 1;jeq. Then, a low-rank + sparse model for our
compressed data is given by
Y:DQC: (L*+S;2)'C+Zmissing'ca

where Zmissing = L — L*. In some settings, we may first want to adjust Dq before compressing
the data, for instance, by reweighting the observed entries in Dg, to ensure a closer approximation
to D. Denoting the reweighted matrix of partial observations by Dg,, we have compressed data

Y:EQC: (L*+§§)'C+Zmissing‘ca
With Zissing = Ea — L*, and where §S‘f2 is the reweighted matrix of S§,. Then the error from the
missing data can be absorbed into the Z term, i.e. Z = Znissing - C.
Combinations Finally, the observed data Y may differ from the compressed low-rank + sparse
decomposition (L* + 5*) - C' due to a combination of the factors above, in which case we may write
Z = (Zpre + Zmodel + Zmissing) -C + Zpost .

2.2 Models for the compression matrix C'

Next, we consider several scenarios for the compression matrix C.

Random compression In some settings, the original data naturally lies in R™* ¢, but is compressed
by the user for some purpose. For instance, if we have data from d individuals, with each data point
lying in R™, we may compress this data for the purpose of providing privacy to the individuals in the
data set. Alternately, we may compress data to adhere to constraints on communication bandwidth
or on data storage. In either case, we control the choice of the compression matrix C', and are free
to use a simple random model. Here we consider two models:
. . iid
Gaussian model: the entries of C are generated as Cj; ~ N(0,1/m). 3)
Orthogonal model: C = /d/m - U,
where U € R¥™ is an orthonormal matrix chosen uniformly at random.

Note that in each case, E [C’C’T] =1,

“4)

Multivariate regression / multitask learning In a multivariate linear regression, we observe a
matrix of data Y that follows a model Y = X - B + W where X is an observed design matrix,
B is an unknown matrix of coefficients (generally the target parameter), and ¥ is a matrix of
noise terms. Often, the rows of Y are thought of as (independent) samples, where each row is
a multivariate response. In this setting, the accuracy of the regression can often be improved by
leveraging low-rank or sparse structure that arises naturally in the matrix of coefficients B. If B is
approximately low-rank + sparse, the methodology of this paper can be applied: taking the transpose
of the multivariate regression model, we have YT = BT - XT + W . Compare to our initial
model (1), where we replace Y with YT, and use the compression matrix C = X . Then, if
BT ~ L* 4 S* is a low-rank + sparse approximation, the multivariate regression can be formulated
as a problem of the form (1) by setting the error term to equal Z = (BT — L* — S*) - X T + W',

3 Theoretical results

In this section, we develop theoretical error bounds for the compressed robust PCA problem under
several of the scenarios described above. We first give a general deterministic result in Section 3.1,
then specialize this result to handle scenarios of pre- and post-compression noise and missing data.
Results for multivariate regression are given in the Supplementary Materials.

3.1 Deterministic result

We begin by stating a version of the Restricted Eigenvalue property found in the compressed sensing
and sparse regression literature [2]:

Definition 1. For a matrix X € R™*? and for ¢1,co > 0, X satisfies the restricted eigenvalue
property with constants (cy, ¢2), denoted by RE,;, 4(c1, ¢2), if

log(d)

[Xv|2 > c]|v|lz — ez - |Jv||; forall v € RY. %)

We now give our main result for the accuracy of the convex program (2), a theorem that we will
see can be specialized to many of the settings described earlier. This theorem gives a deterministic
result and does not rely on a random model for the compression matrix C or the error matrix Z.

Theorem 1. Let L* € R™*? be any matrix with rank(L*) < r, and let S* € R™*? be any
matrix with at most s nonzero entries per row, that is, max;||S%, |lo < s. Let C € R¥™ be any
compression matrix and define the data Y and the error/noise term Z as in (1). Let P* = L* - C

as before. Suppose that C'™ satisfies RE,, 4(c1,ca), where ¢y == c¢1 — c3 - \/16slog(d)/m > 0. If
parameters («, v, X) satisfy

a> |L*CCT o, v 2 2] Z|l; A > 2[|ZC T oo + 4a, 6)
then deterministically, the solution (]3, S) to the convex program (2) satisfies

| P — P*||2 —|—c%||§— S*||E < 18rv? + 9cy2snA? .

We now highlight several applications of this theorem to specific settings: a random compression
model with Gaussian or subgaussian noise, and a random compression model with missing data. (An
application to the multivariate linear regression model is given in the Supplementary Materials.)

3.2 Results for random compression with subgaussian noise

Suppose compression matrix C' is random, and that the error term Z in the model (1) comes from
1.i.d. subgaussian noise, e.g. measurement error that takes place before and/or after the compression:

Z = Zpre - C + Zpost -

Our model for this setting is as follows: for fixed matrices L* and S*, where rank(L*) < r and
max;||S¥ |lo < s, we observe data

Y = (L* + S* + Zpre) -C+ Zpost) (7)

where the compression matrix C' is generated under either the Gaussian (3) or orthogonal (4) model,

and where the noise matrices Zpre, Zpost are independent from each other and from C, with entries
id id

(Zpre)ij lfl\/ N(O, O'2) and (Zpost)ij lflV N(O,O’2) .

pre post

For this section, we assume d > m without further comment (that is, the compression should reduce
the dimension of the data). Let o7, > max{o., 07 }. Specializing the result of Theorem 1 to
this setting, we obtain the following probablistic guarantee:

Theorem 2. Assume the model (7). Suppose that rank(L*) < r, max;||SF.|lo < s, and ||[L*]|co <

a. Then there exist universal constants c,c’, ¢’ > 0 such that if we define

dlog(nd) d(n+m) dlog(nd) n

m

a = dag , V= 240 max , A = 320 max 4o,

and if m > c - slog(nd), then the solution (ﬁ, §) to the convex program (2) satisfies

1P = P+ IS = S*[f < ¢ - — (0max - 7(n +m) + (0pay + 0F) - snlog(nd)) (8)

SRS

with probability at least 1 — Z—;.

Remark 1. 1f the entries of Zp. and Z,os; are subgaussian rather than Gaussian, then the same result
holds, except for a change in the constants appearing in the parameters (a, v, A). (Recall that a

random variable X is o2-subgaussian if E [e!¥] < e’ /2 forall t € R.)

Remark 2. In the case d = m, our result matches Corollary 2 in Agarwal et al [1] exactly, except
that our result involves multiplicative logarithm factor log(nd) in the o term whereas theirs does
not.! This additional log factor arises when we upper bound ||L*CC'T|| ., which is unavoidable if
we want the bound to hold with high probability.

Remark 3. Theorem 2 shows the natural scaling: the first term r(n+m) is the degree of freedom for
compressed rank r matrix P whereas the term sn log(nd) is the signal complexity of sparse compo-
nent S, which has sn many nonzero entries. The multiplicative factor %aiax can be interpreted as
the noise variance of the problem amplified by the compression.

3.3 Results for random compression with missing data

Next, we consider a missing data scenario where the original n x d matrix is only partially ob-
served. The original (complete) data is D = L* 4+ S* € R"*? a low-rank + sparse decompo-
sition.> However, only a subset C [n] x [d] of entries are observed—we are given access to
D;; for each (7,) € Q. After a reweighting step, we compress this data with a compression matrix
C € R¥*™ for instance, in order to reduce communication, storage, or computation requirements.

"Note that s - n in our paper is equivalent to s in [1], since their work defines s to be the total number of
nonzero entries in S* while we count entries per row.

2For clarity of presentation, we do not include additive noise before or after compression in this section.
However, our theoretical analysis for additive noise (Theorem 2) and for missing data (Theorem 3) can be
combined in a straightforward way to obtain an error bound scaling as a sum of the two respective bounds.

First, we specify a model for the missing data. For each (i,j) € [n] x [d], let p;; € [0, 1] be
the probability that this entry is observed. Additionally, we assume that the sampling scheme is
independent across all entries, and that the p;;’s are known.3

To proceed, we first define a reweighted version of the partially observed data matrix and then
multiply by the compression matrix C"

Y = 5(2 -C' where (EQ)ij = Dl]/le .]lijEQ . (9)
Define also the reweighted versions of the low rank and sparse components,

(L&) = Lij/pij - Lijea and (S§)i; = Sij/pij - Lijeq ,
and note that we then have
Y:(~§+§§)~C:(L*+§§)«C’+Z, (10)

where Z = (EE —L*)-C'. The role of the reweighting step (9) is to ensure that this noise term Z has

mean zero. Note that in the reformulation (10) of the model, Y is approximated with a compression

of L* + 56, where L* is the original low rank component while 55 is defined above. While the
original sparse component S*, is not identifiable via the missing data model (since we have no

information to help us recover entries S7; for (i, j) ¢ 2), this new decomposition L* + §§ now has
a sparse component that is identifiable, since by definition, S¢ preserves the sparsity of S* but has
no nonzero entries in unobserved locations, that is, (S&);; = 0 whenever (4, j) & €.

With this model in place, we obtain the following probabilistic guarantee for this setting, which is

another specialized version of Theorem 1. We note that we again have no assumptions on the values
of the entries in S*, only on the sparsity level—e.g. there is no bound assumed on ||.5*|| .

Theorem 3. Assume the model (9). Suppose that rank(L*) < r, max;||S}.|lo < s, and | L*||cc <
. If the sampling scheme satisfies p;; > pmin for all (i, j) € [n] X [d] for some positive constant

Pmin > 0, then there exist universal constants ¢, , ¢’ > 0 such that if we define

dlog(nd d log(nd dlog?(nd
o = Sagy | 1oend) V:mp;ilnao\/ (n +m)log(nd) 1, [dog’(nd)
m

, A=12p . g 4o,

m m

and if m > ¢ - slog(nd), then the solution (P, §) to the convex program (2) satisfies

-2

|P— P2+ IS — S3||2 < ¢ - — - pr2a2 (r(n +m)log(nd) + snlog?(nd))

3la g,

with probability at least 1 — Z—;.

4 Experiments

In this section, we first use simulated data to study the behavior of the convex program (2) for
different compression dimensions, signal complexities and missing levels, which show the close
agreement with the scaling predicted by our theory. We also apply our method to a data set consisting
of chlorine measurements across a network of sensors. For simplicity, in all experiments, we select
o = 00, which is easier for optimization and generally results in a solution that still has low spikiness
(that is, the solution is the same as if we had imposed a bound with finite).

4.1 Simulated data

Here we run a series of simulations on compressed data to examine the performance of the con-
vex program (2). In all cases, we used the compression matrix C' generated under the orthogonal
model (4). We solve the convex program (2) via alternating minimization over L and .S, selecting
the regularization parameters v and A that minimizes the squared Frobenius error. All results are
averaged over b trials.

3In practice, the assumption that p;;’s are known is not prohibitive. For example, we might model p;; =
o 35 (the row and column locations of the observed entries are chosen independently, e.g. see [4]), or a logistic

%) = o + (5. In either case, fitting a model using the observed set €2 is extremely accurate.

model, log (

x10°

2 T r
(<] —eo— n=d=800
® 1.5} |_—e*—_ n=d=400
°
o
g 1t
o
w
®05¢
S)
= 0 ese - .’

0 2 4 6 8 10

Compression ratio d/m
Figure 1: Results for the noisy data experiment. The total squared error, calculated as in Theorem 2,
is plotted against the compression ratio d/m. Note the linear scaling, as predicted by the theory.

«10* Dimension n=d=200 «10* Dimension n=d=400

N

5 5°
= —e— m=50 = ——m=100
o 15F | —e— m=100 o4 —— m=200 /
3 ---0---m=150// 3 3 snseans m=300
] — -—- m=200] — -o— - m=400 -
s | . —eTl 32 e e
a P LIS i 3 B DT Lot
SO5[7 g ts T gyl e eyt
5] ol o = ot
F oo Fo
0 10 20 30 40 50
Rank

s «10* Dimension n=d=200 15
e e
ogl 5]
g 8 10
g 41 g
o (on
17} 5| 4 @ 5
E _.—_.’.,v"" © —_.__.__,_-4
'9 0 w,p,i&i;:‘:u‘:'_'.f:_-_-"_'-.’;..'&- B '9 0 _P“;,:‘,m__ﬁ!_._..u._’;-:.-_-fl

0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1

Sparsity proportion Sparsity proportion

Figure 2: Results for the varying-rank (top row) and varying-sparsity (bottom row) experiments. The
total squared error, calculated as in Theorem 2, is plotted against the rank r or sparsity proportion
s/d. Note the nearly linear scaling for most values of m.

Simulation 1: compression ratio. First we examine the role of the compression dimension m. We
fix the matrix dimensionn = d € {400, 800}. The low-rank component is given by L* = /7-UV T,
where U and V are n x r and d x r matrices with i.i.d. N(0, 1) entries, for rank » = 10. The
sparse component S* has 1% of its entries generated as 5 - N (0, 1), that is, s = 0.01d. The data

is D = L* + S* + Z, where Z;; s N(0,0.25). Figure 1 shows the squared Frobenius error

| P — P2 + 1S — S*||2 plotted against the compression ratio d/m. We see error scaling linearly
with the compression ratio, which supports our theoretical results.

Simulation 2: rank and sparsity. Next we study the role of rank and sparsity, for a matrix of size
n =d = 200 or n = d = 400. We generate the data D as before, but we either vary the rank
r € {5,10,...,50}, or we vary the sparsity s with s/d € {0.01,0.02,...,0.1}. Figure 2 shows the
squared Frobenius error plotted against either the varying rank or the varying sparsity. We repeat this
experiment for several different compression dimensions m. We see a little deviation from linear
scaling for the smallest m, which can be due to the fact that our theorems give upper bounds rather
than tight matching upper and lower bounds (or perhaps the smallest value of m does not satisfy the
condition stated in the theorems). However, for all but the smallest m, we see error scaling nearly
linearly with rank or with sparsity, which is consistent with our theory.

Simulation 3: missing data. Finally, we perform experiments under the existence of missing
entries in the data matrix D = L* + S*. We fix dimensions n = d = 400 and generate L* and S*
as before, with » = 10 and s = 0.01d, but do not add noise. To introduce the missing entries in
the data, we use a uniform sampling scheme, where each entry of D is observed with probability p,

x10° x10°

7 7
. 56F [——m=100
S 6 S8 | T mae
o5} o5} -=s m=300 y
3 3 — -— - m=400 S
g4 g4 e
>3t >3t >
a a =
=2t =2t /”c”
Lt el &é‘

0 0

0 0.2 0.4 0.6 0.8 1 0 20 40 60 80 100
P 1/p?

Figure 3: Results for the missing data experiment. The total squared error, calculated as in Theo-
rem 3, is plotted against p (proportion of observed data) or against 1/p?, for various values of m,
based on one trial. Note the nearly linear scaling with respect to 1/p%.

1

= —— Low-rank + sparse model
g -2t — = — Low-rank model
(0]
(0]
Z -3
©
2
§ _4\\5\
- =¢— — = — -9 — —»

-5 . . X

0 1000 2000 3000 4000

Compression dimension m

Figure 4: Results for the chlorine data (averaged over 2 trials), plotting the log of the relative error
on the test set for a low-rank + sparse model and a low-rank-only model. The low-rank + sparse
model performs better across a range of compression dimensions m (up to 8-9% reduction in error).

with p € {0.1,0.2,...,1}. Figure 3 shows the squared Frobenius error || P — P*||2 + || — S5 |2
(see Theorem 3 for details) across a range of probabilities p. We see that the squared error scales
approximately linearly with 1/p?, as predicted by our theory.

4.2 Chlorine sensor data

To illustrate the application of our method to a specific application, we consider chlorine concentra-
tion data from a network of sensors.* The data contains a realistic simulation of chlorine concen-
tration measurements from n = 166 sensors in a hydraulic system over d = 4310 time points. We
assume D is well approximated with a low-rank + sparse decomposition. We then compress the
data using the orthogonal model (4) and study the performance of our estimators (2) for varying m.
In order to evaluate performance, we use 80% of the entries to fit the model, 10% as a validation set
for selecting tuning parameters, and the final 10% as a test set. We compare against a low-rank ma-
trix reconstruction, equivalent to setting S =0and fitting only the low-rank component L. (Details
are given in the Supplementary Materials.) The results are displayed in Figure 4, where we see that
the error of the recovery grows smoothly with compression dimension m, and that the low-rank +
sparse decomposition gives better data reconstruction than the low-rank-only model.

5 Discussion

In this paper, we have examined the robust PCA problem under data compression, where we seek to
decompose a data matrix into low-rank + sparse components with access only to a partial projection
of the data. This provides a tool for accurate modeling of data with multiple superimposed struc-
tures, while enabling restrictions on communication, privacy, or other considerations that may make
compression necessary. Our theoretical results show an intuitive tradeoff between the compression
ratio and the error of the fitted low-rank + sparse decomposition, which coincides with existing
results in the extreme case of no compression (compression ratio = 1). Future directions for this
problem include adapting the method to the streaming data (online learning) setting.

“Data obtained from http://www.cs.cmu.edu/afs/cs/project/spirit—1/www/

References

[1] Alekh Agarwal, Sahand Negahban, Martin J Wainwright, et al. Noisy matrix decomposition
via convex relaxation: Optimal rates in high dimensions. The Annals of Statistics, 40(2):1171-
1197, 2012.

[2] Peter J Bickel, Ya’acov Ritov, and Alexandre B Tsybakov. Simultaneous analysis of lasso and
dantzig selector. The Annals of Statistics, pages 1705-1732, 2009.

[3] Emmanuel J Candes, Xiaodong Li, Yi Ma, and John Wright. Robust principal component
analysis? Journal of the ACM (JACM), 58(3):11, 2011.

[4] Rina Foygel, Ohad Shamir, Nati Srebro, and Ruslan R Salakhutdinov. Learning with the
weighted trace-norm under arbitrary sampling distributions. In Advances in Neural Informa-
tion Processing Systems, pages 2133-2141, 2011.

[5] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions. SIAM review,
53(2):217-288, 2011.

[6] Jun He, Laura Balzano, and John Lui. Online robust subspace tracking from partial informa-
tion. arXiv preprint arXiv:1109.3827, 2011.

[7] Jun He, Laura Balzano, and Arthur Szlam. Incremental gradient on the grassmannian for
online foreground and background separation in subsampled video. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1568—-1575. IEEE, 2012.

[8] Odalric Maillard and Rémi Munos. Compressed least-squares regression. In Advances in
Neural Information Processing Systems, pages 1213-1221, 2009.

[9] Praneeth Netrapalli, UN Niranjan, Sujay Sanghavi, Animashree Anandkumar, and Prateek
Jain. Non-convex robust PCA. In Advances in Neural Information Processing Systems, pages
1107-1115, 2014.

[10] John Wright, Arvind Ganesh, Shankar Rao, Yigang Peng, and Yi Ma. Robust principal com-
ponent analysis: Exact recovery of corrupted low-rank matrices via convex optimization. In
Advances in Neural Information Processing Systems, pages 2080-2088, 2009.

[11] Huan Xu, Constantine Caramanis, and Sujay Sanghavi. Robust PCA via outlier pursuit. In
Advances in Neural Information Processing Systems, pages 2496-2504, 2010.

[12] Shuheng Zhou, John Lafferty, and Larry Wasserman. Compressed and privacy-sensitive sparse
regression. IEEE Transactions on Information Theory, 55(2):846-866, 2009.

[13] Tianyi Zhou and Dacheng Tao. Godec: Randomized low-rank & sparse matrix decomposition
in noisy case. In Proceedings of the 28th International Conference on Machine Learning,
pages 33-40, 2011.

