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Université Paris-Dauphine

lehec@ceremade.dauphine.fr

Abstract

We analyze the projected Langevin Monte Carlo (LMC) algorithm, a close cousin
of projected Stochastic Gradient Descent (SGD). We show that LMC allows to
sample in polynomial time from a posterior distribution restricted to a convex
body and with concave log-likelihood. This gives the first Markov chain to sample
from a log-concave distribution with a first-order oracle, as the existing chains
with provable guarantees (lattice walk, ball walk and hit-and-run) require a zeroth-
order oracle. Our proof uses elementary concepts from stochastic calculus which
could be useful more generally to understand SGD and its variants.

1 Introduction

A fundamental primitive in Bayesian learning is the ability to sample from the posterior distribution.
Similarly to the situation in optimization, convexity is a key property to obtain algorithms with
provable guarantees for this task. Indeed several Markov Chain Monte Carlo methods have been
analyzed for the case where the posterior distribution is supported on a convex set, and the negative
log-likelihood is convex. This is usually referred to as the problem of sampling from a log-concave
distribution. In this paper we propose and analyze a new Markov chain for this problem which
could have several advantages over existing chains for machine learning applications. We describe
formally our contribution in Section 1.1. Then in Section 1.2 we explain how this contribution relates
to various line of work in different fields such as theoretical computer science, statistics, stochastic
approximation, and machine learning.

1.1 Main result

Let K ⊂ Rn be a convex set such that 0 ∈ K, K contains a Euclidean ball of radius r > 0
and is contained in a Euclidean ball of radius R. Denote PK the Euclidean projection on K (i.e.,
PK(x) = argminy∈K |x − y| where | · | denotes the Euclidean norm in Rn), and ‖ · ‖K the gauge
of K defined by

‖x‖K = inf{t ≥ 0; x ∈ tK}, x ∈ Rn.
Let f : K → R be a L-Lipschitz and β-smooth convex function, that is f is differentiable and
satisfies ∀x, y ∈ K, |∇f(x)−∇f(y)| ≤ β|x− y|, and |∇f(x)| ≤ L. We are interested in the prob-
lem of sampling from the probability measure µ on Rn whose density with respect to the Lebesgue
measure is given by:

dµ

dx
=

1

Z
exp(−f(x))1{x ∈ K}, where Z =

∫
y∈K

exp(−f(y))dy.
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We denote m = Eµ|X|, and M = E [‖θ‖K ], where θ is uniform on the sphere Sn−1 = {x ∈ Rn :
|x| = 1}.
In this paper we study the following Markov chain, which depends on a parameter η > 0, and where
ξ1, ξ2, . . . is an i.i.d. sequence of standard Gaussian random variables in Rn, and X0 = 0,

Xk+1 = PK
(
Xk −

η

2
∇f(Xk) +

√
ηξk

)
. (1)

We call the chain (1) projected Langevin Monte Carlo (LMC).

Recall that the total variation distance between two measures µ, ν is defined as TV(µ, ν) =
supA |µ(A) − ν(A)| where the supremum is over all measurable sets A. With a slight abuse of
notation we sometimes write TV(X, ν) where X is a random variable distributed according to
µ. The notation vn = Õ(un) (respectively Ω̃) means that there exists c ∈ R, C > 0 such that
vn ≤ Cun logc(un) (respectively ≥).

Our main result shows that for an appropriately chosen step-size and number of iterations, one has
convergence in total variation distance of the iterates (Xk) to the target distribution µ.

Theorem 1 Let ε > 0. One has TV(XN , µ) ≤ ε provided that η = 1
N

(
m
ε

)2
and

N = Ω̃

(
(n+RL)2(M + L/r)2nm6 max

(
1

ε16

(
n+RL

r

)6

,
1

ε22

(
βm(L+

√
R)
)8))

.

Note that by viewing β, L, r as numerical constants, using M ≤ 1/r, and assuming R ≤ n and
m ≤ n3/4, the bound reads

N = Ω̃

(
n9m6

ε22

)
.

Observe also that if f is constant, that is µ is the uniform measure on K, then L = 0, m ≤
√
n, and

one can show that M = Õ(1/
√
n), which yields the bound:

N = Ω̃

(( n
ε2

)11)
.

1.2 Context and related works

There is a long line of works in theoretical computer science proving results similar to Theorem 1,
starting with the breakthough result of Dyer et al. [1991] who showed that the lattice walk mixes in
Õ(n23) steps. The current record for the mixing time is obtained by Lovász and Vempala [2007],
who show a bound of Õ(n4) for the hit-and-run walk. These chains (as well as other popular chains
such as the ball walk or the Dikin walk, see e.g. Kannan and Narayanan [2012] and references
therein) all require a zeroth-order oracle for the potential f , that is given x one can calculate the
value f(x). On the other hand our proposed chain (1) works with a first-order oracle, that is given
x one can calculate the value of ∇f(x). The difference between zeroth-order oracle and first-
order oracle has been extensively studied in the optimization literature (e.g., Nemirovski and Yudin
[1983]), but it has been largely ignored in the literature on polynomial-time sampling algorithms.
We also note that hit-and-run and LMC are the only chains which are rapidly mixing from any
starting point (see Lovász and Vempala [2006]), though they have this property for seemingly very
different reasons. When initialized in a corner of the convex body, hit-and-run might take a long
time to take a step, but once it moves it escapes very far (while a chain such as the ball walk would
only do a small step). On the other hand LMC keeps moving at every step, even when initialized in
a corner, thanks for the projection part of (1).

Our main motivation to study the chain (1) stems from its connection with the ubiquitous
stochastic gradient descent (SGD) algorithm. In general this algorithm takes the form xk+1 =
PK (xk − η∇f(xk) + εk) where ε1, ε2, . . . is a centered i.i.d. sequence. Standard results in approx-
imation theory, such as Robbins and Monro [1951], show that if the variance of the noise Var(ε1) is
of smaller order than the step-size η then the iterates (xk) converge to the minimum of f onK (for a
step-size decreasing sufficiently fast as a function of the number of iterations). For the specific noise
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sequence that we study in (1), the variance is exactly equal to the step-size, which is why the chain
deviates from its standard and well-understood behavior. We also note that other regimes where
SGD does not converge to the minimum of f have been studied in the optimization literature, such
as the constant step-size case investigated in Pflug [1986], Bach and Moulines [2013].

The chain (1) is also closely related to a line of works in Bayesian statistics on Langevin Monte
Carlo algorithms, starting essentially with Tweedie and Roberts [1996]. The focus there is on the
unconstrained case, that is K = Rn. In this simpler situation, a variant of Theorem 1 was proven in
the recent paper Dalalyan [2014]. The latter result is the starting point of our work. A straightfor-
ward way to extend the analysis of Dalalyan to the constrained case is to run the unconstrained chain
with an additional potential that diverges quickly as the distance from x to K increases. However
it seems much more natural to study directly the chain (1). Unfortunately the techniques used in
Dalalyan [2014] cannot deal with the singularities in the diffusion process which are introduced by
the projection. As we explain in Section 1.3 our main contribution is to develop the appropriate
machinery to study (1).

In the machine learning literature it was recently observed that Langevin Monte Carlo algorithms
are particularly well-suited for large-scale applications because of the close connection to SGD. For
instance Welling and Teh [2011] suggest to use mini-batch to compute approximate gradients instead
of exact gradients in (1), and they call the resulting algorithm SGLD (Stochastic Gradient Langevin
Dynamics). It is conceivable that the techniques developed in this paper could be used to analyze
SGLD and its refinements introduced in Ahn et al. [2012]. We leave this as an open problem for
future work. Another interesting direction for future work is to improve the polynomial dependency
on the dimension and the inverse accuracy in Theorem 1 (our main goal here was to provide the
simplest polynomial-time analysis).

1.3 Contribution and paper organization

As we pointed out above, Dalalyan [2014] proves the equivalent of Theorem 1 in the unconstrained
case. His elegant approach is based on viewing LMC as a discretization of the diffusion process
dXt = dWt − 1

2∇f(Xt), where (Wt) is a Brownian motion. The analysis then proceeds in two
steps, by deriving first the mixing time of the diffusion process, and then showing that the discretized
process is ‘close’ to its continuous version. In Dalalyan [2014] the first step is particularly trans-
parent as he assumes α-strong convexity for the potential f , which in turns directly gives a mixing
time of order 1/α. The second step is also simple once one realizes that LMC (without projection)
can be viewed as the diffusion process dXt = dWt− 1

2∇f(Xηb tη c). Using Pinsker’s inequality and

Girsanov’s formula it is then a short calculation to show that the total variation distance between Xt

and Xt is small.

The constrained case presents several challenges, arising from the reflection of the diffusion pro-
cess on the boundary of K, and from the lack of curvature in the potential (indeed the constant
potential case is particularly important for us as it corresponds to µ being the uniform distri-
bution on K). Rather than a simple Brownian motion with drift, LMC with projection can be
viewed as the discretization of reflected Brownian motion with drift, which is a process of the form
dXt = dWt − 1

2∇f(Xt)dt − νtL(dt), where Xt ∈ K, ∀t ≥ 0, L is a measure supported on
{t ≥ 0 : Xt ∈ ∂K}, and νt is an outer normal unit vector of K at Xt. The term νtL(dt) is
referred to as the Tanaka drift. Following Dalalyan [2014] the analysis is again decomposed in two
steps. We study the mixing time of the continuous process via a simple coupling argument, which
crucially uses the convexity of K and of the potential f . The main difficulty is in showing that the
discretized process (Xt) is close to the continuous version (Xt), as the Tanaka drift prevents us
from a straightforward application of Girsanov’s formula. Our approach around this issue is to first
use a geometric argument to prove that the two processes are close in Wasserstein distance, and then
to show that in fact for a reflected Brownian motion with drift one can deduce a total variation bound
from a Wasserstein bound.

In this extended abstract we focus on the special case where f is a constant function, that is µ is
uniform on the convex body K. The generalization to an arbitrary smooth potential can be found
in the supplementary material. The rest of the paper is organized as follows. Section 2 contains
the main tehcnical arguments. We first remind the reader of Tanaka’s construction (Tanaka [1979])
of reflected Brownian motion in Section 2.1. We present our geometric argument to bound the
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Wasserstein distance between (Xt) and (Xt) in Section 2.2, and we use our coupling argument to
bound the mixing time of (Xt) in Section 2.3. The derivation of a total variation bound from the
Wasserstein bound is discussed in Section 2.4. Finally we conclude the paper in Section 3 with some
preliminary experimental comparison between LMC and hit-and-run.

2 The constant potential case

In this section we derive the main arguments to prove Theorem 1 when f is a constant function, that
is∇f = 0. For a point x ∈ ∂K we say that ν is an outer unit normal vector at x if |ν| = 1 and

〈x− x′, ν〉 ≥ 0, ∀x′ ∈ K.
For x /∈ ∂K we say that 0 is an outer unit normal at x. We define the support function hK of K by

hK(y) = sup {〈x, y〉; x ∈ K} , y ∈ Rn.
Note that hK is also the gauge function of the polar body of K.

2.1 The Skorokhod problem

Let T ∈ R+ ∪ {+∞} and w : [0, T ) → Rn be a piecewise continuous path with w(0) ∈ K.
We say that x : [0, T ) → Rn and ϕ : [0, T ) → Rn solve the Skorokhod problem for w if one has
x(t) ∈ K,∀t ∈ [0, T ),

x(t) = w(t) + ϕ(t), ∀t ∈ [0, T ),

and furthermore ϕ is of the form

ϕ(t) = −
∫ t

0

νs L(ds), ∀t ∈ [0, T ),

where νs is an outer unit normal at x(s), and L is a measure on [0, T ] supported on the set {t ∈
[0, T ) : x(t) ∈ ∂K}.
The path x is called the reflection of w at the boundary of K, and the measure L is called the local
time of x at the boundary ofK. Skorokhod showed the existence of such a a pair (x, ϕ) in dimension
1 in Skorokhod [1961], and Tanaka extended this result to convex sets in higher dimensions in
Tanaka [1979]. Furthermore Tanaka also showed that the solution is unique, and if w is continuous
then so is x and ϕ. In particular the reflected Brownian motion in K, denoted (Xt), is defined as
the reflection of the standard Brownian motion (Wt) at the boundary of K (existence follows by
continuity of Wt). Observe that by Itô’s formula, for any smooth function g on Rn,

g(Xt)− g(X0) =

∫ t

0

〈∇g(Xs), dWs〉+
1

2

∫ t

0

∆g(Xs) ds−
∫ t

0

〈∇g(Xs), νs〉L(ds). (2)

To get a sense of what a solution typically looks like, let us work out the case where w is piecewise
constant (this will also be useful to realize that LMC can be viewed as the solution to a Skorokhod
problem). For a sequence g1 . . . gN ∈ Rn, and for η > 0, we consider the path:

w(t) =

N∑
k=1

gk 1{t ≥ kη}, t ∈ [0, (N + 1)η).

Define (xk)k=0,...,N inductively by x0 = 0 and

xk+1 = PK(xk + gk).

It is easy to verify that the solution to the Skorokhod problem for w is given by x(t) = xηb tη c and

ϕ(t) = −
∫ t
0
νs L(ds), where the measure L is defined by (denoting δs for a dirac at s)

L =

N∑
k=1

|xk + gk − PK(xk + gk)|δkη,

and for s = kη,

νs =
xk + gk − PK(xk + gk)

|xk + gk − PK(xk + gk)|
.
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2.2 Discretization of reflected Brownian motion

Given the discussion above, it is clear that when f is a constant function, the chain (1) can be viewed
as the reflection (Xt) of a discretized Brownian motion W t := Wηb tη c at the boundary of K (more

precisely the value of Xkη coincides with the value of Xk as defined by (1)). It is rather clear that
the discretized Brownian motion (W t) is “close” to the path (Wt), and we would like to carry this
to the reflected paths (Xt) and (Xt). The following lemma extracted from Tanaka [1979] allows to
do exactly that.

Lemma 1 Let w and w be piecewise continuous path and assume that (x, ϕ) and (x, ϕ) solve the
Skorokhod problems for w and w, respectively. Then for all time t we have

|x(t)− x(t)|2 ≤ |w(t)− w(t)|2

+ 2

∫ t

0

〈w(t)− w(t)− w(s) + w(s), ϕ(ds)− ϕ(ds)〉.

Applying the above lemma to the processes (Wt) and (W t) at time T = Nη yields (note that
WT = WT )

|XT −XT |2 ≤ −2

∫ T

0

〈Wt −W t, νt〉L(dt) + 2

∫ T

0

〈Wt −W t, νt〉L(dt)

We claim that the second integral is equal to 0. Indeed, since the discretized process is constant on
the intervals [kη, (k + 1)η) the local time L is a positive combination of Dirac point masses at

η, 2η, . . . , Nη.

On the other hand Wkη = W kη for all integer k, hence the claim. Therefore

|XT −XT |2 ≤ −2

∫ T

0

〈Wt −W t, νt〉L(dt)

Using the inequality 〈x, y〉 ≤ ‖x‖K hK(y) we get

|XT −XT |2 ≤ 2 sup
[0,T ]

‖Wt −WT ‖K
∫ T

0

hK(νt)L(dt).

Taking the square root, expectation and using Cauchy–Schwarz we get

E
[
|XT −XT |

]2 ≤ 2E

[
sup
[0,T ]

‖Wt −WT ‖K

]
E

[∫ T

0

hK(νt)L(dt)

]
. (3)

The next two lemmas deal with each term in the right hand side of the above equation, and they will
show that there exists a universal constant C such that

E
[
|XT −XT |

]
≤ C (η log(T/η))

1/4
n3/4 T 1/2M1/2. (4)

We discuss why the above bound implies a total variation bound in Section 2.4.

Lemma 2 We have, for all t > 0

E
[∫ t

0

hK(νs)L(ds)

]
≤ nt

2
.

Proof By Itô’s formula
d|Xt|2 = 2〈Xt, dWt〉+ ndt− 2〈Xt, νt〉L(dt).

Now observe that by definition of the reflection, if t is in the support of L then
〈Xt, νt〉 ≥ 〈x, νt〉, ∀x ∈ K.

In other words 〈Xt, νt〉 ≥ hK(νt). Therefore

2

∫ t

0

hK(νs)L(ds) ≤ 2

∫ t

0

〈Xs, dWs〉+ nt+ |X0|2 − |Xt|2.

The first term of the right–hand side is a martingale, so using that X0 = 0 and taking expectation
we get the result.
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Lemma 3 There exists a universal constant C such that

E

[
sup
[0,T ]

‖Wt −W t‖K

]
≤ C M

√
nη log(T/η).

Proof Note that

E

[
sup
[0,T ]

‖Wt −W t‖K

]
= E

[
max

0≤i≤N−1
Yi

]
where

Yi = sup
t∈[iη,(i+1)η)

‖Wt −Wiη‖K .

Observe that the variables (Yi) are identically distributed, let p ≥ 1 and write

E
[

max
i≤N−1

Yi

]
≤ E

(N−1∑
i=0

|Yi|p
)1/p

 ≤ N1/p ‖Y0‖p.

We claim that
‖Y0‖p ≤ C

√
p n ηM (5)

for some constant C, and for all p ≥ 2. Taking this for granted and choosing p = log(N) in the
previous inequality yields the result (recall that N = T/η). So it is enough to prove (5). Observe
that since (Wt) is a martingale, the process Mt = ‖Wt‖K is a sub–martingale. By Doob’s maximal
inequality

‖Y0‖p = ‖ sup
[0,η]

Mt‖p ≤ 2‖Mη‖p,

for every p ≥ 2. Letting γn be the standard Gaussian measure on Rn and using Khintchin’s inequal-
ity we get

‖Mη‖p =
√
η

(∫
Rn
‖x‖pK γn(dx)

)1/p

≤ C√pη
∫
Rn
‖x‖K γn(dx).

Lastly, integrating in polar coordinate, it is easily seen that∫
Rn
‖x‖K γn(dx) ≤ C

√
nM.

2.3 A mixing time estimate for the reflected Brownian motion

Given a probability measure ν supported on K, we let νPt be the law of Xt when X0 has law ν.
The following lemma is the key result to estimate the mixing time of the process (Xt).

Lemma 4 Let x, x′ ∈ K

TV(δxPt, δx′Pt) ≤
|x− x′|√

2πt
.

The above result clearly implies that for a probability measure ν on K, TV(δ0Pt, νPt) ≤∫
K
|x| ν(dx)√
2πt

. Since µ (the uniform measure on K) is stationary for reflected Brownian motion, we
obtain

TV(δ0Pt, µ) ≤ m√
2πt

. (6)

In other words, starting from 0, the mixing time of (Xt) is of order m2. We now turn to the proof of
the above lemma.

Proof The proof is based on a coupling argument. Let (Wt) be a Brownian motion starting from 0
and let (Xt) be a reflected Brownian motion starting from x:{

X0 = x
dXt = dWt − νt L(dt)
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where (νt) and L satisfy the appropriate conditions. We construct a reflected Brownian motion (X ′t)
starting from x′ as follows. Let τ = inf{t ≥ 0; Xt = X ′t}, and for t < τ let St be the orthogonal
reflection with respect to the hyperplane (Xt−X ′t)⊥. Then up to time τ , the process (X ′t) is defined
by {

X ′0 = x′

dX ′t = dW ′t − ν′t L′(dt)
dW ′t = St(dWt)

where L′ is a measure supported on {t ≤ τ ; X ′t ∈ ∂K}, and ν′t is an outer unit normal at X ′t for
all such t. After time τ we just set X ′t = Xt. Since St is an orthogonal map (W ′t ) is a Brownian
motion and thus (X ′t) is a reflected Brownian motion starting from x′. Therefore

TV(δxPt, δx′Pt) ≤ P(Xt 6= X ′t) = P(τ > t).

Observe that on [0, τ)

dWt − dW ′t = (I− St)(dWt) = 2〈Vt, dWt〉Vt,

where Vt =
Xt−X′

t

|Xt−X′
t|

. So

d(Xt −X ′t) = 2〈Vt, dWt〉Vt − νt L(dt) + ν′t L
′(dt) = 2(dBt)Vt − νt L(dt) + ν′t L

′(dt),

where

Bt =

∫ t

0

〈Vs, dWs〉, on [0, τ).

Observe that (Bt) is a one–dimensional Brownian motion. Itô’s formula then gives

dg(Xt −X ′t) = 2〈∇g(Xt −X ′t), Vt〉 dBt − 〈∇g(Xt −X ′t), νt〉L(dt)

+ 〈∇g(Xt −X ′t), ν′t〉L′(dt) + 2∇2g(Xt −X ′t)(Vt, Vt) dt,

for every smooth function g on Rn. Now if g(x) = |x| then

∇g(Xt −X ′t) = Vt

so 〈∇g(Xt−X ′t), Vt〉 = 1, 〈∇g(Xt−X ′t), νt〉 ≥ 0 on the support of L, and 〈∇g(Xt−X ′t), ν′t〉 ≤ 0
on the support of L′. Moreover ∇2g(Xt − X ′t) = 1

|Xt−Yt| P(Xt−Yt)⊥ where Px⊥ denotes the
orthogonal projection on x⊥. In particular ∇2g(Xt − Yt)(Vt) = 0. We obtain |Xt − X ′t| ≤
|x−x′|+ 2Bt, on [0, τ). Therefore P(τ > t) ≤ P(τ ′ > t) where τ ′ is the first time the Brownian
motion (Bt) hits the value −|x− x′|/2. Now by the reflection principle

P(τ ′ > t) = 2P (0 ≤ 2Bt < |x− x′|) ≤
|x− x′|√

2πt
.

2.4 From Wasserstein distance to total variation

To conclude it remains to derive a total variation bound between XT and XT using (4). The details
of this step are deferred to the supplementary material where we consider the case of a general log-
concave distribution. The intuition goes as follows: the processes (XT+s)s≥0 and (XT+s)s≥0 both
evolve according to a Brownian motion until the first time s that one process undergoes a reflection.
But if T is large enough and η is small enough then one can easily get from (4) (and the fact that
the uniform measure does not put too much mass close to the boundary) that XT and XT are much
closer to each other than they are to the boundary of K. This implies that one can couple them (just
as in Section 2.3) so that they meet before one of them hits the boundary.

3 Experiments

Comparing different Markov Chain Monte Carlo algorithms is a challenging problem in and of it-
self. Here we choose the following simple comparison procedure based on the volume algorithm
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developed in Cousins and Vempala [2014]. This algorithm, whose objective is to compute the vol-
ume of a given convex set K, procedes in phases. In each phase ` it estimates the mean of a certain
function under a multivariate Gaussian restricted to K with (unrestricted) covariance σ`In. Cousins
and Vempala provide a Matlab implementation of the entire algorithm, where in each phase the
target mean is estimated by sampling from the truncated Gaussian using the hit-and-run (H&R)
chain. We implemented the same procedure with LMC instead of H&R, and we choose the step-size
η = 1/(βn2), where β is the smoothness parameter of the underlying log-concave distribution (in
particular here β = 1/σ2

` ). The intuition for the choice of the step-size is as follows: the scaling in
inverse smoothness comes from the optimization literature, while the scaling in inverse dimension
squared comes from the analysis in the unconstrained case in Dalalyan [2014].
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We ran the volume algorithm with both H&R and LMC on the following set of convex bodies:
K = [−1, 1]n (referred to as the “Box”) and K = [−1, 1]n ∩

(√
n
2 Bn

)
(referred to as the “Box

and Ball”), where n = 10 × k, k = 1, . . . , 10. The computed volume (normalized by 2n for the
“Box” and by 0.2×2n for the “Box and Ball”) as well as the clock time (in seconds) to terminate are
reported in the figure above. From these experiments it seems that LMC and H&R roughly compute
similar values for the volume (with H&R being slightly more accurate), and LMC is almost always a
bit faster. These results are encouraging, but much more extensive experiments are needed to decide
if LMC is indeed a competitor to H&R in practice.
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