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Abstract

This paper studies theoretically and empirically a method of turning machine-
learning algorithms into probabilistic predictors that automatically enjoys a prop-
erty of validity (perfect calibration) and is computationally efficient. The price to
pay for perfect calibration is that these probabilistic predictors produce imprecise
(in practice, almost precise for large data sets) probabilities. When these impre-
cise probabilities are merged into precise probabilities, the resulting predictors,
while losing the theoretical property of perfect calibration, are consistently more
accurate than the existing methods in empirical studies.

1 Introduction

Prediction algorithms studied in this paper belong to the class of Venn–Abers predictors, introduced
in [1]. They are based on the method of isotonic regression [2] and prompted by the observation that
when applied in machine learning the method of isotonic regression often produces miscalibrated
probability predictions (see, e.g., [3, 4]); it has also been reported ([5], Section 1) that isotonic
regression is more prone to overfitting than Platt’s scaling [6] when data is scarce. The advantage
of Venn–Abers predictors is that they are a special case of Venn predictors ([7], Chapter 6), and so
([7], Theorem 6.6) are always well-calibrated (cf. Proposition 1 below). They can be considered to
be a regularized version of the procedure used by [8], which helps them resist overfitting.

The main desiderata for Venn (and related conformal, [7], Chapter 2) predictors are validity, predic-
tive efficiency, and computational efficiency. This paper introduces two computationally efficient
versions of Venn–Abers predictors, which we refer to as inductive Venn–Abers predictors (IVAPs)
and cross-Venn–Abers predictors (CVAPs). The ways in which they achieve the three desiderata
are:

• Validity (in the form of perfect calibration) is satisfied by IVAPs automatically, and the
experimental results reported in this paper suggest that it is inherited by CVAPs.

• Predictive efficiency is determined by the predictive efficiency of the underlying learning
algorithms (so that the full arsenal of methods of modern machine learning can be brought
to bear on the prediction problem at hand).

• Computational efficiency is, again, determined by the computational efficiency of the un-
derlying algorithm; the computational overhead of extracting probabilistic predictions con-
sists of sorting (which takes time O(n log n), where n is the number of observations) and
other computations taking time O(n).

An advantage of Venn prediction over conformal prediction, which also enjoys validity guarantees,
is that Venn predictors output probabilities rather than p-values, and probabilities, in the spirit of
Bayesian decision theory, can be easily combined with utilities to produce optimal decisions.
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In Sections 2 and 3 we discuss IVAPs and CVAPs, respectively. Section 4 is devoted to mini-
max ways of merging imprecise probabilities into precise probabilities and thus making IVAPs and
CVAPs precise probabilistic predictors.

In this paper we concentrate on binary classification problems, in which the objects to be classified
are labelled as 0 or 1. Most of machine learning algorithms are scoring algorithms, in that they
output a real-valued score for each test object, which is then compared with a threshold to arrive at
a categorical prediction, 0 or 1. As precise probabilistic predictors, IVAPs and CVAPs are ways of
converting the scores for test objects into numbers in the range [0, 1] that can serve as probabilities,
or calibrating the scores. In Section 5 we briefly discuss two existing calibration methods, Platt’s
[6] and the method [8] based on isotonic regression. Section 6 is devoted to experimental com-
parisons and shows that CVAPs consistently outperform the two existing methods (more extensive
experimental studies can be found in [9]).

2 Inductive Venn–Abers predictors (IVAPs)

In this paper we consider data sequences (usually loosely referred to as sets) consisting of observa-
tions z = (x, y), each observation consisting of an object x and a label y ∈ {0, 1}; we only consider
binary labels. We are given a training set whose size will be denoted l.

This section introduces inductive Venn–Abers predictors. Our main concern is how to implement
them efficiently, but as functions, an IVAP is defined in terms of a scoring algorithm (see the last
paragraph of the previous section) as follows:

• Divide the training set of size l into two subsets, the proper training set of size m and the
calibration set of size k, so that l = m+ k.

• Train the scoring algorithm on the proper training set.

• Find the scores s1, . . . , sk of the calibration objects x1, . . . , xk.

• When a new test object x arrives, compute its score s. Fit isotonic regression
to (s1, y1), . . . , (sk, yk), (s, 0) obtaining a function f0. Fit isotonic regression to
(s1, y1), . . . , (sk, yk), (s, 1) obtaining a function f1. The multiprobability prediction
for the label y of x is the pair (p0, p1) := (f0(s), f1(s)) (intuitively, the prediction is that
the probability that y = 1 is either f0(s) or f1(s)).

Notice that the multiprobability prediction (p0, p1) output by an IVAP always satisfies p0 < p1, and
so p0 and p1 can be interpreted as the lower and upper probabilities, respectively; in practice, they
are close to each other for large training sets.

First we state formally the property of validity of IVAPs (adapting the approach of [1] to IVAPs).
A random variable P taking values in [0, 1] is perfectly calibrated (as a predictor) for a random
variable Y taking values in {0, 1} if E(Y | P ) = P a.s. A selector is a random variable taking
values in {0, 1}. As a general rule, in this paper random variables are denoted by capital letters (e.g.,
X are random objects and Y are random labels).

Proposition 1. Let (P0, P1) be an IVAP’s prediction for X based on a training sequence
(X1, Y1), . . . , (Xl, Yl). There is a selector S such that PS is perfectly calibrated for Y provided the
random observations (X1, Y1), . . . , (Xl, Yl), (X,Y ) are i.i.d.

Our next proposition concerns the computational efficiency of IVAPs; Proposition 1 will be proved
later in this section while Proposition 2 is proved in [9].

Proposition 2. Given the scores s1, . . . , sk of the calibration objects, the prediction rule for com-
puting the IVAP’s predictions can be computed in time O(k log k) and space O(k). Its application
to each test object takes time O(log k). Given the sorted scores of the calibration objects, the pre-
diction rule can be computed in time and space O(k).

Proofs of both statements rely on the geometric representation of isotonic regression as the slope of
the GCM (greatest convex minorant) of the CSD (cumulative sum diagram): see [10], pages 9–13
(especially Theorem 1.1). To make our exposition more self-contained, we define both GCM and
CSD below.
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First we explain how to fit isotonic regression to (s1, y1), . . . , (sk, yk) (without necessarily assum-
ing that si are the calibration scores and yi are the calibration labels, which will be needed to cover
the use of isotonic regression in IVAPs). We start from sorting all scores s1, . . . , sk in the increasing
order and removing the duplicates. (This is the most computationally expensive step in our calibra-
tion procedure, O(k log k) in the worst case.) Let k′ ≤ k be the number of distinct elements among
s1, . . . , sk, i.e., the cardinality of the set {s1, . . . , sk}. Define s′j , j = 1, . . . , k′, to be the jth small-
est element of {s1, . . . , sk}, so that s′1 < s′2 < · · · < s′k′ . Define wj :=

∣∣{i = 1, . . . , k : si = s′j
}∣∣

to be the number of times s′j occurs among s1, . . . , sk. Finally, define

y′j :=
1

wj

∑
i=1,...,k:si=s′j

yi

to be the average label corresponding to si = s′j .

The CSD of (s1, y1), . . . , (sk, yk) is the set of points

Pi :=

 i∑
j=1

wj ,

i∑
j=1

y′jwj

 , i = 0, 1, . . . , k′;

in particular, P0 = (0, 0). The GCM is the greatest convex minorant of the CSD. The value at s′i,
i = 1, . . . , k′, of the isotonic regression fitted to (s1, y1), . . . , (sk, yk) is defined to be the slope of
the GCM between

∑i−1
j=1 wj and

∑i
j=1 wj ; the values at other s are somewhat arbitrary (namely,

the value at s ∈ (s′i, s
′
i+1) can be set to anything between the left and right slopes of the GCM at∑i

j=1 wj) but are never needed in this paper (unlike in the standard use of isotonic regression in
machine learning, [8]): e.g., f1(s) is the value of the isotonic regression fitted to a sequence that
already contains (s, 1).

Proof of Proposition 1. Set S := Y . The statement of the proposition even holds conditionally
on knowing the values of (X1, Y1), . . . , (Xm, Ym) and the multiset *(Xm+1, Ym+1), . . . , (Xl, Yl),
(X,Y )+; this knowledge allows us to compute the scores *s1, . . . , sk, s+ of the calibration objects
Xm+1, . . . , Xl and the test object X . The only remaining randomness is over the equiprobable
permutations of (Xm+1, Ym+1), . . . , (Xl, Yl), (X,Y ); in particular, (s, Y ) is drawn randomly from
the multiset *(s1, Ym+1), . . . , (sk, Yl), (s, Y )+. It remains to notice that, according to the GCM
construction, the average label of the calibration and test observations corresponding to a given
value of PS is equal to PS .

The idea behind computing the pair (f0(s), f1(s)) efficiently is to pre-compute two vectors F 0 and
F 1 storing f0(s) and f1(s), respectively, for all possible values of s. Let k′ and s′i be as defined
above in the case where s1, . . . , sk are the calibration scores and y1, . . . , yk are the corresponding
labels. The vectors F 0 and F 1 are of length k′, and for all i = 1, . . . , k′ and both ε ∈ {0, 1}, F εi is
the value of fε(s) when s = s′i. Therefore, for all i = 1, . . . , k′:

• F 1
i is also the value of f1(s) when s is just to the left of s′i;

• F 0
i is also the value of f0(s) when s is just to the right of s′i.

Since f0 and f1 can change their values only at the points s′i, the vectors F 0 and F 1 uniquely
determine the functions f0 and f1, respectively. For details of computing F 0 and F 1, see [9].

Remark. There are several algorithms for performing isotonic regression on a partially, rather than
linearly, ordered set: see, e.g., [10], Section 2.3 (although one of the algorithms described in that
section, the Minimax Order Algorithm, was later shown to be defective [11, 12]). Therefore, IVAPs
(and CVAPs below) can be defined in the situation where scores take values only in a partially or-
dered set; moreover, Proposition 1 will continue to hold. (For the reader familiar with the notion
of Venn predictors we could also add that Venn–Abers predictors will continue to be Venn pre-
dictors, which follows from the isotonic regression being the average of the original function over
certain equivalence classes.) The importance of partially ordered scores stems from the fact that
they enable us to benefit from a possible “synergy” between two or more prediction algorithms
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Algorithm 1 CVAP(T, x) // cross-Venn–Abers predictor for training set T
1: split the training set T into K folds T1, . . . , TK
2: for k ∈ {1, . . . ,K}
3: (pk0 , p

k
1) := IVAP(T \ Tk, Tk, x)

4: return GM(p1)/(GM(1− p0) + GM(p1))

[13]. Suppose, e.g., that one prediction algorithm outputs (scalar) scores s11, . . . , s
1
k for the calibra-

tion objects x1, . . . , xk and another outputs s21, . . . , s
2
k for the same calibration objects; we would

like to use both sets of scores. We could merge the two sets of scores into composite vector scores,
si := (s1i , s

2
i ), i = 1, . . . , k, and then classify a new object x as described earlier using its composite

score s := (s1, s2), where s1 and s2 are the scalar scores computed by the two algorithms. Prelimi-
nary results reported in [13] in a related context suggest that the resulting predictor can outperform
predictors based on the individual scalar scores. However, we will not pursue this idea further in
this paper.

3 Cross Venn–Abers predictors (CVAPs)

A CVAP is just a combination ofK IVAPs, whereK is the parameter of the algorithm. It is described
as Algorithm 1, where IVAP(A,B, x) stands for the output of IVAP applied to A as proper training
set, B as calibration set, and x as test object, and GM stands for geometric mean (so that GM(p1) is
the geometric mean of p11, . . . , p

K
1 and GM(1−p0) is the geometric mean of 1−p10, . . . , 1−pK0 ). The

folds should be of approximately equal size, and usually the training set is split into folds at random
(although we choose contiguous folds in Section 6 to facilitate reproducibility). One way to obtain
a random assignment of the training observations to folds (see line 1) is to start from a regular array
in which the first l1 observations are assigned to fold 1, the following l2 observations are assigned
to fold 2, up to the last lK observations which are assigned to fold K, where |lk − l/K| < 1 for all
k, and then to apply a random permutation. Remember that the procedure RANDOMIZE-IN-PLACE
([14], Section 5.3) can do the last step in time O(l). See the next section for a justification of the
expression GM(p1)/(GM(1− p0) + GM(p1)) used for merging the IVAPs’ outputs.

4 Making probability predictions out of multiprobability ones

In CVAP (Algorithm 1) we merge the K multiprobability predictions output by K IVAPs. In this
section we design a minimax way for merging them, essentially following [1]. For the log-loss
function the result is especially simple, GM(p1)/(GM(1− p0) + GM(p1)).

Let us check that GM(p1)/(GM(1 − p0) + GM(p1)) is indeed the minimax expression under log
loss. Suppose the pairs of lower and upper probabilities to be merged are (p10, p

1
1), . . . , (p

K
0 , p

K
1 )

and the merged probability is p. The extra cumulative loss suffered by p over the correct members
p11, . . . , p

K
1 of the pairs when the true label is 1 is

log
p11
p

+ · · ·+ log
pK1
p
, (1)

and the extra cumulative loss of p over the correct members of the pairs when the true label is 0 is

log
1− p10
1− p

+ · · ·+ log
1− pK0
1− p

. (2)

Equalizing the two expressions we obtain

p11 · · · pK1
pK

=
(1− p10) · · · (1− pK0 )

(1− p)K
,

which gives the required minimax expression for the merged probability (since (1) is decreasing and
(2) is increasing in p).

For the computations in the case of the Brier loss function, see [9].
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Notice that the argument above (“conditioned” on the proper training set) is also applicable to IVAP,
in which case we need to set K := 1; the probability predictor obtained from an IVAP by replacing
(p0, p1) with p := p1/(1 − p0 + p1) will be referred to as the log-minimax IVAP. (And CVAP is
log-minimax by definition.)

5 Comparison with other calibration methods

The two alternative calibration methods that we consider in this paper are Platt’s [6] and isotonic
regression [8].

5.1 Platt’s method

Platt’s [6] method uses sigmoids to calibrate the scores. Platt uses a regularization procedure ensur-
ing that the predictions of his method are always in the range(

1

k− + 2
,
k+ + 1

k+ + 2

)
,

where k− is the number of calibration observations labelled 0 and k+ is the number of calibration
observations labelled 1. It is interesting that the predictions output by the log-minimax IVAP are in
the same range (except that the end-points are now allowed): see [9].

5.2 Isotonic regression

There are two standard uses of isotonic regression: we can train the scoring algorithm using what
we call a proper training set, and then use the scores of the observations in a disjoint calibration
(also called validation) set for calibrating the scores of test objects (as in [5]); alternatively, we can
train the scoring algorithm on the full training set and also use the full training set for calibration (it
appears that this was done in [8]). In both cases, however, we can expect to get an infinite log loss
when the test set becomes large enough (see [9]).

The presence of regularization is an advantage of Platt’s method: e.g., it never suffers an infinite
loss when using the log loss function. There is no standard method of regularization for isotonic
regression, and we do not apply one.

6 Empirical studies

The main loss function (cf., e.g., [15]) that we use in our empirical studies is the log loss

λlog(p, y) :=

{
− log p if y = 1

− log(1− p) if y = 0,
(3)

where log is binary logarithm, p ∈ [0, 1] is a probability prediction, and y ∈ {0, 1} is the true label.
Another popular loss function is the Brier loss

λBr(p, y) := 4(y − p)2. (4)

We choose the coefficient 4 in front of (y − p)2 in (4) and the base 2 of the logarithm in (3) in
order for the minimax no-information predictor that always predicts p := 1/2 to suffer loss 1.
An advantage of the Brier loss function is that it still makes it possible to compare the quality of
prediction in cases when prediction algorithms (such as isotonic regression) give a categorical but
wrong prediction (and so are simply regarded as infinitely bad when using log loss).

The loss of a probability predictor on a test set will be measured by the arithmetic average of the
losses it suffers on the test set, namely, by the mean log loss (MLL) and the mean Brier loss (MBL)

MLL :=
1

n

n∑
i=1

λlog(pi, yi), MBL :=
1

n

n∑
i=1

λBr(pi, yi), (5)

where yi are the test labels and pi are the probability predictions for them. We will not be checking
directly whether various calibration methods produce well-calibrated predictions, since it is well
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known that lack of calibration increases the loss as measured by loss functions such as log loss
and Brier loss (see, e.g., [16] for the most standard decomposition of the latter into the sum of the
calibration error and refinement error).

In this section we compare log-minimax IVAPs (i.e., IVAPs whose outputs are replaced by proba-
bility predictions, as explained in Section 4) and CVAPs with Platt’s method [6] and the standard
method [8] based on isotonic regression; the latter two will be referred to as “Platt” and “Isotonic”
in our tables and figures. For both IVAPs and CVAPs we use the log-minimax procedure (the
Brier-minimax procedure leads to virtually identical empirical results). We use the same underly-
ing algorithms as in [1], namely J48 decision trees (abbreviated to “J48”), J48 decision trees with
bagging (“J48 bagging”), logistic regression (sometimes abbreviated to “logistic”), naı̈ve Bayes,
neural networks, and support vector machines (SVM), as implemented in Weka [17] (University of
Waikato, New Zealand). The underlying algorithms (except for SVM) produce scores in the interval
[0, 1], which can be used directly as probability predictions (referred to as “Underlying” in our tables
and figures) or can be calibrated using the methods of [6, 8] or the methods proposed in this paper
(“IVAP” or “CVAP” in the tables and figures).

For illustrating our results in this paper we use the adult data set available from the UCI repository
[18] (this is the main data set used in [6] and one of the data sets used in [8]); however, the picture
that we observe is typical for other data sets as well (cf. [9]). We use the original split of the data set
into a training set of Ntrain = 32, 561 observations and a test set of Ntest = 16, 281 observations.
The results of applying the four calibration methods (including the vacuous one, corresponding to
just using the underlying algorithm) to the six underlying algorithms for this data set are shown
in Figure 1. The six top plots report results for the log loss (namely, MLL, as defined in (5)) and
the six bottom plots for the Brier loss (namely, MBL). The underlying algorithms are given in the
titles of the plots and the calibration methods are represented by different line styles, as explained
in the legends. The horizontal axis is labelled by the ratio of the size of the proper training set to
that of the calibration set (except for the label all, which will be explained later); in particular,
in the case of CVAPs it is labelled by the number K − 1 one less than the number of folds. In
the case of CVAPs, the training set is split into K equal (or as close to being equal as possible)
contiguous folds: the first dNtrain/Ke training observations are included in the first fold, the next
dNtrain/Ke (or bNtrain/Kc) in the second fold, etc. (first d·e and then b·c is used unless Ntrain is
divisible by K). In the case of the other calibration methods, we used the first dK−1K Ntraine training
observation as the proper training set (used for training the scoring algorithm) and the rest of the
training observations are used as the calibration set.

In the case of log loss, isotonic regression often suffers infinite losses, which is indicated by the
absence of the round marker for isotonic regression; e.g., all the log losses for SVM are infinite. We
are not trying to use ad hoc solutions, such as clipping predictions to the interval [ε, 1−ε] for a small
ε > 0, since we are also using the bounded Brier loss function. The CVAP lines tend to be at the
bottom in all plots; experiments with other data sets also confirm this.

The column all in the plots of Figure 1 refers to using the full training set as both the proper
training set and calibration set. (In our official definition of IVAP we require that the last two sets
be disjoint, but in this section we continue to refer to IVAPs modified in this way simply as IVAPs;
in [1], such prediction algorithms were referred to as SVAPs, simplified Venn–Abers predictors.)
Using the full training set as both the proper training set and calibration set might appear naı̈ve (and
is never used in the extensive empirical study [5]), but it often leads to good empirical results on
larger data sets. However, it can also lead to very poor results, as in the case of “J48 bagging” (for
IVAP, Platt, and Isotonic), the underlying algorithm that achieves the best performance in Figure 1.

A natural question is whether CVAPs perform better than the alternative calibration methods in Fig-
ure 1 (and our other experiments) because of applying cross-over (in moving from IVAP to CVAP)
or because of the extra regularization used in IVAPs. The first reason is undoubtedly important for
both loss functions and the second for the log loss function. The second reason plays a smaller role
for Brier loss for relatively large data sets (in the lower half of Figure 1 the curve for Isotonic
and IVAP are very close to each other), but IVAPs are consistently better for smaller data sets even
when using Brier loss. In Tables 1 and 2 we apply the four calibration methods and six underlying
algorithms to a much smaller training set, namely to the first 5, 000 observations of the adult data
set as the new training set, following [5]; the first 4, 000 training observations are used as the proper
training set, the following 1, 000 training observations as the calibration set, and all other observa-
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Figure 1: The log and Brier losses of the four calibration methods applied to the six prediction
algorithms on the adult data set. The numbers on the horizontal axis are ratios m/k of the size
of the proper training set to the size of the calibration set; in the case of CVAPs, they can also be
expressed asK−1, whereK is the number of folds (therefore, column 4 corresponds to the standard
choice of 5 folds in the method of cross-validation). Missing curves or points on curves mean that
the corresponding values either are too big and would squeeze unacceptably the interesting parts of
the plot if shown or are infinite (such as many results for isotonic regression and J48 for log loss).

tions (the remaining training and all test observations) are used as the new test set. The results are
shown in Tables 1 for log loss and 2 for Brier loss. They are consistently better for IVAP than for
IR (isotonic regression). Results for nine very small data sets are given in Tables 1 and 2 of [1],
where the results for IVAP (with the full training set used as both proper training and calibration
sets, labelled “SVA” in the tables in [1]) are consistently (in 52 cases out of the 54 using Brier loss)
better, usually significantly better, than for isotonic regression (referred to as DIR in the tables in
[1]).

The following information might help the reader in reproducing our results (in addition to our code
being publicly available [9]). For each of the standard prediction algorithms within Weka that we
use, we optimise the parameters by minimising the Brier loss on the calibration set, apart from the
column labelled all. (We cannot use the log loss since it is often infinite in the case of isotonic
regression.) We then use the trained algorithm to generate the scores for the calibration and test sets,
which allows us to compute probability predictions using Platt’s method, isotonic regression, IVAP,
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Table 1: The log loss for the four calibration methods and six underlying algorithms for a small
subset of the adult data set

algorithm Platt IR IVAP CVAP
J48 0.5226 ∞ 0.5117 0.5102

J48 bagging 0.4949 ∞ 0.4733 0.4602
logistic 0.5111 ∞ 0.4981 0.4948

naı̈ve Bayes 0.5534 ∞ 0.4839 0.4747
neural networks 0.5175 ∞ 0.5023 0.4805

SVM 0.5221 ∞ 0.5015 0.4997

Table 2: The analogue of Table 1 for the Brier loss

algorithm Platt IR IVAP CVAP
J48 0.4463 0.4378 0.4370 0.4368

J48 bagging 0.4225 0.4153 0.4123 0.3990
logistic 0.4470 0.4417 0.4377 0.4342

naı̈ve Bayes 0.4670 0.4329 0.4311 0.4227
neural networks 0.4525 0.4574 0.4440 0.4234

SVM 0.4550 0.4450 0.4408 0.4375

and CVAP. All the scores apart from SVM are already in the [0, 1] range and can be used as prob-
ability predictions. Most of the parameters are set to their default values, and the only parameters
that are optimised are C (pruning confidence) for J48 and J48 bagging, R (ridge) for logistic regres-
sion, L (learning rate) and M (momentum) for neural networks (MultilayerPerceptron), and
C (complexity constant) for SVM (SMO, with the linear kernel); naı̈ve Bayes does not involve any
parameters. Notice that none of these parameters are “hyperparameters”, in that they do not control
the flexibility of the fitted prediction rule directly; this allows us to optimize the parameters on the
training set for the all column. In the case of CVAPs, we optimise the parameters by minimis-
ing the cumulative Brier loss over all folds (so that the same parameters are used for all folds). To
apply Platt’s method to calibrate the scores generated by the underlying algorithms we use logistic
regression, namely the function mnrfit within MATLAB’s Statistics toolbox. For isotonic regres-
sion calibration we use the implementation of the PAVA in the R package fdrtool (namely, the
function monoreg).

For further experimental results, see [9].

7 Conclusion

This paper introduces two new algorithms for probabilistic prediction, IVAP, which can be regarded
as a regularised form of the calibration method based on isotonic regression, and CVAP, which is
built on top of IVAP using the idea of cross-validation. Whereas IVAPs are automatically perfectly
calibrated, the advantage of CVAPs is in their good empirical performance.

This paper does not study empirically upper and lower probabilities produced by IVAPs and CVAPs,
whereas the distance between them provides information about the reliability of the merged proba-
bility prediction. Finding interesting ways of using this extra information is one of the directions of
further research.
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