Stop Wasting My Gradients: Practical SVRG

Reza Babanezhad'!, Mohamed Osama Ahmed!, Alim Virani?, Mark Schmidt'
Department of Computer Science
University of British Columbia
1 {rezababa, moahmed, schmidtm} @cs.ubc.ca,zalim.virani@gmail.com

Jakub Konec¢ny Scott Sallinen
School of Mathematics Department of Electrical and Computer Engineering
University of Edinburgh University of British Columbia
kubo.konecny @ gmail.com scotts@ece.ubc.ca
Abstract

We present and analyze several strategies for improving the performance of
stochastic variance-reduced gradient (SVRG) methods. We first show that the
convergence rate of these methods can be preserved under a decreasing sequence
of errors in the control variate, and use this to derive variants of SVRG that use
growing-batch strategies to reduce the number of gradient calculations required
in the early iterations. We further (i) show how to exploit support vectors to re-
duce the number of gradient computations in the later iterations, (ii) prove that the
commonly—used regularized SVRG iteration is justified and improves the conver-
gence rate, (iii) consider alternate mini-batch selection strategies, and (iv) consider
the generalization error of the method.

1 Introduction

We consider the problem of optimizing the average of a finite but large sum of smooth functions,

. 1 ¢
min f(x) = n;fz(x)- (1)
A huge proportion of the model-fitting procedures in machine learning can be mapped to this prob-
lem. This includes classic models like least squares and logistic regression but also includes more
advanced methods like conditional random fields and deep neural network models. In the high-
dimensional setting (large d), the traditional approaches for solving (I)) are: full gradient (FG) meth-
ods which have linear convergence rates but need to evaluate the gradient f; for all n examples on
every iteration, and stochastic gradient (SG) methods which make rapid initial progress as they only
use a single gradient on each iteration but ultimately have slower sublinear convergence rates.

Le Roux et al. [[1l] proposed the first general method, stochastic average gradient (SAG), that only
considers one training example on each iteration but still achieves a linear convergence rate. Other
methods have subsequently been shown to have this property [2, 3, 4], but these all require storing a
previous evaluation of the gradient f/ or the dual variables for each 7. For many objectives this only
requires O(n) space, but for general problems this requires O(np) space making them impractical.

Recently, several methods have been proposed with similar convergence rates to SAG but without the
memory requirements [} 16} [7, |8]]. They are known as mixed gradient, stochastic variance-reduced
gradient (SVRG), and semi-stochastic gradient methods (we will use SVRG). We give a canonical
SVRG algorithm in the next section, but the salient features of these methods are that they evaluate
two gradients on each iteration and occasionally must compute the gradient on all examples. SVRG



methods often dramatically outperform classic FG and SG methods, but these extra evaluations
mean that SVRG is slower than SG methods in the important early iterations. They also mean that
SVRG methods are typically slower than memory-based methods like SAG.

In this work we first show that SVRG is robust to inexact calculation of the full gradients it requires
(§3), provided the accuracy increases over time. We use this to explore growing-batch strategies that
require fewer gradient evaluations when far from the solution, and we propose a mixed SG/SVRG
method that may improve performance in the early iterations (§4). We next explore using support
vectors to reduce the number of gradients required when close to the solution (§3)), give a justification
for the regularized SVRG update that is commonly used in practice (§6)), consider alternative mini-
batch strategies (7)), and finally consider the generalization error of the method (§8).

2 Notation and SVRG Algorithm

SVRG assumes f is p-strongly convex, each f; is convex, and each gradient f/ is Lipschitz-
continuous with constant L. The method begins with an initial estimate 29, sets o = 2 and
then generates a sequence of iterates x; using

xy = a1 —n(fi, (1) = fi (2°) + p°), ()
where 7 is the positive step size, we set u* = f/(x*), and i, is chosen uniformly from {1,2,...,n}.
After every m steps, we set 25! = z, for arandom ¢t € {1,...,m}, and we reset t = 0 with
xo = 5L,

To analyze the convergence rate of SVRG, we will find it convenient to define the function
1 1
,b) = —— +2bn .
pla.b) 1—2na (m;m " 77)

as it appears repeatedly in our results. We will use p(a) to indicate the value of p(a, b) when a = b,
and we will simply use p for the special case when a = b = L. Johnson & Zhang [6] show that if n
and m are chosen such that 0 < p < 1, the algorithm achieves a linear convergence rate of the form

E[f(z™*) = f(2")] < pE[f(2*) = f(2")],
where z* is the optimal solution. This convergence rate is very fast for appropriate n and m. While
this result relies on constants we may not know in general, practical choices with good empirical
performance include setting m = n, n = 1/L, and using 25! = z,,, rather than a random iterate.

Unfortunately, the SVRG algorithm requires 2m + n gradient evaluations for every m iterations
of (), since updating z; requires two gradient evaluations and computing u* require n gradient
evaluations. We can reduce this to m + n if we store the gradients f/(x*), but this is not practical in
most applications. Thus, SVRG requires many more gradient evaluations than classic SG iterations
of memory-based methods like SAG.

3 SVRG with Error

We first give a result for the SVRG method where we assume that p® is equal to f'(x*®) up to
some error e®. This is in the spirit of the analysis of [9]], who analyze FG methods under similar
assumptions. We assume that ||z; — z*|| < Z for all ¢, which has been used in related work [10] and
is reasonable because of the coercity implied by strong-convexity.

Proposition 1. If u® = f/'(x°) + e® and we set ) and m so that p < 1, then the SVRG algorithm
with 2511 chosen randomly from {1, s, ..., Ty} satisfies

Elf(*) - (@) < pBLf(a*) — f(a")] + 22N nBer

1—2nL

We give the proof in Appendix A. This result implies that SVRG does not need a very accurate
approximation of f’(x*) in the crucial early iterations since the first term in the bound will dominate.
Further, this result implies that we can maintain the exact convergence rate of SVRG as long as the
errors e® decrease at an appropriate rate. For example, we obtain the same convergence rate provided
that max{E||e*||, E|[e*||*} < ~p° for any v > 0 and some j < p. Further, we still obtain a linear
convergence rate as long as ||e?|| converges to zero with a linear convergence rate.



Algorithm 1 Batching SVRG
Input: initial vector x°, update frequency m, learning rate 7.
for s =0,1,2,... do
Choose batch size | B

B* = | B*| elements sampled without replacement from {1,2,...,n}.
= % ZieBS i (z*)
zo=2°

fort=1,2,...,mdo
Randomly picki; € 1,...,n

/

xr = xe1 = 1(f;, (Be-1) — fi, (%) + p%) (*)
end for
option I: set z°t! = z,,
option II: set z°*! = x, for random ¢ € {1,...,m}
end for

3.1 Non-Uniform Sampling

Xiao & Zhang [[11] show that non-uniform sampling (NUS) improves the performance of SVRG.
They assume each f!is L;-Lipschitz continuous, and sample i; = 7 with probability L;/nL where
L= % Z?:l L;. The iteration is then changed to

o= aver = (U wren) = £ @+ )

1t

which maintains that the search direction is unbiased. In Appendix A, we show that if 1° is computed

with error for this algorithm and if we set 7 and m so that 0 < p(L) < 1, then we have a convergence
et Je*]) + mEllee]?

s . - N ZE|e?| + nE| e®

BL () = Ja)] < pDEL @) = f@")] + = g

which can be faster since the average L may be much smaller than the maximum value L.

3.2 SVRG with Batching

There are many ways we could allow an error in the calculation of ;° to speed up the algorithm. For
example, if evaluating each f/ involves solving an optimization problem, then we could solve this
optimization problem inexactly. For example, if we are fitting a graphical model with an iterative
approximate inference method, we can terminate the iterations early to save time.

When the f; are simple but n is large, a natural way to approximate ° is with a subset (or ‘batch’)
of training examples 3° (chosen without replacement),

s __ 1 ! S
pe= 5] Z fi(@®).

icBs

The batch size |3%| controls the error in the approximation, and we can drive the error to zero by
increasing it to n. Existing SVRG methods correspond to the special case where |B°| = n for all s.

Algorithm [T] gives pseudo-code for an SVRG implementation that uses this sub-sampling strategy.
If we assume that the sample variance of the norms of the gradients is bounded by S? for all 2%,

LS A - 1)) < 52
=1

then we have that [12, Chapter 2]
n — |B%|
Elle’]? < ——— 162
e < 2
So if we want E||e*||? < v/52%, where v > 0 is a constant for some 5 < 1, we need
nS?

B>
| I— 52+n7ﬁ2s

3)



Algorithm 2 Mixed SVRG and SG Method
Replace (*) in Algorithm 1 with the following lines:
if f;, € B° then
zr =21 = (f;, (Te—1) = fi, (27) + 1%
else

2 = w1 — nf;, (T4-1)
end if

If the batch size satisfies the above condition then

ZE|le* | +nElle* 1 < ZyAp° + myp®
< 2max{Z\/v,np}p",

and the convergence rate of SVRG is unchanged compared to using the full batch on all iterations.

The condition (3)) guarantees a linear convergence rate under any exponentially-increasing sequence
of batch sizes, the strategy suggested by [[L3] for classic SG methods. However, a tedious calculation
shows that (B) has an inflection point at s = log(S?/yn)/2log(1/p), corresponding to |B*| =
5. This was previously observed empirically [14, Figure 3], and occurs because we are sampling
without replacement. This transition means we don’t need to increase the batch size exponentially.

4 Mixed SG and SVRG Method

An approximate p° can drastically reduce the computational cost of the SVRG algorithm, but does
not affect the 2 in the 2m+n gradients required for m SVRG iterations. This factor of 2 is significant
in the early iterations, since this is when stochastic methods make the most progress and when we
typically see the largest reduction in the test error.

To reduce this factor, we can consider a mixed strategy: if i; is in the batch B* then perform an
SVRG iteration, but if 7; is not in the current batch then use a classic SG iteration. We illustrate this
modification in Algorithm [2} This modification allows the algorithm to take advantage of the rapid
initial progress of SG, since it predominantly uses SG iterations when far from the solution. Below
we give a convergence rate for this mixed strategy.

Proposition 2. Let i° = f/(x°)4€® and we set ny and m so that 0 < p(L,aL) < 1 with o = |B®|/n.
If we assume E|| f!(z)||? < o2 then Algorithm 2| has

ZE| e® Ele’|? + 22 (1 - a
Elf(r) = f(a")] < p(LaL)Elf () — f(o")] + T I B0 — o)
— 2L

We give the proof in Appendix B. The extra term depending on the variance o2 is typically the
bottleneck for SG methods. Classic SG methods require the step-size 7 to converge to zero because
of this term. However, the mixed SG/SVRG method can keep the fast progress from using a constant
7 since the term depending on o2 converges to zero as o converges to one. Since o < 1 implies that
p(L,aL) < p, this result implies that when [f(x*) — f(z*)] is large compared to e and o that the
mixed SG/SVRG method actually converges faster.

Sharing a single step size 1 between the SG and SVRG iterations in Proposition [2|is sub-optimal.
For example, if z is close to z* and |B°| &~ n, then the SG iteration might actually take us far
away from the minimizer. Thus, we may want to use a decreasing sequence of step sizes for the SG
iterations. In Appendix B, we show that using n = O*(/(n — |B|)/n|B|) for the SG iterations can

improve the dependence on the error e® and variance 2.

5 Using Support Vectors

Using a batch B° decreases the number of gradient evaluations required when SVRG is far from
the solution, but its benefit diminishes over time. However, for certain objectives we can further



Algorithm 3 Heuristic for skipping evaluations of f; at
if sk; = 0 then
compute f/(z).
if f!/(x) = 0 then

ps; = ps; + 1. {Update the number of consecutive times f/(x) was zero. }
sk; = 2max{0psi=2}  [Skip exponential number of future evaluations if it remains zero.}
else
ps; = 0. {This could be a support vector, do not skip it next time. }
end if
return f](x).
else
sk; = sk; — 1. {In this case, we skip the evaluation. }
return 0.
end if

reduce the number of gradient evaluations by identifying support vectors. For example, consider
minimizing the Huberized hinge loss (HSVM) with threshold € [15]],

L 0 if T >1+e¢,
min — E f(bla;rx)7 f(T): 1—7 ifT<1—6,
zeRI M (14e—7)> .

In terms of (I), we have f;(z) = f(b;al'z). The performance of this loss function is similar to
logistic regression and the hinge loss, but it has the appealing properties of both: it is differentiable
like logistic regression meaning we can apply methods like SVRG, but it has support vectors like the
hinge loss meaning that many examples will have f;(z*) = 0 and f/(z*) = 0. We can also construct
Huberized variants of many non-smooth losses for regression and multi-class classification.

If we knew the support vectors where f;(z*) > 0, we could solve the problem faster by ignoring
the non-support vectors. For example, if there are 100000 training examples but only 100 support
vectors in the optimal solution, we could solve the problem 1000 times faster. While we typically
don’t know the support vectors, in this section we outline a heuristic that gives large practical im-
provements by trying to identify them as the algorithm runs.

Our heuristic has two components. The first component is maintaining the list of non-support vectors
at z°. Specifically, we maintain a list of examples ¢ where f/(2®) = 0. When SVRG picks an
example i; that is part of this list, we know that f; (z°) = 0 and thus the iteration only needs
one gradient evaluation. This modification is not a heuristic, in that it still applies the exact SVRG
algorithm. However, at best it can only cut the runtime in half.

The heuristic part of our strategy is to skip f/(z®) or f/(z;) if our evaluation of f/ has been zero
more than two consecutive times (and skipping it an exponentially larger number of times each time
it remains zero). Specifically, for each example ¢ we maintain two variables, sk; (for ‘skip’) and ps;
(for ‘pass’). Whenever we need to evaluate f/ for some z° or x;, we run Algorithm [3| which may
skip the evaluation. This strategy can lead to huge computational savings in later iterations if there
are few support vectors, since many iterations will require no gradient evaluations.

Identifying support vectors to speed up computation has long been an important part of SVM solvers,
and is related to the classic shrinking heuristic [[16]]. While it has previously been explored in the con-
text of dual coordinate ascent methods [[17], this is the first work exploring it for linearly-convergent
stochastic gradient methods.

6 Regularized SVRG

We are often interested in the special case where problem (T)) has the decomposition

min f(2) = h(r) + > gi(e). @
i=1

r€R4



A common choice of & is a scaled 1-norm of the parameter vector, h(x) = A||z||;. This non-smooth
regularizer encourages sparsity in the parameter vector, and can be addressed with the proximal-
SVRG method of Xiao & Zhang [11]]. Alternately, if we want an explicit Z we could set & to the
indicator function for a 2-norm ball containing z*. In Appendix C, we give a variant of Proposition|[I]
that allows errors in the proximal-SVRG method for non-smooth/constrained settings like this.

Another common choice is the {>-regularizer, h(z) = %|z[|%. With this regularizer, the SVRG
updates can be equivalently written in the form
Tep1 =T — 1) (hl(xt> +gi, (ze) — g, (%) + '“s) ) ®)

where p° = % >, gi(x®). That is, they take an exact gradient step with respect to the regularizer
and an SVRG step with respect to the g; functions. When the g, are sparse, this form of the update
allows us to implement the iteration without needing full-vector operations. A related update is used
by Le Roux et al. to avoid full-vector operations in the SAG algorithm [} §4]. In Appendix C, we
prove the below convergence rate for this update.

Proposition 3. Consider instances of problem (1)) that can be wriiten in the form {@) where h' is

Ly,-Lipschitz continuous and each g is Lg-Lipschitz continuous, and assume that we set 1) and m
so that 0 < p(Ly,) < 1 with L,, = max{L, Ly }. Then the regularized SVRG iteration (3)) has

E[f (") = f(2")] < p(Lin)E[f (2*) — f(z")],

Since L,, < L, and strictly so in the case of ¢y-regularization, this result shows that for /-
regularized problems SVRG actually converges faster than the standard analysis would indicate (a
similar result appears in Kone¢ny et al. [[18]]). Further, this result gives a theoretical justification for

using the update (3) for other h functions where it is not equivalent to the original SVRG method.

7 Mini-Batching Strategies

Konecny et al. [[18] have also recently considered using batches of data within SVRG. They consider
using ‘mini-batches’ in the inner iteration (the update of x;) to decrease the variance of the method,
but still use full passes through the data to compute p°. This prior work is thus complimentary to
the current work (in practice, both strategies can be used to improve performance). In Appendix D
we show that sampling the inner mini-batch proportional to L; achieves a convergence rate of

E [f(z*™") = f(2")] < pmE[f(2®) = f(z")],
where M is the size of the mini-batch while
1 M -
=——|——+2Lny |,
PMT N oL (m/m - 77)
and we assume 0 < pjps < 1. This generalizes the standard rate of SVRG and improves on the result
of Konec¢ny et al. [[18] in the smooth case. This rate can be faster than the rate of the standard SVRG

method at the cost of a more expensive iteration, and may be clearly advantageous in settings where
parallel computation allows us to compute several gradients simultaneously.

The regularized SVRG form (3)) suggests an alternate mini-batch strategy for problem (I): consider
a mini-batch that contains a ‘fixed’ set B and a ‘random’ set B;. Without loss of generality, assume
that we sort the f; based on their L; values so that L; > Ly > --- > L,,. For the fixed By we will
always choose the M values with the largest L;, By = {f1, f2,..., fu, }. In contrast, we choose
the members of the random set B; by sampling from B, = {fas;41,..., fn} proportional to their
Lipschitz constants, p; = (Mfil/i, with L, = (1/M,) 377/, 1 Li- In Appendix D, we show the
following convergence rate for this strategy:
Proposition 4. Let g(x) = (1/n) Zig[sf] fi(x) and h(z) = (1/n) Zie[Bf] fi(x). If we replace
the SVRG update with
‘Z’T‘ s s
Tpp1 =Tg — 1) (h/(xt) + (1/M;) Z f(f“%) — fi@®) +¢'(= )> 5
i€By "
then the convergence rate is
E[f(z°™) — f(2")] < p(k, QE[F(z°) — f(z*)].
(nfﬂff)ir

where C = m [lndﬁ = max{%7 C}



If L, < nL /M and M < % with a = %, then we get a faster convergence rate than
SVRG with a mini-batch of size M. The scenario where this rate is slower than the existing mini-
batch SVRG strategy is when L1 < nL/M. But we could relax this assumption by dividing each
element of the fixed set B into two functions: 3 f; and (1 — 3) f;, where 5 = 1/M, then replacing
each function f; in By with 8f; and adding (1 — 3)f; to the random set B,. This result may be
relevant if we have access to a field-programmable gate array (FPGA) or graphical processing unit
(GPU) that can compute the gradient for a fixed subset of the examples very efficiently. However,
our experiments (Appendix F) indicate this strategy only gives marginal gains.

In Appendix F, we also consider constructing mini-batches by sampling proportional to f;(z*) or
[l £/(z®)||. These seemed to work as well as Lipschitz sampling on all but one of the datasets in our
experiments, and this strategy is appealing because we have access to these values while we may
not know the L; values. However, these strategies diverged on one of the datasets.

8 Learning efficiency

In this section we compare the performance of SVRG as a large-scale learning algorithm compared
to FG and SG methods. Following Bottou & Bousquet [19], we can formulate the generalization
error £ of a learning algorithm as the sum of three terms

&= gapp + gest + gopt

where the approximation error &,p, measures the effect of using a limited class of models, the es-
timation error &£ measures the effect of using a finite training set, and the optimization error gy
measures the effect of inexactly solving problem (I). Bottou & Bousquet [19] study asymptotic
performance of various algorithms for a fixed approximation error and under certain conditions on
the distribution of the data depending on parameters « or v. In Appendix E, we discuss how SVRG
can be analyzed in their framework. The table below includes SVRG among their results.

Algorithm  Time to reach £,y < € Time to reach £ = O(&,pp +€)  Previous with k ~ n
FG O (nrdlog (1)) 0 (& 10g” (1)) O (4 log’ (1))
SG O (222 0 (222 O (%2108 (1))

SVRG O ((n+wm)dlog (1)) O (Azlog” (1) +rdlog (1)) 0 (Hzlog” (1))

In this table, the condition number is x = L/u. In this setting, linearly-convergent stochastic
gradient methods can obtain better bounds for ill-conditioned problems, with a better dependence
on the dimension and without depending on the noise variance v.

9 Experimental Results

In this section, we present experimental results that evaluate our proposed variations on the
SVRG method. We focus on logistic regression classification: given a set of training data
(a1,b1)...(an,b,) where a; € R? and b; € {—1,+1}, the goal is to find the = € R? solving

A e 1L T
2 =Y T log(1 —b;al ),
aigeﬁlg;n 2II:L"II +"i§:1 og(1 + exp(—b;a; x))

We consider the datasets used by [1]], whose properties are listed in the supplementary material. As
in their work we add a bias variable, normalize dense features, and set the regularization parameter A
to 1/n. We used a step-size of @ = 1/L and we used m = |B°| which gave good performance across
methods and datasets. In our first experiment, we compared three variants of SVRG: the original
strategy that uses all n examples to form p® (Full), a growing batch strategy that sets |B*| = 2°
(Grow), and the mixed SG/SVRG described by Algorithm [2Junder this same choice (Mixed). While
a variety of practical batching methods have been proposed in the literature [[13| 20} 21]], we did not
find that any of these strategies consistently outperformed the doubling used by the simple Grow
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Figure 1: Comparison of training objective (left) and test error (right) on the spam dataset for the
logistic regression (top) and the HSVM (bottom) losses under different batch strategies for choosing
w® (Full, Grow, and Mixed) and whether we attempt to identify support vectors (SV).

strategy. Our second experiment focused on the 5-regularized HSVM on the same datasets, and we
compared the original SVRG algorithm with variants that try to identify the support vectors (SV).

We plot the experimental results for one run of the algorithms on one dataset in Figure [T} while
Appendix F reports results on the other 8 datasets over 10 different runs. In our results, the growing
batch strategy (Grow) always had better test error performance than using the full batch, while for
large datasets it also performed substantially better in terms of the training objective. In contrast,
the Mixed strategy sometimes helped performance and sometimes hurt performance. Utilizing sup-
port vectors often improved the training objective, often by large margins, but its effect on the test
objective was smaller.

10 Discussion

As SVRG is the only memory-free method among the new stochastic linearly-convergent methods,
it represents the natural method to use for a huge variety of machine learning problems. In this
work we show that the convergence rate of the SVRG algorithm can be preserved even under an
inexact approximation to the full gradient. We also showed that using mini-batches to approximate
1® gives a natural way to do this, explored the use of support vectors to further reduce the number of
gradient evaluations, gave an analysis of the regularized SVRG update, and considered several new
mini-batch strategies. Our theoretical and experimental results indicate that many of these simple
modifications should be considered in any practical implementation of SVRG.
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