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Abstract
A version of the dueling bandit problem is addressed in which a Condorcet winner
may not exist. Two algorithms are proposed that instead seek to minimize regret
with respect to the Copeland winner, which, unlike the Condorcet winner, is guar-
anteed to exist. The first, Copeland Confidence Bound (CCB), is designed for
small numbers of arms, while the second, Scalable Copeland Bandits (SCB),
works better for large-scale problems. We provide theoretical results bounding
the regret accumulated by CCB and SCB, both substantially improving existing
results. Such existing results either offer bounds of the form O(K log T ) but
require restrictive assumptions, or offer bounds of the form O(K2

log T ) without
requiring such assumptions. Our results offer the best of both worlds: O(K log T )

bounds without restrictive assumptions.

1 Introduction
The dueling bandit problem [1] arises naturally in domains where feedback is more reliable when
given as a pairwise preference (e.g., when it is provided by a human) and specifying real-valued
feedback instead would be arbitrary or inefficient. Examples include ranker evaluation [2, 3, 4] in
information retrieval, ad placement and recommender systems. As with other preference learning
problems [5], feedback consists of a pairwise preference between a selected pair of arms, instead of
scalar reward for a single selected arm, as in the K-armed bandit problem.

Most existing algorithms for the dueling bandit problem require the existence of a Condorcet win-
ner, which is an arm that beats every other arm with probability greater than 0.5. If such algorithms
are applied when no Condorcet winner exists, no decision may be reached even after many compar-
isons. This is a key weakness limiting their practical applicability. For example, in industrial ranker
evaluation [6], when many rankers must be compared, each comparison corresponds to a costly live
experiment and thus the potential for failure if no Condorcet winner exists is unacceptable [7].

This risk is not merely theoretical. On the contrary, recent experiments on K-armed dueling bandit
problems based on information retrieval datasets show that dueling bandit problems without Con-
dorcet winners arise regularly in practice [8, Figure 1]. In addition, we show in Appendix C.1 in the
supplementary material that there are realistic situations in ranker evaluation in information retrieval
in which the probability that the Condorcet assumption holds, decreases rapidly as the number of
arms grows. Since the K-armed dueling bandit methods mentioned above do not provide regret
bounds in the absence of a Condorcet winner, applying them remains risky in practice. Indeed, we
demonstrate empirically the danger of applying such algorithms to dueling bandit problems that do
not have a Condorcet winner (cf. Appendix A in the supplementary material).

The non-existence of the Condorcet winner has been investigated extensively in social choice theory,
where numerous definitions have been proposed, without a clear contender for the most suitable
resolution [9]. In the dueling bandit context, a few methods have been proposed to address this
issue, e.g., SAVAGE [10], PBR [11] and RankEl [12], which use some of the notions proposed by
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social choice theorists, such as the Copeland score or the Borda score to measure the quality of each
arm, hence determining what constitutes the best arm (or more generally the top-k arms). In this
paper, we focus on finding Copeland winners, which are arms that beat the greatest number of other
arms, because it is a natural, conceptually simple extension of the Condorcet winner.

Unfortunately, the methods mentioned above come with bounds of the form O(K2

log T ). In this
paper, we propose two new K-armed dueling bandit algorithms for the Copeland setting with sig-
nificantly improved bounds.

The first algorithm, called Copeland Confidence Bound (CCB), is inspired by the recently pro-
posed Relative Upper Confidence Bound method [13], but modified and extended to address the
unique challenges that arise when no Condorcet winner exists. We prove anytime high-probability
and expected regret bounds for CCB of the form O(K2

+ K log T ). Furthermore, the denominator
of this result has much better dependence on the “gaps” arising from the dueling bandit problem
than most existing results (cf. Sections 3 and 5.1 for the details).

However, a remaining weakness of CCB is the additive O(K2

) term in its regret bounds. In applica-
tions with large K, this term can dominate for any experiment of reasonable duration. For example,
at Bing, 200 experiments are run concurrently on any given day [14], in which case the duration
of the experiment needs to be longer than the age of the universe in nanoseconds before K log T
becomes significant in comparison to K2.

Our second algorithm, called Scalable Copeland Bandits (SCB), addresses this weakness by elim-
inating the O(K2

) term, achieving an expected regret bound of the form O(K logK log T ). The
price of SCB’s tighter regret bounds is that, when two suboptimal arms are close to evenly matched,
it may waste comparisons trying to determine which one wins in expectation. By contrast, CCB
can identify that this determination is unnecessary, yielding better performance unless there are very
many arms. CCB and SCB are thus complementary algorithms for finding Copeland winners.

Our main contributions are as follows:

1. We propose two algorithms that address the dueling bandit problem in the absence of a Condorcet
winner, one designed for problems with small numbers of arms and the other scaling well with
the number of arms.

2. We provide regret bounds that bridge the gap between two groups of results: those of the form
O(K log T ) that make the Condorcet assumption, and those of the form O(K2

log T ) that do not
make the Condorcet assumption. Our bounds are similar to those of the former but are as broadly
applicable as the latter. Furthermore, the result for CCB has substantially better dependence on
the gaps than the second group of results.

3. We include an empirical evaluation of CCB and SCB using a real-life problem arising from
information retrieval (IR). The experimental results mirror the theoretical ones.

2 Problem Setting
Let K � 2. The K-armed dueling bandit problem [1] is a modification of the K-armed bandit
problem [15]. The latter considers K arms {a

1

, . . . , aK} and at each time-step, an arm ai can be
pulled, generating a reward drawn from an unknown stationary distribution with expected value µi.
The K-armed dueling bandit problem is a variation in which, instead of pulling a single arm, we
choose a pair (ai, aj) and receive one of them as the better choice, with the probability of ai being
picked equal to an unknown constant pij and that of aj being picked equal to pji = 1 � pij . A
problem instance is fully specified by a preference matrix P = [pij ], whose ij entry is equal to pij .

Most previous work assumes the existence of a Condorcet winner [10]: an arm, which without loss
of generality we label a

1

, such that p
1i >

1

2

for all i > 1. In such work, regret is defined relative to
the Condorcet winner. However, Condorcet winners do not always exist [8, 13]. In this paper, we
consider a formulation of the problem that does not assume the existence of a Condorcet winner.

Instead, we consider the Copeland dueling bandit problem, which defines regret with respect to a
Copeland winner, which is an arm with maximal Copeland score. The Copeland score of ai, denoted
Cpld(ai), is the number of arms aj for which pij > 0.5. The normalized Copeland score, denoted
cpld(ai), is simply Cpld(ai)

K�1

. Without loss of generality, we assume that a
1

, . . . , aC are the Copeland
winners, where C is the number of Copeland winners. We define regret as follows:
Definition 1. The regret incurred by comparing ai and aj is 2cpld(a

1

)� cpld(ai)� cpld(aj).
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Remark 2. Since our results (see §5) establish bounds on the number of queries to non-Copeland
winners, they can also be applied to other notions of regret.

3 Related Work
Numerous methods have been proposed for the K-armed dueling bandit problem, including Inter-
leaved Filter [1], Beat the Mean [3], Relative Confidence Sampling [8], Relative Upper Confidence
Bound (RUCB) [13], Doubler and MultiSBM [16], and mergeRUCB [17], all of which require the
existence of a Condorcet winner, and often come with bounds of the form O(K log T ). However,
as observed in [13] and Appendix C.1, real-world problems do not always have Condorcet winners.

There is another group of algorithms that do not assume the existence of a Condorcet winner, but
have bounds of the form O(K2

log T ) in the Copeland setting: Sensitivity Analysis of VAriables
for Generic Exploration (SAVAGE) [10], Preference-Based Racing (PBR) [11] and Rank Elicitation
(RankEl) [12]. All three of these algorithms are designed to solve more general or more difficult
problems, and they solve the Copeland dueling bandit problem as a special case.

This work bridges the gap between these two groups by providing algorithms that are as broadly
applicable as the second group but have regret bounds comparable to those of the first group. Fur-
thermore, in the case of the results for CCB, rather than depending on the smallest gap between arms
ai and aj , �

min

:=mini>j |pij � 0.5|, as in the case of many results in the Copeland setting,1 our
regret bounds depend on a larger quantity that results in a substantially lower upper-bound, cf. §5.1.

In addition to the above, bounds have been proven for other notions of winners, including Borda
[10, 11, 12], Random Walk [11, 18], and very recently von Neumann [19]. The dichotomy discussed
also persists in the case of these results, which either rely on restrictive assumptions to obtain a linear
dependence on K or are more broadly applicable, at the expense of a quadratic dependence on K. A
natural question for future work is whether the improvements achieved in this paper in the case of the
Copeland winner can be obtained in the case of these other notions as well. We refer the interested
reader to Appendix C.2 for a numerical comparison of these notions of winners in practice. More
generally, there is a proliferation of notions of winners that the field of Social Choice Theory has put
forth and even though each definition has its merits, it is difficult to argue for any single definition
to be superior to all others.

A related setting is that of partial monitoring games [20]. While a dueling bandit problem can be
modeled as a partial monitoring problem, doing so yields weaker results. In [21], the authors present
problem-dependent bounds from which a regret bound of the form O(K2

log T ) can be deduced for
the dueling bandit problem, whereas our work achieves a linear dependence in K.

4 Method
We now present two algorithms that find Copeland winners.

4.1 Copeland Confidence Bound (CCB)
CCB (see Algorithm 1) is based on the principle of optimism followed by pessimism: it maintains
optimistic and pessimistic estimates of the preference matrix, i.e., matrices U and L (Line 6). It uses
U to choose an optimistic Copeland winner ac (Lines 7–9 and 11–12), i.e., an arm that has some
chance of being a Copeland winner. Then, it uses L to choose an opponent ad (Line 13), i.e., an arm
deemed likely to discredit the hypothesis that ac is indeed a Copeland winner.

More precisely, an optimistic estimate of the Copeland score of each arm ai is calculated using U
(Line 7), and ac is selected from the set of top scorers, with preference given to those in a shortlist, Bt

(Line 11). These are arms that have, roughly speaking, been optimistic winners throughout history.
To maintain Bt, as soon as CCB discovers that the optimistic Copeland score of an arm is lower than
the pessimistic Copeland score of another arm, it purges the former from Bt (Line 9B).

The mechanism for choosing the opponent ad is as follows. The matrices U and L define a confi-
dence interval around pij for each i and j. In relation to ac, there are three types of arms: (1) arms
aj s.t. the confidence region of pcj is strictly above 0.5, (2) arms aj s.t. the confidence region of pcj
is strictly below 0.5, and (3) arms aj s.t. the confidence region of pcj contains 0.5. Note that an arm
of type (1) or (2) at time t0 may become an arm of type (3) at time t > t0 even without queries to the
corresponding pair as the size of the confidence intervals increases as time goes on.

1Cf. [10, Equation 9 in §4.1.1] and [11, Theorem 1].
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Algorithm 1 Copeland Confidence Bound
Input: A Copeland dueling bandit problem and an exploration parameter ↵ > 1

2

.
1: W = [wij ] 0K⇥K // 2D array of wins: wij is the number of times ai beat aj
2: B

1

= {a
1

, . . . , aK} // potential best arms
3: Bi

1

= ? for each i = 1, . . . ,K // potential to beat ai
4: LC = K // estimated max losses of a Copeland winner
5: for t = 1, 2, . . . do
6: U := [uij ]=

W
W+WT +

q
↵ ln t

W+WT and L := [lij ]=
W

W+WT �
q

↵ ln t
W+WT , with uii = lii =

1

2

, 8i
7: Cpld(ai) = #

�
k |uik � 1

2

, k 6= i
 

and Cpld(ai) = #

�
k | lik � 1

2

, k 6= i
 

8: Ct = {ai | Cpld(ai) = maxj Cpld(aj)}
9: Set Bt  Bt�1

and Bi
t  Bi

t�1

and update as follows:
A. Reset disproven hypotheses: If for any i and aj 2 Bi

t we have lij > 0.5, reset Bt, LC and
Bk
t for all k (i.e., set them to their original values as in Lines 2–4 above).

B. Remove non-Copeland winners: For each ai 2 Bt, if Cpld(ai) < Cpld(aj) holds for any
j, set Bt  Bt \ {ai}, and if |Bi

t| 6= LC + 1, then set Bi
t  {ak|uik < 0.5}. However, if

Bt = ?, reset Bt, LC and Bk
t for all k.

C. Add Copeland winners: For any ai 2 Ct with Cpld(ai) = Cpld(ai), set Bt  Bt [ {ai},
Bi
t  ? and LC  K � 1 � Cpld(ai). For each j 6= i, if we have |Bj

t | < LC + 1, set
Bj
t ?, and if |Bj

t |>LC+1, randomly choose LC+1 elements of Bj
t and remove the rest.

10: With probability 1/4, sample (c, d) uniformly from the set {(i, j) | aj 2 Bi
t and 0.5 2

[lij , uij ]} (if it is non-empty) and skip to Line 14.
11: If Bt \ Ct 6= ?, then with probability 2/3, set Ct  Bt \ Ct.
12: Sample ac from Ct uniformly at random.
13: With probability 1/2, choose the set Bi to be either Bi

t or {a
1

, . . . , aK} and then set
d  arg max{j2Bi | ljc0.5} ujc. If there is a tie, d is not allowed to be equal to c.

14: Compare arms ac and ad and increment wcd or wdc depending on which arm wins.
15: end for

CCB always chooses ad from arms of type (3) because comparing ac and a type (3) arm is most
informative about the Copeland score of ac. Among arms of type (3), CCB favors those that have
confidently beaten arm ac in the past (Line 13), i.e., arms that in some round t0 < t were of type (2).
Such arms are maintained in a shortlist of “formidable” opponents (Bi

t) that are likely to confirm
that ai is not a Copeland winner; these arms are favored when selecting ad (Lines 10 and 13).

The sets Bi
t are what speed up the elimination of non-Copeland winners, enabling regret bounds that

scale asymptotically with K rather than K2. Specifically, for a non-Copeland winner ai, the set
Bi
t will eventually contain LC +1 strong opponents for ai (Line 4.1C), where LC is the number of

losses of each Copeland winner. Since LC is typically small (cf. Appendix C.3), asymptotically this
leads to a bound of only O(log T ) on the number of time-steps when ai is chosen as an optimistic
Copeland winner, instead of a bound of O(K log T ), which a more naive algorithm would produce.

4.2 Scalable Copeland Bandits (SCB)
SCB is designed to handle dueling bandit problems with large numbers of arms. It is based on an
arm-identification algorithm, described in Algorithm 2, designed for a PAC setting, i.e., it finds an
✏-Copeland winner with probability 1 � �, although we are primarily interested in the case with
✏ = 0. Algorithm 2 relies on a reduction to a K-armed bandit problem where we have direct access

Algorithm 2 Approximate Copeland Bandit Solver
Input: A Copeland dueling bandit problem with preference matrix P = [pij ], failure probability

� > 0, and approximation parameter ✏ > 0. Also, define [K] := {1, . . . ,K}.
1: Define a random variable reward(i) for i 2 [K] as the following procedure: pick a uniformly

random j 6= i from [K]; query the pair (ai, aj) sufficiently many times in order to determine
w.p. at least 1� �/K2 whether pij > 1/2; return 1 if pij > 0.5 and 0 otherwise.

2: Invoke Algorithm 4, where in each of its calls to reward(i), the feedback is determined by the
above stochastic process.

Return: The same output returned by Algorithm 4.
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to a noisy version of the Copeland score; the process of estimating the score of arm ai consists of
comparing ai to a random arm aj until it becomes clear which arm beats the other. The sample
complexity bound, which yields the regret bound, is achieved by combining a bound for K-armed
bandits and a bound on the number of arms that can have a high Copeland score.

Algorithm 2 calls a K-armed bandit algorithm as a subroutine. To this end, we use the KL-based
arm-elimination algorithm, a slight modification of Algorithm 2 in [22]: it implements an elimi-
nation tournament with confidence regions based on the KL-divergence between probability dis-
tributions. The interested reader can find the pseudo-code in Algorithm 4 contained in Appendix
J.

Combining this with the squaring trick, a modification of the doubling trick that reduces the number
of partitions from log T to log log T , the SCB algorithm, described in Algorithm 3, repeatedly calls
Algorithm 2 but force-terminates if an increasing threshold is reached. If it terminates early, then
the identified arm is played against itself until the threshold is reached.

Algorithm 3 Scalable Copeland Bandits
Input: A Copeland dueling bandit problem with preference matrix P = [pij ]

1: for all r = 1, 2, . . . do
2: Set T = 2

2

r
and run Algorithm 2 with failure probability log(T )/T in order to find an exact

Copeland winner (✏ = 0); force-terminate if it requires more than T queries.
3: Let T

0

be the number of queries used by invoking Algorithm 2, and let ai be the arm produced
by it; query the pair (ai, ai) T � T

0

times.
4: end for

5 Theoretical Results
In this section, we present regret bounds for both CCB and SCB. Assuming that the number of
Copeland winners and the number of losses of each Copeland winner are bounded,2 CCB’s regret
bound takes the form O(K2

+ K log T ), while SCB’s is of the form O(K logK log T ). Note that
these bounds are not directly comparable. When there are relatively few arms, CCB is expected to
perform better. By contrast, when there are many arms SCB is expected to be superior. Appendix A
in the supplementary material provides empirical evidence to support these expectations.

Throughout this section we impose the following condition on the preference matrix:

A There are no ties, i.e., for all pairs (ai, aj) with i 6= j, we have pij 6= 0.5.

This assumption is not very restrictive in practice. For example, in the ranker evaluation setting from
information retrieval, each arm corresponds to a ranker, a complex and highly engineered system,
so it is unlikely that two rankers are indistinguishable. Furthermore, some of the results we present
in this section actually hold under even weaker assumptions. However, for the sake of clarity, we
defer a discussion of these nuanced differences to Appendix F in the supplementary material.

5.1 Copeland Confidence Bound (CCB)
In this section, we provide a rough outline of our argument for the bound on the regret accumulated
by Algorithm 1. For a more detailed argument, the interested reader is referred to Appendix E.

Consider a K-armed Copeland bandit problem with arms a
1

, . . . , aK and preference matrix P =

[pij ], such that arms a
1

, . . . , aC are the Copeland winners, with C being the number of Copeland
winners. Moreover, we define LC to be the number of arms to which a Copeland winner loses in
expectation.

Using this notation, our expected regret bound for CCB takes the form: O
⇣

K2
+(C+LC)K lnT

�

2

⌘
(1)

Here, � is a notion of gap defined in Appendix E, which is an improvement upon the smallest gap
between any pair of arms.

This result is proven in two steps. First, we bound the number of comparisons involving non-
Copeland winners, yielding a result of the form O(K2

lnT ). Second, Theorem 3 closes the gap

2See Appendix C.3 in the supplementary material for experimental evidence that this is the case in practice.
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between this bound and the one in (1) by showing that, beyond a certain time horizon, CCB selects
non-Copeland winning arms as the optimistic Copeland winner very infrequently.
Theorem 3. Given a Copeland bandit problem satisfying Assumption A and any � > 0 and ↵ > 0.5,
there exist constants A(1)

� and A(2)

� such that, with probability 1� �, the regret accumulated by CCB
is bounded by the following:

A(1)

� + A(2)

�

p
lnT +

2K(C + LC + 1)

�

2

lnT.

Using the high probability regret bound given in Theorem 3, we can deduce the expected regret
result claimed in (1) for ↵ > 1, as a corollary by integrating � over the interval [0, 1].

5.2 Scalable Copeland Bandits
We now turn to our regret result for SCB, which lowers the K2 dependence in the additive constant
of CCB’s regret result to K logK. We begin by defining the relevant quantities:
Definition 4. Given a K-armed Copeland bandit problem and an arm ai, we define the following:

1. Recall that cpld(ai) := Cpld(ai)/(K � 1) is called the normalized Copeland score.
2. ai is an ✏-Copeland-winner if 1� cpld(ai)  (1� cpld(a

1

)) (1 + ✏).
3. �i := max{cpld(a

1

)� cpld(ai), 1/(K � 1)} and Hi :=

P
j 6=i

1

�

2
ij

, with H1 := maxi Hi.
4. �

✏
i = max {�i, ✏(1� cpld(a

1

))}.

We now state our main scalability result:
Theorem 5. Given a Copeland bandit problem satisfying Assumption A, the expected regret of SCB
(Algorithm 3) is bounded by O

⇣
1

K

PK
i=1

Hi(1�cpld(ai))

�

2
i

⌘
log(T ), which in turn can be bounded by

O
⇣

K(LC+logK) log T
�

2
min

⌘
, where LC and �

min

are as in Definition 10.

Recall that SCB is based on Algorithm 2, an arm-identification algorithm that identifies a Copeland
winner with high probability. As a result, Theorem 5 is an immediate corollary of Lemma 6, obtained
by using the well known squaring trick. As mentioned in Section 4.2, the squaring trick is a minor
variation on the doubling trick that reduces the number of partitions from log T to log log T .

Lemma 6 is a result for finding an ✏-approximate Copeland winner (see Definition 4.2). Note that,
for the regret setting, we are only interested in the special case with ✏ = 0, i.e., the problem of
identifying the best arm.
Lemma 6. With probability 1� �, Algorithm 2 finds an ✏-approximate Copeland winner by time

O
 

1

K

KX

i=1

Hi(1� cpld(ai))

(�

✏
i)

2

!
log(1/�)  O �H1

�
log(K) + min

�
✏�2, LC

 ��
log(1/�).

assuming3 � = (KH1)

⌦(1). In particular when there is a Condorcet winner (cpld(a
1

) = 1, LC =

0) or more generally cpld(a
1

) = 1�O(1/K), LC = O(1), an exact solution is found with probabil-
ity at least 1�� by using an expected number of queries of at most O (H1(LC + logK)) log(1/�).

In the remainder of this section, we sketch the main ideas underlying the proof of Lemma 6, detailed
in Appendix I in the supplementary material. We first treat the simpler deterministic setting in which
a single query suffices to determine which of a pair of arms beats the other. While a solution can
easily be obtained using K(K � 1)/2 many queries, we aim for one with query complexity linear
in K. The main ingredients of the proof are as follows:

1. cpld(ai) is the mean of a Bernoulli random variable defined as such: sample uniformly at random
an index j from the set {1, . . . ,K} \ {i} and return 1 if ai beats aj and 0 otherwise.

2. Applying a KL-divergence based arm-elimination algorithm (Algorithm 4) to the K-armed ban-
dit arising from the above observation, we obtain a bound by dividing the arms into two groups:
those with Copeland scores close to that of the Copeland winners, and the rest. For the former,
we use the result from Lemma 7 to bound the number of such arms; for the latter, the resulting
regret is dealt with using Lemma 8, which exploits the possible distribution of Copeland scores.

3The exact expression requires replacing log(1/�) with log(KH1/�).
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Figure 1: Small-scale regret results for a 5-armed Copeland dueling bandit problem arising from
ranker evaluation.
Let us state the two key lemmas here:
Lemma 7. Let D ⇢ {a

1

, . . . , aK} be the set of arms for which cpld(ai) � 1� d/(K � 1), that is
arms that are beaten by at most d arms. Then |D|  2d + 1.
Proof. Consider a fully connected directed graph, whose node set is D and the arc (ai, aj) is in the
graph if arm ai beats arm aj . By the definition of cpld, the in-degree of any node i is upper bounded
by d. Therefore, the total number of arcs in the graph is at most |D|d. Now, the full connectivity
of the graph implies that the total number of arcs in the graph is exactly |D|(|D| � 1)/2. Thus,
|D|(|D|� 1)/2  |D|d and the claim follows.

Lemma 8. The sum
P

{i|cpld(ai)<1}
1

1�cpld(ai)
is in O(K logK).

Proof. Follows from Lemma 7 via a careful partitioning of arms. Details are in Appendix I.

Given the structure of Algorithm 2, the stochastic case is similar to the deterministic case for the
following reason: while the latter requires a single comparison between arms ai and aj to determine

which arm beats the other, in the stochastic case, we need roughly
log(K log(�

�1
ij )/�)

�

2
ij

comparisons

between the two arms to correctly answer the same question with probability at least 1� �/K2.

6 Experiments
To evaluate our methods CCB and SCB, we apply them to a Copeland dueling bandit problem arising
from ranker evaluation in the field of information retrieval (IR) [23].

We follow the experimental approach in [3, 13] and use a preference matrix to simulate comparisons
between each pair of arms (ai, aj) by drawing samples from Bernoulli random variables with mean
pij . We compare our proposed algorithms against the state of the art K-armed dueling bandit al-
gorithms, RUCB [13], Copeland SAVAGE, PBR and RankEl. We include RUCB in order to verify
our claim that K-armed dueling bandit algorithms that assume the existence of a Condorcet winner
have linear regret if applied to a Copeland dueling bandit problem without a Condorcet winner.

More specifically, we consider a 5-armed dueling bandit problem obtained from comparing five
rankers, none of whom beat the other four, i.e. there is no Condorcet winner. Due to lack of space,
the details of the experimental setup have been included in Appendix B4. Figure 1 shows the regret
accumulated by CCB, SCB, the Copeland variants of SAVAGE, PBR, RankEl and RUCB on this
problem. The horizontal time axis uses a log scale, while the vertical axis, which measures cumula-
tive regret, uses a linear scale. CCB outperforms all other algorithms in this 5-armed experiment.

Note that three of the baseline algorithms under consideration here (i.e., SAVAGE, PBR and RankEl)
require the horizon of the experiment as an input, either directly or through a failure probability �,

4Sample code and the preference matrices used in the experiments can be found at http://bit.ly/nips15data.

7



which we set to 1/T (with T being the horizon), in order to obtain a finite-horizon regret algo-
rithm, as prescribed in [3, 10]. Therefore, we ran independent experiments with varying horizons
and recorded the accumulated regret: the markers on the curves corresponding to these algorithms
represent these numbers. Consequently, the regret curves are not monotonically increasing. For
instance, SAVAGE’s cumulative regret at time 2 ⇥ 10

7 is lower than at time 10

7 because the runs
that produced the former number were not continuations of those that resulted in the latter, but rather
completely independent. Furthermore, RUCB’s cumulative regret grows linearly, which is why the
plot does not contain the entire curve.

Appendix A contains further experimental results, including those of our scalability experiment.

7 Conclusion
In many applications that involve learning from human behavior, feedback is more reliable when
provided in the form of pairwise preferences. In the dueling bandit problem, the goal is to use such
pairwise feedback to find the most desirable choice from a set of options. Most existing work in
this area assumes the existence of a Condorcet winner, i.e., an arm that beats all other arms with
probability greater than 0.5. Even though these results have the advantage that the bounds they
provide scale linearly in the number of arms, their main drawback is that in practice the Condorcet
assumption is too restrictive. By contrast, other results that do not impose the Condorcet assumption
achieve bounds that scale quadratically in the number of arms.

In this paper, we set out to solve a natural generalization of the problem, where instead of assuming
the existence of a Condorcet winner, we seek to find a Copeland winner, which is guaranteed to
exist. We proposed two algorithms to address this problem: one for small numbers of arms, called
CCB, and a more scalable one, called SCB, that works better for problems with large numbers of
arms. We provided theoretical results bounding the regret accumulated by each algorithm: these
results improve substantially over existing results in the literature, by filling the gap that exists in the
current results, namely the discrepancy between results that make the Condorcet assumption and are
of the form O(K log T ) and the more general results that are of the form O(K2

log T ).

Moreover, we have included in the supplementary material empirical results on both a dueling bandit
problem arising from a real-life application domain and a large-scale synthetic problem used to test
the scalability of SCB. The results of these experiments show that CCB beats all existing Copeland
dueling bandit algorithms, while SCB outperforms CCB on the large-scale problem.

One open question raised by our work is how to devise an algorithm that has the benefits of both
CCB and SCB, i.e., the scalability of the latter together with the former’s better dependence on the
gaps. At this point, it is not clear to us how this could be achieved. Another interesting direction
for future work is an extension of both CCB and SCB to problems with a continuous set of arms.
Given the prevalence of cyclical preference relationships in practice, we hypothesize that the non-
existence of a Condorcet winner is an even greater issue when dealing with an infinite number of
arms. Given that both our algorithms utilize confidence bounds to make their choices, we anticipate
that continuous-armed UCB-style algorithms like those proposed in [24, 25, 26, 27, 28, 29, 30] can
be combined with our ideas to produce a solution to the continuous-armed Copeland bandit problem
that does not rely on the convexity assumptions made by algorithms such as the one proposed in
[31]. Finally, it is also interesting to expand our results to handle scores other than the Copeland
score, such as an ✏-insensitive variant of the Copeland score (as in [12]), or completely different
notions of winners, such as the Borda, Random Walk or von Neumann winners (see, e.g., [32, 19]).
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