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Abstract

We present a new algorithm for community detection. The algorithm uses ran-
dom walks to embed the graph in a space of measures, after which a modification
of k-means in that space is applied. The algorithm is therefore fast and easily
parallelizable. We evaluate the algorithm on standard random graph benchmarks,
including some overlapping community benchmarks, and find its performance to
be better or at least as good as previously known algorithms. We also prove a
linear time (in number of edges) guarantee for the algorithm on a p, g-stochastic

block model with where p > ¢- N=2 < andp — ¢ > ¢/1/pN~2*<log N.

1 Introduction

Community detection in graphs, also known as graph clustering, is a problem where one wishes to
identify subsets of the vertices of a graph such that the connectivity inside the subset is in some
way denser than the connectivity of the subset with the rest of the graph. Such subsets are referred
to as communities, and it often happens in applications that if two vertices belong to the same
community, they have similar application-related qualities. This in turn may allow for a higher level
analysis of the graph, in terms of communities instead of individual nodes. Community detection
finds applications in a diversity of fields, such as social networks analysis, communication and traffic
design, in biological networks, and, generally, in most fields where meaningful graphs can arise (see,
for instance, [1]] for a survey). In addition to direct applications to graphs, community detection can,
for instance, be also applied to general Euclidean space clustering problems, by transforming the
metric to a weighted graph structure (see [2] for a survey).

Community detection problems come in different flavours, depending on whether the graph in ques-
tion is simple, or weighted, or/and directed. Another important distinction is whether the communi-
ties are allowed to overlap or not. In the overlapping communities case, each vertex can belong to
several subsets.

A difficulty with community detection is that the notion of community is not well defined. Differ-
ent algorithms may employ different formal notions of a community, and can sometimes produce
different results. Nevertheless, there exist several widely adopted benchmarks — synthetic models
and real-life graphs — where the ground truth communities are known, and algorithms are evalu-
ated based on the similarity of the produced output to the ground truth, and based on the amount
of required computations. On the theoretical side, most of the effort is concentrated on developing
algorithms with guaranteed recovery of clusters for graphs generated from variants of the Stochastic
Block Model (referred to as SBM in what follows, [[1]).

In this paper we present a new algorithm, DER (Diffusion Entropy Reducer, for reasons to be clari-
fied later), for non-overlapping community detection. The algorithm is an adaptation of the k-means
algorithm to a space of measures which are generated by short random walks from the nodes of the
graph. The adaptation is done by introducing a certain natural cost on the space of the measures.
As detailed below, we evaluate the DER on several benchmarks and find its performance to be as
good or better than the best alternative method. In addition, we establish some theoretical guarantees



on its performance. While the main purpose of the theoretical analysis in this paper is to provide
some insight into why DER works, our result is also one of a few results in the literature that show
reconstruction in linear time.

On the empirical side, we first evaluate our algorithm on a set of random graph benchmarks known
as the LFR models, [3]. In [4], 12 other algorithms were evaluated on these benchmarks, and
three algorithms, described in [5]], [6] and [7], were identified, that exhibited significantly better
performance than the others, and similar performance among themselves. We evaluate our algorithm
on random graphs with the same parameters as those used in [4]] and find its performance to be
as good as these three best methods. Several well known methods, including spectral clustering
[8]], exhaustive modularity optimization (see [4] for details), and clique percolation [9], have worse
performance on the above benchmarks.

Next, while our algorithm is designed for non-overlapping communities, we introduce a simple
modification that enables it to detect overlapping communities in some cases. Using this modifica-
tion, we compare the performance of our algorithm to the performance of 4 overlapping community
algorithms on a set of benchmarks that were considered in [10]]. We find that in all cases DER per-
forms better than all 4 algorithms. None of the algorithms evaluated in [4] and [3]] has theoretical
guarantees.

On the theoretical side, we show that DER reconstructs with high probability the partition of the
p, g-stochastic block model such that, roughly, p > N _%, where N is the number of vertices, and

p—q > c\/pN~2%¢log N (this holds in particular when %’ > ¢ > 1) for some constant ¢ > 0.

We show that for this reconstruction only one iteration of the k-means is sufficient. In fact, three
passages over the set of edges suffice. While the cost function we introduce for DER will appear at
first to have purely probabilistic motivation, for the purposes of the proof we provide an alternative
interpretation of this cost in terms of the graph, and the arguments show which properties of the
graph are useful for the convergence of the algorithm.

Finally, although this is not the emphasis of the present paper, it is worth noting here that, as will
be evident later, our algorithm can be trivially parallelalized. This seems to be a particularly nice
feature since most other algorithms, including spectral clustering, are not easy to parallelalize and
do not seem to have parallel implementations at present.

The rest of the paper is organized as follows: Section 2] overviews related work and discusses rela-
tions to our results. In Section[3|we provide the motivation for the definition of the algorithm, derive
the cost function and establish some basic properties. Section[d] we present the results on the empir-
ical evaluation of the algorithm and Section [5| describes the theoretical guarantees and the general
proof scheme. Some proofs and additional material are provided in the supplementary material.

2 Literature review

Community detection in graphs has been an active research topic for the last two decades and gener-
ated a huge literature. We refer to [[1]] for an extensive survey. Throughout the paper, let G = (V, E)
be a graph, and let P = P, ..., Py be a partition of V. Loosely speaking, a partition P is a good
community structure on G if for each P; € P, more edges stay within P; than leave P;. This is
usually quantified via some cost function that assigns larger scalars to partitions P that are in some
sense better separated. Perhaps the most well known cost function is the modularity, which was
introduced in [[11] and served as a basis of a large number of community detection algorithms ([[L]).
The popular spectral clustering methods, [8]; [2], can also be viewed as a (relaxed) optimization of
a certain cost (see [2])).

Yet another group of algorithms is based on fitting a generative model of a graph with communities
to a given graph. References [12[]; [10] are two among the many examples. Perhaps the simplest
generative model for non-overlapping communities is the stochastic block model, see [13],[1] which
we now define: Let P = P, ..., Py be a partition of V' into k subsets. p, g-SBM is a distribution
over the graphs on vertex set V', such that all edges are independent and for 4, j € V, the edge (i, j)
exists with probability p if 4, j belong to the same P, and it exists with probability ¢ otherwise. If
q << p, the components P; will be well separated in this model. We denote the number of nodes
by N = |V| throughout the paper.



Graphs generated from SBMs can serve as a benchmark for community detection algorithms. How-
ever, such graphs lack certain desirable properties, such as power-law degree and community size
distributions. Some of these issues were fixed in the benchmark models in [3]]; [[14], and these mod-
els are referred to as LFR models in the literature. More details on these models are given in Section

4

We now turn to the discussion of the theoretical guarantees. Typically results in this direction provide
algorithms that can reconstruct,with high probability, the ground partition of a graph drawn from a
variant of a p, g-SBM model, with some, possibly large, number of components k. Recent results
include the works [[15]] and [[16]. In this paper, however, we only analytically analyse the k = 2 case,
and such that, in addition, |P;| = | Px|.

For this case, the best known reconstruction result was obtained already in [17] and was only im-

proved in terms of runtime since then. Namely, Bopanna’s result states that if p > 01% and
p—q > CQIOgTN, then with high probability the partition is reconstructible. Similar bound can be

obtained, for instance, from the approaches in [[15]]; [16]], to name a few. The methods in this group
are generally based on the spectral properties of adjacency (or related) matrices. The run time of
these algorithms is non-linear in the size of the graph and it is not known how these algorithms
behave on graphs not generated by the probabilistic models that they assume.

It is generally known that when the graphs are dense (p of order of constant), simple linear time
reconstruction algorithms exist (see [18]). The first, and to the best of our knowledge, the only
previous linear time algorithm for non dense graphs was proposed in [18]. This algorithm works
forp > c3(e)N —3+¢, for any fixed € > 0. The approach of [18] was further extended in [19]],
to handle more general cluster sizes. These approaches approaches differ significantly from the
spectrum based methods, and provide equally important theoretical insight. However, their empir-
ical behaviour was never studied, and it is likely that even for graphs generated from the SBM,
extremely high values of IV would be required for the algorithms to work, due to large constants in
the concentration inequalities (see the concluding remarks in [19]]).

3 Algorithm

Let G be a finite undirected graph with a vertex set V' = {1,...,n}. Denote by A = {a;;} the
symmetric adjacency matrix of G, where a;; > 0 are edge weights, and for a vertex ¢ € V, set
di =5 ; @ij to be the degree of 7. Let D be an n x n diagonal matrix such that D;; = d;, and set

T = D~ A to be the transition matrix of the random walk on G. Set also pij = Tj;. Finally, denote

by 7, (i) = Zii B the stationary measure of the random walk.

A number of community detection algorithms are based on the intuition that distinct communities
should be relatively closed under the random walk (see [1]), and employ different notions of closed-
ness. Our approach also takes this point of view.

For a fixed L € N, consider the following sampling process on the graph: Choose vertex vy ran-
domly from 7, and perform L steps of a random walk on G, starting from vg. This results in a
length L + 1 sequence of vertices, '. Repeat the process N times independently, to obtain also
zt 2

Suppose now that we would like to model the sequences ° as a multinomial mixture model with a
single component. Since each coordinate z§ is distributed according to , the single component of
the mixture should be 7 itself, when N grows. Now suppose that we would like to model the same
sequences with a mixture of two components. Because the sequences are sampled from a random
walk rather then independently from each other, the components need no longer be 7 itself, as in any
mixture where some elements appear more often together then others. The mixture as above can be
found using the EM algorithm, and this in principle summarizes our approach. The only additional
step, as discussed above, is to replace the sampled random walks with their true distributions, which
simplifies the analysis and also leads to somewhat improved empirical performance.

We now present the DER algorithm for detecting the non-overlapping communities. Its input is
the number of components to detect, k, the length of the walks L, an initialization partition P =



Algorithm 1 DER

1: Input: Graph G, walk length L,
number of components k.
2: Compute the measures w;.

3: Initialize P4, ..., Py to be a random partition such that
|P;| = |V|/k for all .
4: repeat

5. (1) Forall s <k, construct us = pp,.
6: (2) Forall s <k, set

P, = {z eV | s= argmaxD(wi,ul)} .
l

7: until the sets Ps do not change

{Py,..., Py} of V into disjoint subsets. P would be usually taken to be a random partition of V
into equally sized subsets.

For¢t = 0,1,... and a vertex ¢ € V, denote by w! the i-th row of the matrix 7. Then w! is the
distribution of the random walk on G, started at 4, after ¢ steps. Set w; = %(w} +... .+ wZL) which
is the distribution corresponding to the average of the empirical measures of sequences x that start
at .

For two probability measures v, 4 on V, set

D(v,p) = > v(i)log pu(i).
i€V
Although D is not a metric, will act as a distance function in our algorithm. Note that if v was an

empirical measure, then, up to a constant, D would be just the log-likelihood of observing v from
independent samples of (.

For a subset S C V, set wg to be the restriction of the measure 7 to S, and also set dg = > .o d;

to be the full degree of S. Let

€S

1
ds i3
denote the distribution of the random walk started from 7g.

The complete DER algorithm is described in Algorithm I]

The algorithm is essentially a k-means algorithm in a non-Euclidean space, where the points are
the measures w;, each occurring with multiplicity d;. Step (1) is the “means” step, and (2) is the
maximization step.

Let

L
C=>"> di-D(wi, ) )
I=11ieph

be the associated cost. As with the usual k-means, we have the following

Lemma 3.1. Either P is unchanged by steps (1) and (2) or both steps (1) and (2) strictly increase
the value of C.

The proof is by direct computation and is deferred to the supplementary material. Since the number
of configurations P is finite, it follows that DER always terminates and provides a “local maximum”
of the cost C.

The cost C' can be rewritten in a somewhat more informative form. To do so, we introduce some
notation first. Let X be a random variable on V/, distributed according to measure 7. Let Y a step of
a random walk started at X, so that the distribution of Y given X = i is w;. Finally, for a partition
P, let Z be the indicator variable of a partition, Z = s iff X € P,. With this notation, one can write

C=—dy-H(Y|Z) = dv (-H(Y) + H(Z) — H(Z|]Y)), ©)



(b) Political Blogs
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where H are the full and conditional Shannon entropies. Therefore, DER algorithm can be inter-
preted as seeking a partition that maximizes the information between current known state (Z), and
the next step from it (Y). This interpretation gives rise to the name of the algorithm, DER, since
every iteration reduces the entropy H(Y|Z) of the random walk, or diffusion, with respect to the
partition. The second equality in (3) has another interesting interpretation. Suppose, for simplicity,
that £ = 2, with partition P;, P,. In general, a clustering algorithm aims to minimize the cut, the
number of edges between P} and P». However, minimizing the number of edges directly will lead
to situations where P, is a single node, connected with one edge to the rest of the graph in P». To
avoid such situation, a relative, normalized version of a cut needs to be introduced, which takes into
account the sizes of Py, P,. Every clustering algorithms has a way to resolve this issue, implicitly
or explicitly. For DER, this is shown in second equality of (3). H(Z) is maximized when the com-
ponents are of equal sizes (with respect to 7), while H(Z]Y") is minimized when the measures 1 p,
are as disjointly supported as possible.

As any k-means algorithm, DER’s results depend somewhat on its random initialization. All k-
means-like schemes are usually restarted several times and the solution with the best cost is chosen.
In all cases which we evaluated we observed empirically that the dependence of DER on the initial
parameters is rather weak. After two or three restarts it usually found a partition nearly as good
as after 100 restarts. For clustering problems, however, there is another simple way to aggregate
the results of multiple runs into a single partition, which slightly improves the quality of the final
results. We use this technique in all our experiments and we provide the details in the Supplementary
Material, Section A.

We conclude by mentioning two algorithms that use some of the concepts that we use. The Walktrap,
[20], similarly to DER constructs the random walks (the measures w;, possibly for L > 1) as part of
its computation. However, Walktrap uses w;’s in a completely different way. Both the optimization
procedure and the cost function are different from ours. The Infomap , [S], [21], has a cost that
is related to the notion of information. It aims to minimize to the information required to transmit
a random walk on G through a channel, the source coding is constructed using the clusters, and
best clusters are those that yield the best compression. This does not seem to be directly connected
to the maximum likelyhood motivated approach that we use. As with Walktrap, the optimization
procedure of Infomap also completely differs from ours.

4 Evaluation

In this section results of the evaluation of DER algorithm are presented. In Section .1 we illustrate
DER on two classical graphs. Sections {f.2]and [.3] contain the evaluation on the LFR benchmarks.

4.1 Basic examples

When a new clustering algorithm is introduced, it is useful to get a general feel of it with some
simple examples. Figure [Ta] shows the classical Zachary’s Karate Club, [22]]. This graph has a



ground partition into two subsets. The partition shown in Figure [Tais a partition obtained from a
typical run of DER algorithm, with & = 2, and wide range of L’s. (L € [1,10] were tested). As is
the case with many other clustering algorithms, the shown partition differs from the ground partition
in one element, node 8 (see [L1]]).

Figure |1 bl shows the political blogs graph, [23]]. The nodes are political blogs, and the graph has an
(undirected) edge if one of the blogs had a link to the other. There are 1222 nodes in the graph. The
ground truth partition of this graph has two components - the right wing and left wing blogs. The
labeling of the ground truth was partially automatic and partially manual, and both processes could
introduce some errors. The run of DER reconstructs the ground truth partition with only 57 nodes
missclassifed. The NMI (see the next section, Eq. ({@)) to the ground truth partition is .74.

The political blogs graphs is particularly interesting since it is an example of a graph for which
fitting an SBM model to reconstruct the clusters produces results very different from the ground
truth. To overcome the problem with SBM fitting on this graph, a degree sensitive version of SBM,
DCBM, was introduced in [24]. That algorithm produces partition with NMI .75. Another approach
to DCBM can be found in [25]].

4.2 LFR benchmarks

The LFR benchmark model, [[14], is a widely used extension of the stochastic block model, where
node degrees and community sizes have power law distribution, as often observed in real graphs.
An important parameter of this model is the mixing parameter 1 € [0, 1] that controls the fraction
of the edges of a node that go outside the node’s community (or outside all of node’s communities,
in the overlapping case). For small p, there will be a small number of edges going outside the
communities, leading to disjoint, easily separable graphs, and the boundaries between communities
will become less pronounced as 1 grows.

Given a set of communities P on a graph, and the ground truth set of communities (), there are
several ways to measure how close P is to ). One standard measure is the normalized mutual
information (NMI), given by:

I1(P,Q)
H(P)+ H(Q)’
where H is the Shannon entropy of a partition and [ is the mutual information (see [1]] for details).

NMI is equal 1 if and only if the partitions P and () coincide, and it takes values between 0 and 1
otherwise.

NMI(P,Q) =2 @)

When computed with NMI, the sets inside P, () can not overlap. To deal with overlapping commu-
nities, an extension of NMI was proposed in [26]. We refer to the original paper for the definition,
as the definition is somewhat lengthy. This extension, which we denote here as ENMI, was sub-
sequently used in the literature as a measure of closeness of two sets of communities, event in the
cases of disjoint communities. Note that most papers use the notation NMI while the metric that
they really use is ENMI.

Figure [2a shows the results of evaluation of DER for four cases: the size of a graph was either
N = 1000 or N = 5000 nodes, and the size of the communities was restricted to be either between
10 to 50 (denoted S in the figures) or between 20 to 100 (denoted B). For each combination of these
parameters, ;. varied between 0.1 and 0.8. For each combination of graph size, community size
restrictions as above and p value, we generated 20 graphs from that model and run DER. To provide
some basic intuition about these graphs, we note that the number of communities in the 1000S
graphs is strongly concentrated around 40, and in 1000B, 5000S, and 5000B graphs it is around 25,
200 and 100 respectively. Each point in Figure 2a)is a the average ENMI on the 20 corresponding
graphs, with standard deviation as the error bar. These experiments correspond precisely to the ones
performed in [4] (see Supplementary Material, Section Cfor more details). In all runs on DER we
have set L = 5 and set & to be the true number of communities for each graph, as was done in [4] for
the methods that required it. Therefore our Figure [2a)can be compared directly with Figure 2 in [4].

From this comparison we see that DER and the two of the best algorithms identified in [4], Infomap
[S] and RN [6], reconstruct the partition perfectly for 4 < 0.5, for u = 0.6 DER’s reconstruction
scores are between Infomap’s and RN’s, with values for all of the algorithms above 0.95, and for
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1 = 0.7 DER has the best performance in two of the four cases. For ;1 = 0.8 all algorithms have
score 0.

We have also performed the same experiments with the standard version of spectral clustering, [8],
because this version was not evaluated in [4]. The results are shown in Fig. Although the
performance is generally good, the scores are mostly lower than those of DER, Infomap and RN.

4.3 Overlapping LFR benchmarks

We now describe how DER can be applied to overlapping community detection. Observe that DER
internally operates on measures up, rather then subsets of the vertex set. Recall that up,(4) is the
probability that a random walk started from P, will hit node . We can therefore consider each i to
be a member of those communities from which the probability to hit it is “high enough”. To define
this formally, we first note that for any partition P, the following decomposition holds:

W:ZW(PS);LPS. (5)

s=1

This follows from the invariance of 7 under the random walk. Now, given the out put of DER - the
sets Ps and measures pp, set

() — (TP (Dr(P)
Sty i, (i) (Py) (i)
where we used (5] in the second equality. Then m;(s) is the probability that the walks started at Ps,

given that it finished in i. For each i € V, set s; = argmax; m;(l) to be the most likely community
given i. Then define the overlapping communities C1, . .., Cj, via

(6)

The paper [10] introduces a new algorithm for overlapping communities detection and contains also
an evaluation of that algorithm as well as of several other algorithms on a set of overlapping LFR
benchmarks. The overlapping communities LFR model was defined in [3]]. In Table[I] we present
the ENMI results of DER runs on the N = 10000 graphs with same parameters as in [[10]], and also
show the values obtained on these benchmarks in [10] (Figure S4 in [[10]]), for four other algorithms.
The DER algorithm was run with L = 2, and k£ was set to the true number of communities. Each
number is an average over ENMIs on 10 instances of graphs with a given set of parameters (as in
[LO]). The standard deviation around this average for DER was less then 0.02 in all cases. Variances
for other algorithms are provided in [10].

For 11 > 0.6 all algorithms yield ENMI of less then 0.3. As we see in Table[I} DER performs better
than all other algorithms in all the cases. We believe this indicates that DER together with equation
is a good choice for overlapping community detection in situations where community overlap
between each two communities is sparse, as is the case in the LFR models considered above. Further
discussion is provided in the Supplementary Material, Section D.



Table 1: Evaluation for Overlapping LFR. All values except DER are from [10]

Alg. p=0|p=02]p=04
DER 0.94 0.9 0.83
SVI(10l) | 0.89 0.73 0.6

POI ([27]) | 0.86 0.68 0.55
INF ([21]]) | 0.42 0.38 04
COP ([28]) | 0.65 0.43 0.0

We conclude this section by noting that while in the non-overlapping case the models generated
with ¢ = 0 result in trivial community detection problems, because in these cases communities are
simply the connected components of the graph, this is no longer true in the overlapping case. As
a point of reference, the well known Clique Percolation method was also evaluated in [[10]], in the
= 0 case. The average ENMI for this algorithm was 0.2 (Table S3 in [[10]).

S Analytic bounds

In this section we restrict our attention to the case L = 1 of the DER algorithm. Recall that the
P, ¢-SBM model was defined in Section 2] We shall consider the model with £ = 2 and such that
|P1| = |P2|. We assume that the initial partition for the DER, denoted C, Co in what follows, is
chosen as in step 3 of DER (Algorithm|[I)) - a random partition of V' into two equal sized subsets.

In this setting we have the following:
Theorem 5.1. For every € > 0 there exists C' > 0 and ¢ > 0 such that if

p>C-N"2t¢ (8)

p—q=>c\/pN-2*log N 9)

then DER recovers the partition Py, Py after one iteration, with probability (N ) such that $(N) —
1 when N — oo.

and

Note that the probability in the conclusion of the theorem refers to a joint probability of a draw from
the SBM and of an independent draw from the random initialization.

The proof of the theorem has essentially three steps. First, we observe that the random initialization
(1, C5 is necessarily somewhat biased, in the sense that C; and C'; never divide P, exactly into two
halves. Specifically, ||Cy N Py| —|Cy N Py|| > N~ 2~¢ with high probability. Assume that C; has
the bigger half, |C; N P;| > |C2 N Py|. In the second step, by an appropriate linearization argument
we show that for a node ¢ € P, deciding whether D (w;, pc, ) > D(w;, j1c,) or vice versa amounts
to counting paths of length two between i and |C7 N Py |. In the third step we estimate the number of
these length two paths in the model. The fact that |C; N Py| > |Cy N Py| 4+ N2~ will imply more
paths to C; N P; from ¢ € P; and we will conclude that D (w;, s, ) > D(w;, pe,) forall i € Py
and D(w;, puc,) > D(w;, pe,) for all ¢ € P,. The full proof is provided in the supplementary
material.
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