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Abstract

To make sense of the world our brains must analyze high-dimensional datasets
streamed by our sensory organs. Because such analysis begins with dimension-
ality reduction, modeling early sensory processing requires biologically plausible
online dimensionality reduction algorithms. Recently, we derived such an algo-
rithm, termed similarity matching, from a Multidimensional Scaling (MDS) ob-
jective function. However, in the existing algorithm, the number of output dimen-
sions is set a priori by the number of output neurons and cannot be changed. Be-
cause the number of informative dimensions in sensory inputs is variable there is a
need for adaptive dimensionality reduction. Here, we derive biologically plausible
dimensionality reduction algorithms which adapt the number of output dimensions
to the eigenspectrum of the input covariance matrix. We formulate three objective
functions which, in the offline setting, are optimized by the projections of the input
dataset onto its principal subspace scaled by the eigenvalues of the output covari-
ance matrix. In turn, the output eigenvalues are computed as i) soft-thresholded,
ii) hard-thresholded, iii) equalized thresholded eigenvalues of the input covari-
ance matrix. In the online setting, we derive the three corresponding adaptive
algorithms and map them onto the dynamics of neuronal activity in networks with
biologically plausible local learning rules. Remarkably, in the last two networks,
neurons are divided into two classes which we identify with principal neurons and
interneurons in biological circuits.

1 Introduction

Our brains analyze high-dimensional datasets streamed by our sensory organs with efficiency and
speed rivaling modern computers. At the early stage of such analysis, the dimensionality of sensory
inputs is drastically reduced as evidenced by anatomical measurements. Human retina, for example,
conveys signals from ≈125 million photoreceptors to the rest of the brain via ≈1 million ganglion
cells [1] suggesting a hundred-fold dimensionality reduction. Therefore, biologically plausible di-
mensionality reduction algorithms may offer a model of early sensory processing.

In a seminal work [2] Oja proposed that a single neuron may compute the first principal component
of activity in upstream neurons. At each time point, Oja’s neuron projects a vector composed of fir-
ing rates of upstream neurons onto the vector of synaptic weights by summing up currents generated
by its synapses. In turn, synaptic weights are adjusted according to a Hebbian rule depending on the
activities of only the postsynaptic and corresponding presynaptic neurons [2].

Following Oja’s work, many multineuron circuits were proposed to extract multiple principal com-
ponents of the input, for a review see [3]. However, most multineuron algorithms did not meet the
same level of rigor and biological plausibility as the single-neuron algorithm [2, 4] which can be
derived using a normative approach, from a principled objective function [5], and contains only lo-
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cal Hebbian learning rules. Algorithms derived from principled objective functions either did not
posess local learning rules [6, 4, 7, 8] or had other biologically implausible features [9]. In other
algorithms, local rules were chosen heuristically rather than derived from a principled objective
function [10, 11, 12, 9, 3, 13, 14, 15, 16].

There is a notable exception to the above observation but it has other shortcomings. The two-
layer circuit with reciprocal synapses [17, 18, 19] can be derived from the minimization of the
representation error. However, the activity of principal neurons in the circuit is a dummy variable
without its own dynamics. Therefore, such principal neurons do not integrate their input in time,
contradicting existing experimental observations.

Other normative approaches use an information theoretical objective to compare theoretical lim-
its with experimentally measured information in single neurons or populations [20, 21, 22] or to
calculate optimal synaptic weights in a postulated neural network [23, 22].

Recently, a novel approach to the problem has been proposed [24]. Starting with the Multidimen-
sional Scaling (MDS) strain cost function [25, 26] we derived an algorithm which maps onto a
neuronal circuit with local learning rules. However, [24] had major limitations, which are shared by
vairous other multineuron algorithms:

1. The number of output dimensions was determined by the fixed number of output neurons pre-
cluding adaptation to the varying number of informative components. A better solution would be
to let the network decide, depending on the input statistics, how many dimensions to represent
[14, 15]. The dimensionality of neural activity in such a network would be usually less than the
maximum set by the number of neurons.

2. Because output neurons were coupled by anti-Hebbian synapses which are most naturally imple-
mented by inhibitory synapses, if these neurons were to have excitatory outputs, as suggested by
cortical anatomy, they would violate Dale’s law (i.e. each neuron uses only one fast neurotrans-
mitter). Here, following [10], by anti-Hebbian we mean synaptic weights that get more negative
with correlated activity of pre- and postsynaptic neurons.

3. The output had a wide dynamic range which is difficult to implement using biological neurons
with a limited range. A better solution [27, 13] is to equalize the output variance across neurons.

In this paper, we advance the normative approach of [24] by proposing three new objective func-
tions which allow us to overcome the above limitations. We optimize these objective functions by
proceeding as follows. In Section 2, we formulate and solve three optimization problems of the
form:

Offline setting : Y∗ = arg min
Y

L (X,Y) . (1)

Here, the input to the network, X = [x1, . . . ,xT ] is an n × T matrix with T centered input data
samples in Rn as its columns and the output of the network, Y = [y1, . . . ,yT ] is a k×T matrix with
corresponding outputs in Rk as its columns. We assume T >> k and T >> n. Such optimization
problems are posed in the so-called offline setting where outputs are computed after seeing all data.

Whereas the optimization problems in the offline setting admit closed-form solution, such setting
is ill-suited for modeling neural computation on the mechanistic level and must be replaced by the
online setting. Indeed, neurons compute an output, yT , for each data sample presentation, xT ,
before the next data sample is presented and past outputs cannot be altered. In such online setting,
optimization is performed at every time step, T , on the objective which is a function of all inputs
and outputs up to time T . Moreover, an online algorithm (also known as streaming) is not capable
of storing all previous inputs and outputs and must rely on a smaller number of state variables.

In Section 3, we formulate three corresponding online optimization problems with respect to yT ,
while keeping all the previous outputs fixed:

Online setting : yT ← arg min
yT

L (X,Y) . (2)

Then we derive algorithms solving these problems online and map their steps onto the dynamics of
neuronal activity and local learning rules for synaptic weights in three neural networks.

We show that the solutions of the optimization problems and the corresponding online algorithms
remove the limitations outlined above by performing the following computational tasks:
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Figure 1: Input-output
functions of the three
offline solutions and
neural network im-
plementations of the
corresponding online
algorithms. A-C. Input-
output functions of
covariance eigenvalues.
A. Soft-thresholding.
B. Hard-thresholding.
C. Equalization after
thresholding. D-F.
Corresponding network
architectures.

1. Soft-thresholding the eigenvalues of the input covariance matrix, Figure 1A: eigenvalues below
the threshold are set to zero and the rest are shrunk by the threshold magnitude. Thus, the num-
ber of output dimensions is chosen adaptively. This algorithm maps onto a single-layer neural
network with the same architecture as in [24], Figure 1D, but with modified learning rules.

2. Hard-thresholding of input eigenvalues, Figure 1B: eigenvalues below the threshold vanish as
before, but eigenvalues above the threshold remain unchanged. The steps of such algorithm map
onto the dynamics of neuronal activity in a network which, in addition to principal neurons, has a
layer of interneurons reciprocally connected with principal neurons and each other, Figure 1E.

3. Equalization of non-zero eigenvalues, Figure 1C. The corresponding network’s architecture, Fig-
ure 1F, lacks reciprocal connections among interneurons. As before, the number of above-
threshold eigenvalues is chosen adaptively and cannot exceed the number of principal neurons. If
the two are equal, this network whitens the output.

In Section 4, we demonstrate that the online algorithms perform well on a synthetic dataset and, in
Discussion, we compare our neural circuits with biological observations.

2 Dimensionality reduction in the offline setting

In this Section, we introduce and solve, in the offline setting, three novel optimization problems
whose solutions reduce the dimensionality of the input. We state our results in three Theorems
which are proved in the Supplementary Material.

2.1 Soft-thresholding of covariance eigenvalues

We consider the following optimization problem in the offline setting:

min
Y

∥∥X>X−Y>Y − αT IT
∥∥2
F
, (3)

where α ≥ 0 and IT is the T×T identity matrix. To gain intuition behind this choice of the objective
function let us expand the squared norm and keep only the Y-dependent terms:

arg min
Y

∥∥X>X−Y>Y − αT IT
∥∥2
F

= arg min
Y

∥∥X>X−Y>Y
∥∥2
F

+ 2αT Tr
(
Y>Y

)
, (4)

where the first term matches the similarity of input and output[24] and the second term is a nuclear
norm of Y>Y known to be a convex relaxation of the matrix rank used for low-rank matrix modeling
[28]. Thus, objective function (3) enforces low-rank similarity matching.

We show that the optimal output Y is a projection of the input data, X, onto its principal subspace.
The subspace dimensionality is set by m, the number of eigenvalues of the data covariance matrix,
C = 1

T XX> = 1
T

∑T
t=1 xtx

>
t , that are greater than or equal to the parameter α.
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Theorem 1. Suppose an eigen-decomposition of X>X = VXΛXVX>, where ΛX =
diag

(
λX1 , . . . , λ

X
T

)
with λX1 ≥ . . . ≥ λXT . Note that ΛX has at most n nonzero eigenvalues coin-

ciding with those of TC. Then,

Y∗ = Uk STk(ΛX , αT )1/2 VX
k

>
, (5)

are optima of (3), where STk(ΛX , αT ) = diag
(
ST
(
λX1 , αT

)
, . . . ,ST

(
λXk , αT

))
, ST is the soft-

thresholding function, ST(a, b) = max(a−b, 0), VX
k consists of the columns of VX corresponding

to the top k eigenvalues, i.e. VX
k =

[
vX
1 , . . . ,v

X
k

]
and Uk is any k × k orthogonal matrix, i.e.

Uk ∈ O(k). The form (5) uniquely defines all optima of (3), except when k < m, λXk > αT and
λXk = λXk+1.

2.2 Hard-thresholding of covariance eigenvalues

Consider the following minimax problem in the offline setting:

min
Y

max
Z

∥∥X>X−Y>Y
∥∥2
F
−
∥∥Y>Y − Z>Z− αT IT

∥∥2
F
, (6)

where α ≥ 0 and we introduced an internal variable Z, which is an l × T matrix Z = [z1, . . . , zT ]
with zt ∈ Rl. The intuition behind this objective function is again based on similarity matching but
rank regularization is applied indirectly via the internal variable, Z.

Theorem 2. Suppose an eigen-decomposition of X>X = VXΛXVX>, where ΛX =
diag

(
λX1 , . . . , λ

X
T

)
with λX1 ≥ . . . ≥ λXT ≥ 0. Assume l ≥ min(k,m). Then,

Y∗ = Uk HTk(ΛX , αT )1/2 VX
k

>
, Z∗ = Ul STl,min(k,m)(Λ

X , αT )1/2 VX
l

>
, (7)

are optima of (6), where HTk(ΛX , αT ) = diag
(
HT

(
λX1 , αT

)
, . . . ,HT

(
λXk , αT

))
, HT(a, b) =

aΘ(a − b) with Θ() being the step function: Θ(a − b) = 1 if a ≥ b and Θ(a − b) = 0 if a <

b, STl,min(k,m)(Λ
X , αT ) = diag

(
ST
(
λX1 , αT

)
, . . . ,ST

(
λXmin(k,m), αT

)
, 0, . . . , 0︸ ︷︷ ︸
l−min(k,m)

)
,VX

p =

[
vX
1 , . . . ,v

X
p

]
and Up ∈ O(p). The form (7) uniquely defines all optima (6) except when either

1) α is an eigenvalue of C or 2) k < m and λXk = λXk+1.

2.3 Equalizing thresholded covariance eigenvalues

Consider the following minimax problem in the offline setting:
min
Y

max
Z

Tr
(
−X>XY>Y + Y>YZ>Z + αTY>Y − βTZ>Z

)
, (8)

where α ≥ 0 and β > 0. This objective function follows from (6) after dropping the quartic Z term.

Theorem 3. Suppose an eigen-decomposition of X>X is X>X = VXΛXVX>, where ΛX =
diag

(
λX1 , . . . , λ

X
T

)
with λX1 ≥ . . . ≥ λXT ≥ 0. Assume l ≥ min(k,m). Then,

Y∗ = Uk

√
βT Θk(ΛX , αT )1/2 VX

k

>
, Z∗ = Ul Σl×TOΛY ∗VX>, (9)

are optima of (8), where Θk(ΛX , αT ) = diag
(
Θ
(
λX1 − αT

)
, . . . ,Θ

(
λXk − αT

))
, Σl×T is an

l × T rectangular diagonal matrix with top min(k,m) diagonals are set to arbitrary nonnegative
constants and the rest are zero, OΛY ∗ is a block-diagonal orthogonal matrix that has two blocks:
the top block is min(k,m) dimensional and the bottom block is T −min(k,m) dimensional, Vp =[
vX
1 , . . . ,v

X
p

]
, and Up ∈ O(p). The form (9) uniquely defines all optima of (8) except when either

1) α is an eigenvalue of C or 2) k < m and λXk = λXk+1.

Remark 1. If k = m, then Y is full-rank and 1
T YY> = βIk, implying that the output is whitened,

equalizing variance across all channels.

3 Online dimensionality reduction using Hebbian/anti-Hebbian neural nets

In this Section, we formulate online versions of the dimensionality reduction optimization problems
presented in the previous Section, derive corresponding online algorithms and map them onto the dy-
namics of neural networks with biologically plausible local learning rules. The order of subsections
corresponds to that in the previous Section.
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3.1 Online soft-thresholding of eigenvalues

Consider the following optimization problem in the online setting:

yT ← arg min
yT

∥∥X>X−Y>Y − αT IT
∥∥2
F
. (10)

By keeping only the terms that depend on yT we get the following objective for (2):

L = −4x>T

(
T−1∑
t=1

xty
>
t

)
yT + 2y>T

(
T−1∑
t=1

yty
>
t + αT Im

)
yT − 2‖xT ‖2‖yT ‖2 + ‖yT ‖4. (11)

In the large-T limit, the last two terms can be dropped since the first two terms grow linearly with T
and dominate. The remaining cost is a positive definite quadratic form in yT and the optimization
problem is convex. At its minimum, the following equality holds:(

T−1∑
t=1

yty
>
t + αT Im

)
yT =

(
T−1∑
t=1

ytx
>
t

)
xT . (12)

While a closed-form analytical solution via matrix inversion exists for yT , we are interested in
biologically plausible algorithms. Instead, we use a weighted Jacobi iteration where yT is updated
according to:

yT ← (1− η) yT + η
(
WY X

T xT −WY Y
T yT

)
, (13)

where η is the weight parameter, and WY X
T and WY Y

T are normalized input-output and output-
output covariances,

WY X
T,ik =

T−1∑
t=1

yt,ixt,k

αT +
T−1∑
t=1

y2t,i

, WY Y
T,i,j 6=i =

T−1∑
t=1

yt,iyt,j

αT +
T−1∑
t=1

y2t,i

, WY Y
T,ii = 0. (14)

Iteration (13) can be implemented by the dynamics of neuronal activity in a single-layer network,
Figure 1D. Then, WY X

T and WY Y
T represent the weights of feedforward (xt → yt) and lateral

(yt → yt) synaptic connections, respectively. Remarkably, synaptic weights appear in the online
solution despite their absence in the optimization problem formulation (3). Previously, nonnormal-
ized covariances have been used as state variables in an online dictionary learning algorithm [29].

To formulate a fully online algorithm, we rewrite (14) in a recursive form. This requires introducing
a scalar variable DY

T,i representing cumulative activity of a neuron i up to time T − 1, DY
T,i =

αT +
T−1∑
t=1

y2t,i. Then, at each data sample presentation, T , after the output yT converges to a steady

state, the following updates are performed:
DY

T+1,i ← DY
T,i + α+ y2T,i,

WY X
T+1,ij ←WY X

T,ij +
(
yT,ixT,j −

(
α+ y2T,i

)
WY X

T,ij

)
/DY

T+1,i,

WY Y
T+1,i,j 6=i ←WY Y

T,ij +
(
yT,iyT,j −

(
α+ y2T,i

)
WY Y

T,ij

)
/DY

T+1,i. (15)

Hence, we arrive at a neural network algorithm that solves the optimization problem (10) for stream-
ing data by alternating between two phases. After a data sample is presented at time T , in the first
phase of the algorithm (13), neuron activities are updated until convergence to a fixed point. In the
second phase of the algorithm, synaptic weights are updated for feedforward connections according
to a local Hebbian rule (15) and for lateral connections according to a local anti-Hebbian rule (due
to the (−) sign in equation (13)). Interestingly, in the α = 0 limit, these updates have the same
form as the single-neuron Oja rule [24, 2], except that the learning rate is not a free parameter but is
determined by the cumulative neuronal activity 1/DY

T+1,i [4, 5].

3.2 Online hard-thresholding of eigenvalues

Consider the following minimax problem in the online setting, where we assume α > 0:

{yT , zT } ← arg min
yT

arg max
zT

∥∥X>X−Y>Y
∥∥2
F
−
∥∥Y>Y − Z>Z− αT IT

∥∥2
F
. (16)

By keeping only those terms that depend on yT or zT and considering the large-T limit, we get the
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following objective:

L = 2αT ‖yT ‖2 − 4x>T

(
T−1∑
t=1

xty
>
t

)
yT − 2z>T

(
T−1∑
t=1

ztz
>
t + αT Ik

)
zT + 4y>T

(
T−1∑
t=1

ytz
>
t

)
zT .

(17)
Note that this objective is strongly convex in yT and strongly concave in zT . The solution of this
minimax problem is the saddle-point of the objective function, which is found by setting the gradient
of the objective with respect to {yT , zT } to zero [30]:

αTyT =

(
T−1∑
t=1

ytx
>
t

)
xT −

(
T−1∑
t=1

ytz
>
t

)
zT ,

(
T−1∑
t=1

ztz
>
t + αT Ik

)
zT =

(
T−1∑
t=1

zty
>
t

)
yT .

(18)
To obtain a neurally plausible algorithm, we solve these equations by a weighted Jacobi iteration:

yT ← (1− η) yT + η
(
WY X

T xT −WY Z
T zT

)
, zT ← (1− η) zT + η

(
WZY

T yT −WZZ
T zT

)
.

(19)
Here, similarly to (14), WT are normalized covariances that can be updated recursively:

DY
T+1,i ← DY

T,i + α, DZ
T+1,i ← DZ

T,i + α+ z2T,i

WY X
T+1,ij ←WY X

T,ij +
(
yT,ixT,j − αWY X

T,ij

)
/DY

T+1,i

WY Z
T+1,ij ←WY Z

T,ij +
(
yT,izT,j − αWY Z

T,ij

)
/DY

T+1,i

WZY
T+1,i,j ←WZY

T,ij +
(
zT,iyT,j −

(
α+ z2T,i

)
WZY

T,ij

)
/DZ

T+1,i

WZZ
T+1,i,j 6=i ←WZZ

T,ij +
(
zT,izT,j −

(
α+ z2T,i

)
WZZ

T,ij

)
/DZ

T+1,i, WZZ
T,ii = 0. (20)

Equations (19) and (20) define an online algorithm that can be naturally implemented by a neural
network with two populations of neurons: principal and interneurons, Figure 1E. Again, after each
data sample presentation, T , the algorithm proceeds in two phases. First, (19) is iterated until
convergence by the dynamics of neuronal activities. Second, synaptic weights are updated according
to local, anti-Hebbian (for synapses from interneurons) and Hebbian (for all other synapses) rules.

3.3 Online thresholding and equalization of eigenvalues

Consider the following minimax problem in the online setting, where we assume α > 0 and β > 0:

{yT , zT } ← arg min
yT

arg max
zT

Tr
[
−X>XY>Y + Y>YZ>Z + αTY>Y − βTZ>Z

]
. (21)

By keeping only those terms that depend on yT or zT and considering the large-T limit, we get the
following objective:

L = αT ‖yT ‖2 − 2x>T

(
T−1∑
t=1

xty
>
t

)
yT − βT ‖zT ‖2 + 2y>T

(
T−1∑
t=1

ytz
>
t

)
zT . (22)

This objective is strongly convex in yT and strongly concave in zT and its saddle point is given by:

αTyT =

(
T−1∑
t=1

ytx
>
t

)
xT −

(
T−1∑
t=1

ytz
>
t

)
zT , βTzT =

(
T−1∑
t=1

zty
>
t

)
yT . (23)

To obtain a neurally plausible algorithm, we solve these equations by a weighted Jacobi iteration:

yT ← (1− η) yT + η
(
WY X

T xT −WY Z
T zT

)
, zT ← (1− η) zT + ηWZY

T yT , (24)
As before, WT are normalized covariances which can be updated recursively:

DY
T+1,i ← DY

T,i + α, DZ
T+1,i ← DZ

T,i + β

WY X
T+1,ij ←WY X

T,ij +
(
yT,ixT,j − αWY X

T,ij

)
/DY

T+1,i

WY Z
T+1,ij ←WY Z

T,ij +
(
yT,izT,j − αWY Z

T,ij

)
/DY

T+1,i

WZY
T+1,i,j ←WZY

T,ij +
(
zT,iyT,j − βWZY

T,ij

)
/DZ

T+1,i. (25)
Equations (24) and (25) define an online algorithm that can be naturally implemented by a neural
network with principal neurons and interneurons. As beofre, after each data sample presentation at
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Figure 2: Performance of the three neural networks: soft-thresholding (A), hard-thresholding (B),
equalization after thresholding (C). Top: eigenvalue error, bottom: subspace error as a function
of data presentations. Solid lines - means and shades - stds over 10 runs. Red - principal, blue -
inter-neurons. Dashed lines - best-fit power laws. For metric definitions see text.

time T , the algorithm, first, iterates (24) by the dynamics of neuronal activities until convergence
and, second, updates synaptic weights according to local anti-Hebbian (for synapses from interneu-
rons) and Hebbian (25) (for all other synapses) rules.

While an algorithm similar to (24), (25), but with predetermined learning rates, was previously given
in [15, 14], it has not been derived from an optimization problem. Plumbley’s convergence analysis
of his algorithm [14] suggests that at the fixed point of synaptic updates, the interneuron activity is
also a projection onto the principal subspace. This result is a special case of our offline solution, (9),
supported by the online numerical simulations (next Section).

4 Numerical simulations

Here, we evaluate the performance of the three online algorithms on a synthetic dataset, which is
generated by an n = 64 dimensional colored Gaussian process with a specified covariance matrix.
In this covariance matrix, the eigenvalues, λ1..4 = {5, 4, 3, 2} and the remaining λ5..60 are chosen
uniformly from the interval [0, 0.5]. Correlations are introduced in the covariance matrix by gen-
erating random orthonormal eigenvectors. For all three algorithms, we choose α = 1 and, for the
equalizing algorithm, we choose β = 1. In all simulated networks, the number of principal neurons,
k = 20, and, for the hard-thresholding and the equalizing algorithms, the number of interneurons,
l = 5. Synaptic weight matrices were initialized randomly, and synaptic update learning rates,
1/DY

0,i and 1/DZ
0,i were initialized to 0.1. Network dynamics is run with a weight η = 0.1 until the

relative change in yT and zT in one cycle is < 10−5.

To quantify the performance of these algorithms, we use two different metrics. The first metric,
eigenvalue error, measures the deviation of output covariance eigenvalues from their optimal offline
values given in Theorems 1, 2 and 3. The eigenvalue error at time T is calculated by summing
squared differences between the eigenvalues of 1

T YY> or 1
T ZZ>, and their optimal offline values

at time T . The second metric, subspace error, quantifies the deviation of the learned subspace from
the true principal subspace. To form such metric, at each T , we calculate the linear transforma-
tion that maps inputs, xT , to outputs, yT = FY X

T xT and zT = FZX
T xT , at the fixed points of

the neural dynamics stages ((13), (19), (24)) of the three algorithms. Exact expressions for these
matrices for all algorithms are given in the Supplementary Material. Then, at each T , the deviation
is
∥∥Fm,TF>m,T −UX

m,TUX >
m,T

∥∥2
F

, where Fm,T is an n × m matrix whose columns are the top m
right singular vectors of FT , Fm,TF>m,T is the projection matrix to the subspace spanned by these
singular vectors, UX

m,T is an n×mmatrix whose columns are the principal eigenvectors of the input
covariance matrix C at time T , UX

m,TUX >
m,T is the projection matrix to the principal subspace.
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Further numerical simulations comparing the performance of the soft-thresholding algorithm with
α = 0 with other neural principal subspace algorithms can be found in [24].

5 Discussion and conclusions

We developed a normative approach for dimensionality reduction by formulating three novel opti-
mization problems, the solutions of which project the input onto its principal subspace, and rescale
the data by i) soft-thresholding, ii) hard-thresholding, iii) equalization after thresholding of the input
eigenvalues. Remarkably we found that these optimization problems can be solved online using
biologically plausible neural circuits. The dimensionality of neural activity is the number of either
input covariance eigenvalues above the threshold, m, (if m < k) or output neurons, k (if k ≤ m).
The former case is ubiquitous in the analysis of experimental recordings, for a review see [31].

Interestingly, the division of neurons into two populations, principal and interneurons, in the last
two models has natural parallels in biological neural networks. In biology, principal neurons and
interneurons usually are excitatory and inhibitory respectively. However, we cannot make such an
assignment in our theory, because the signs of neural activities, xT and yT , and, hence, the signs of
synaptic weights, W, are unconstrained. Previously, interneurons were included into neural circuits
[32], [33] outside of the normative approach.

Similarity matching in the offline setting has been used to analyze experimentally recorded neu-
ron activity lending support to our proposal. Semantically similar stimuli result in similar neural
activity patterns in human (fMRI) and monkey (electrophysiology) IT cortices [34, 35]. In addi-
tion, [36] computed similarities among visual stimuli by matching them with the similarity among
corresponding retinal activity patterns (using an information theoretic metric).

We see several possible extensions to the algorithms presented here: 1) Our online objective func-
tions may be optimized by alternative algorithms, such as gradient descent, which map onto different
circuit architectures and learning rules. Interestingly, gradient descent-ascent on convex-concave ob-
jectives has been previously related to the dynamics of principal and interneurons [37]. 2) Inputs
coming from a non-stationary distribution (with time-varying covariance matrix) can be processed
by algorithms derived from the objective functions where contributions from older data points are
“forgotten”, or “discounted”. Such discounting results in higher learning rates in the corresponding
online algorithms, even at large T , giving them the ability to respond to variations in data statistics
[24, 4]. Hence, the output dimensionality can track the number of input dimensions whose eigen-
values exceed the threshold. 3) In general, the output of our algorithms is not decorrelated. Such
decorrelation can be achieved by including a correlation-penalizing term in our objective functions
[38]. 4) Choosing the threshold parameter α requires an a priori knowledge of input statistics. A
better solution, to be presented elsewhere, would be to let the network adjust such threshold adap-
tively, e.g. by filtering out all the eigenmodes with power below the mean eigenmode power. 5)
Here, we focused on dimensionality reduction using only spatial, as opposed to the spatio-temporal,
correlation structure.

We thank L. Greengard, A. Sengupta, A. Grinshpan, S. Wright, A. Barnett and E. Pnevmatikakis.
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