An Active Learning Framework using Sparse-Graph
Codes for Sparse Polynomials and Graph Sketching

Xiao Li Kannan Ramchandran*
UC Berkeley UC Berkeley
xiaoli@berkeley.edu kannanr@berkeley.edu
Abstract

Let f : {—1,1}" — R be an n-variate polynomial consisting of 2" monomials,
in which only s < 2" coefficients are non-zero. The goal is to learn the poly-
nomial by querying the values of f. We introduce an active learning framework
that is associated with a low query cost and computational runtime. The sig-
nificant savings are enabled by leveraging sampling strategies based on modern
coding theory, specifically, the design and analysis of sparse-graph codes, such
as Low-Density-Parity-Check (LDPC) codes, which represent the state-of-the-art
of modern packet communications. More significantly, we show how this design
perspective leads to exciting, and to the best of our knowledge, largely unexplored
intellectual connections between learning and coding.

The key is to relax the worst-case assumption with an ensemble-average setting,
where the polynomial is assumed to be drawn uniformly at random from the en-
semble of all polynomials (of a given size n and sparsity s). Our framework suc-
ceeds with high probability with respect to the polynomial ensemble with sparsity
up to s = O(2°") for any § € (0,1), where f is exactly learned using O(ns)
queries in time O(nslog s), even if the queries are perturbed by Gaussian noise.
We further apply the proposed framework to graph sketching, which is the prob-
lem of inferring sparse graphs by querying graph cuts. By writing the cut function
as a polynomial and exploiting the graph structure, we propose a sketching algo-
rithm to learn the an arbitrary n-node unknown graph using only few cut queries,
which scales almost linearly in the number of edges and sub-linearly in the graph
size n. Experiments on real datasets show significant reductions in the runtime
and query complexity compared with competitive schemes.

1 Introduction

One of the central problems in computational learning theory is the efficient learning of polynomials
f(x) : x € {-1,1}" — R. The task of learning an s-sparse polynomial f has been studied
extensively in the literature, often in the context of Fourier analysis for pseudo-boolean functions (a
real-valued function defined on a set of binary variables). Many concept classes, such as w(1)-juntas,
polynomial-sized circuits, decision trees and disjunctive normative form (DNF) formulas, have been
proven very difficult [[1] to learn in the worst-case with random examples. Almost all existing
efficient algorithms are based on the membership query model [/1,/6H8,|10L/11}/17], which provides
arbitrary access to the value of f(x) given any x € {—1,1}"™. This makes a richer set of concept
classes learnable in polynomial time poly(s,n). This is a form of what is now popularly referred to
as active learning, which makes queries using different sampling strategies. For instance, [3}/10] use
regular subsampling and [9}/141|18] use random sampling based on compressed sensing. However,
they remain difficult to scale computationally, especially for large s and n.

*This work was supported by grant NSF CCF EAGER 1439725.

In this paper, we are interested in learning polynomials with s = O(2°™) for some § € (0,1).
Although this regime is not typically considered in the literature, we show that by relaxing the
“worst-case” mindset to an ensemble-average setting (explained later), we can handle this more
challenging regime and reduce both the number of queries and the runtime complexity, even if the
queries are corrupted by Gaussian noise. In the spirit of active learning, we design a sampling
strategy that makes queries to f based on modern coding theory and signal processing. The queries
are formed by “strategically” subsampling the input to induce aliasing patterns in the dual domain
based on sparse-graph codes. Then, our framework exploits the aliasing pattern (code structure) to
reconstruct f by peeling the sparse coefficients with an iterative simple peeling decoder. Through a
coding-theoretic lens, our algorithm achieves a low query complexity (capacity-approaching codes)
and low computational complexity (peeling decoding).

Further, we apply our proposed framework to graph sketching, which is the problem of inferring
hidden sparse graphs with n nodes by actively querying graph cuts (see Fig. [I). Motivated by
bioinformatics applications [2], learning hidden graphs from additive or cross-additive queries (i.e.
edge counts within a set or across two sets) has gained considerable interest. This problem closely
pertains to our learning framework because the cut function of any graph can be written as a sparse
polynomial with respect to the binary variables x € {—1,+1}" indicating a graph partition for the
cut [18]]. Given query access to the cut value for an arbitrary partition of the graph, how many cut
queries are needed to infer the hidden graph structure? What is the runtime for such inference?

(a) Unknown Graph (b) Cut Query (c) Inferred Graph
Figure 1: Given a set of n nodes, infer the graph structure by querying graph cuts.

Most existing algorithms that achieve the optimal query cost for graph sketching (see [13]]) are non-
constructive, except for a few algorithms [4,/5,(9,|18] that run in polynomial time in the graph size
n. Inspired by our active learning framework, we derive a sketching algorithm associated with a
query cost and runtime that are both sub-linear in the graph size n and almost-linear in the number
of edges. To the best of our knowledge, this is the first constructive non-adaptive sketching scheme
with sub-linear costs in the graph size n. In the following, we introduce the problem setup, our
learning model, and summarize our contributions.

1.1 Problem Setup

Our goal is to learn the following polynomial in terms of its coefficients:

fx) =Y akh(x), Yx € {-1,1}", Fy:={0,1}, (1)
keF7
— T n : ol _ k[4]
where k := [k[1],- - ,k[n]]* € F% is the index of the monomla Xk(x) = Hie[n] x; ', and

alk] € Ris the coefficient. In this work, we consider an ensemble-average setting for learning.

Definition 1 (Polynomial Ensemble). The polynomial ensemble F(s,n, A) is a collection of poly-
nomials f : {—1,1}™ — R satisfying the following conditions:

e thevector a:= [--- ,alk],---|T is s-sparse with s = O(2°") for some 0 < § < 1;
o the support supp (o) := {k : a[k] # 0, k € F3} is chosen uniformly at random over F3;

e each non-zero coefficient a[K| takes values from some set A according to ak] ~ P4 for
all k € supp («x), and P4 is some probability distribution over A.

"The notation is defined as [n] := {1,--- ,n}.

We consider active learning under the membership query model. Each query to f atx € {—1,1}"
returns the data-label pair (x, f(x) + ¢), where ¢ is some additive noise. We propose a query frame-
work that leads to a fast reconstruction algorithm, which outputs an estimate & of the polynomial
coefficients. The performance of our framework is evaluated by the probability of failing to recover
the exact coefficients Py := Pr (& # a) = E 1.4, where 1) is the indicator function and the
expectation is taken with respect to the noise ¢, the randomized construction of our queries, as well
as the random polynomial ensemble F (s, n, A).

1.2 Our Approach and Contributions

Particularly relevant to this work are the algorithms on learning decision trees and boolean functions
by uncovering the Fourier spectrum of f [3|5,/10/12]]. Recent papers further show that this problem
can be formulated and solved as a compressed sensing problem using random queries [[14}/18]].
Specifically, [14] gives an algorithm using O(s?n) queries based on mutual coherence, whereas the
Restricted Isometry Property (RIP) is used in [[18] to give a query complexity of O(sn*). However,
this formulation needs to estimate a length-2" vector and hence the complexity is exponential in n.

To alleviate the computational burden, [9] proposes a pre-processing scheme to reduce the number
of unknowns to 2%, which shortens the runtime to poly (2%, n) using O(n2°) samples. However, this
method only works with very small s due to the exponential scaling. Under the sparsity regime s =
0(25") for some 0 < & < 1, existing algorithms [3}9}/10L|14,/18]], irrespective of using membership
queries or random examples, do not immediately apply here because this may require 2" samples
(and large runtime) due to the obscured polynomial scaling in s.

In our framework, we show that f can be learned exactly in time almost-linear in s and strictly-linear
in n, even when the queries are perturbed by random Gaussian noise.

Theorem 1 (Noisy Learning). Let f € F(s,n,.A) where A is some arbitrarily large but finite set.
In the presence of noise ¢ ~ N(0,0?), our algorithm learns f exactly in terms of the coefficients
a = a, which runs in time O(nslog s) using O(ns) queries with probability at least 1 — O(1/s).

The proposed algorithm and proofs are given in the supplementary material. Further, we apply this
framework on learning hidden graphs from cut queries. We consider an undirected weighted graph
G = (V, E,W) with |E| = r edges and weights W € R", where V' = {1,--- ,n} is given but the
edge set E C V x V is unknown. This generalizes to hypergraphs, where an edge can connect at
most d nodes, called the rank of the graph. For a d-rank hypergraph with r edges, the cut function is a
s-sparse d-bounded pseudo-boolean function (i.e. each monomial depending on at most d variables)
where the sparsity is bounded by s = O(r2¢-1) [9].

On the graph sketching problem, [18] uses O(sn*) random queries to sketch the sparse tem-
poral changes of a hypergraph in polynomial time poly(n?). However, [9] shows that it be-
comes computationally infeasible for small graphs (e.g. n = 200 nodes, r = 3 edges with
d = 4), while the LearnGraph algorithm [9] runs in time O(2"*M + n%dlogn) using M =
O(2"4dlogn + 224+1d?(logn + rd)) queries. Although this significantly reduces the runtime com-
pared to [144|18], the algorithm only tackles very sparse graphs due to the scaling 2" and n2. This
implies that the sketching needs to be done on relatively small graphs (i.e. n = 1000 nodes) over fine
sketching intervals (i.e. minutes) to suppress the sparsity (i.e. 7 = 10 within the sketching interval).
In this work, we adapt and apply our learning framework to derive an efficient sketching algorithm,
whose runtime scales as O(ds log s(logn + log s)) by using O(ds(logn + log s)) queries. We use
our adapted algorithm on real datasets and find that we can handle much coarser sketching intervals
(e.g. half an hour) and much larger hypergraphs (e.g. n = 10° nodes).

2 Learning Framework

Our learning framework consists of a query generator and a reconstruction engine. Given the spar-
sity s and the number of variables n, the query generator strategically constructs queries (randomly)
and the reconstruction engine recovers the s-sparse vector ce. For notation convenience, we replace
each boolean variable z; = (—1)™l/! with a binary variable m[i] € Fy for all i € [n]. Using the

notation m = [m[1],--- ,m[n]]T in the Fourier expansion (TJ), we have
ulm] = 3 7 alkl(=1)" + c[m], @)
keFy

where (m, k) = @;¢[,)m[i]k[i] over Fy. Now the coefficients a[k] can be interpreted as the Walsh-
Hadamard Transform (WHT) coefficients of the polynomial f(x) for x € {—1,1}".

2.1 Membership Query: A Coding-Theoretic Design

The building block of our query generator is the basic query set by subsampling and tiny WHTs:
o Subsampling: we choose B = 2 samples u[m] indexed selectively by m = MZ£ + d for

£ € FY, where M € IF’;Xb is the subsampling matrix and d € F3 is the subsampling offset.

e WHT: a very small B-point WHT is performed over the samples u[M£ + d] for £ € F},
where each output coefficient can be obtained according to the aliasing property of WHT:

Ubil= > old(-1)* + W, jeFs, 3)
kM7 k=j
where W[j] = 1= 3 cp [ME +d](—1)%) is the observation noise with variance 0.

The B-point basic query set 7@) implies that each coefficient U[j] is the weighted hash output of a/[k]
under the hash function M*k = j. From a coding-theoretic perspective, the coefficient U[j] for
constitutes a parity constraint of the coefficients a[k], where a[k] enters the j-th parity if M7k = j.
If we can induce a set of parity constraints that mimic good error-correcting codes with respect to
the unknown coefficients a[k], the coefficients can be recovered iteratively in the spirit of peeling
decoding, similar to that in LDPC codes. Now it boils down to the following questions:

e How to choose the subsampling matrix IM and how to choose the query set size B?

e How to recover the coefficients a[k] from their aliased observations U [3]?

In the following, we illustrate the principle of our learning framework through a simple example
with n = 4 boolean variables and sparsity s = 4.

2.2 Main Idea: A Simple Example

Suppose that the s = 4 non-zero coefficients are «[0100], «[0110], «[1010] and «[1111]. We choose
B = 5 = 4 and use two patterns M; = [02, ,, 1% ,]7 and My = [I], 5,01 ,]7 for subsampling,
where all queries made using the same pattern M; are called a query group.

In this example, by enforcing a zero subsampling offset d = 0, we generate only one set of queries
{Uc[4]}jery under each pattern M. according to (3). For example, under pattern M, the chosen
samples are «[0000], »[0001], #[0010], ©[0011]. Then, the observations are obtained by a B-point
WHT coefficients of these chosen samples.

For illustration we assume the queries are noiseless:

U1[00] = «[0000] + «[0100] + «[1000] + «[1100],

a[0100]

[[]
U1[01] = a[0001] + [0101] + «[1001] + «[1101],
U1[10] = «[0010] + «[0110] + [1010] + [1110], e
U [11] = a[0011] 4+ «[0111] + «[1011] + af1111]. P

Generally speaking, it is impossible to reconstruct the coef-
ficients from these queries. However, since the coefficients
are sparse, then the observations are reduced to

a[0100]+0[0110]

U7]00] = «[0100], U,[00] =

U,[01] =0, U,[01] = «[0100] + «[0110] a[1010]
U1[10] = o[0110] + o[1010], U3[10] = a[1010] [12] oty

Uy [11] = a[1111], Us[11] = a[1111]. Query Stage 2

The observations are captured by a bipartite graph, which F igure 2: Example of a bipartite
consists of s = 4 left nodes and 8 right nodes (see Fig. 2). graph for the observations.

2.2.1 Oracle-based Decoding

We illustrate how to decode the unknown «/[Kk] from the bipartite graph in Fig. [2| with the help of an
“oracle”, and then introduce how to get rid of this oracle. The right nodes can be categorized as:

e Zero-ton: aright node is a zero-ton if it is not connected to any left node.

e Single-ton: a right node is a single-ton if it is connected to only one left node. We refer to
the index k and its associated value a[k] as the index-value pair (k, a[k]).

e Multi-ton: aright node is a multi-ton if it is connected to more than one left node.

The oracle informs the decoder exactly which right nodes are single-tons as well as the correspond-
ing index-value pair (k, a[k]). Then, we can learn the coefficients iteratively as follows:

Step (1) select all edges in the bipartite graph with right degree 1 (i.e. detect presence of single-tons
and the index-value pairs informed by the oracle);

Step (2) remove (peel off) these edges and the left and right end nodes of these single-ton edges;
Step (3) remove (peel off) other edges connected to the left nodes that are removed in Step (2);
Step (4) remove contributions of the left nodes removed in Step (3) from the remaining right nodes.

Finally, decoding is successful if all edges are removed. Clearly, this simple example is only an illus-
tration. In general, if there are C' query groups associated with the subsampling patterns {M_}< |
and query set size B, we define the bipartite graph ensemble below and derive the guidelines for
choosing them to guarantee successful peeling-based recovery.

Definition 2 (Sparse Graph Ensemble). The bipartite graph ensemble G(s,1,C, {M_}.cc) is a
collection of C-regular bipartite graphs where

o there are s left nodes, each associated with a distinct non-zero coefficient o[K|;

o there are C groups of right nodes and B = 2° = ns right nodes per group, and each right
node is characterized by the observation U,[j] indexed by j € F% in each group;

o there exists an edge between left node oK) and right node U.[j] in group c if Mk = j,
and thus each left node has a regular degree C.

Using the construction of {M.}<_, given in the supplemental material, the decoding is successful
over the ensemble G(s,7, C, {M,}.c|c) if C and B are chosen appropriately. The key idea is to
avoid excessive aliasing by exploiting a sufficiently large but finite number of groups C for diversity
and maintaining the query set size B on par with the sparsity O(s).

Lemma 1. If we construct our query generator using C query groups with B = ns = 2° for some
redundancy parameter n > 0 satisfying:

C 2 3 4 5 6
n | 1.0000 | 0.4073 | 0.3237 | 0.2850 | 0.2616

Table 1: Minimum value for 7 given the number of groups C'
then the oracle-based decoder learns f in O(s) peeling iterations with probability 1 — O(1/s).

2.2.2 Getting Rid of the Oracle

Now we explain how to detect single-tons and obtain the index-value pair without an oracle. We ex-
ploit the diversity of subsampling offsets d from (3)). Let D, € IFf *™ be the offset matrix containing
P subsampling offsets, where each row is a chosen offset. Denote by U.[j] := [-+ ,Uep[4], -]*
the vector of observations (called observation bin) associated with the P offsets at the j-th right
node, we have the general observation model for each right node in the bipartite graph as follows.

Proposition 1. Given the offset matrix D € Fg) X" we have

Ucil= > a(=)P*+wlj), 4)
k : MZk=j
where w.[j] £ [+, W[4, 17 contains noise samples with variance 0%, (—1)(") is an element-

D.k

wise exponentiation operator and (—1) is the offset signature associated with a[K].

In the same simple example we keep the subsamphng matrix M1 and use the set of offsets dyg =
[0,0,0,0]7,d; = [1,0,0,0]T,dy = [0,1,0,0]7, d3 = [0,0,1,0]7 and d4 = [0,0,0,1]7 such that
D; = [01x4;14]. The observatlon bin assocnated with the subsampling pattern M is:

U1lj] = [Ur,0l4], Urald], Un,2[5], Ur 3[3], U ald])” S

For example, observations U [01] and U1 [10] are given as

1
)0 (~1)° (-1)
)|, U1[10] = a[0110] x [(=1)'| + [1010] x [(-1)°
)O (1) (-D!
)° (-1)° (-1)°

With these bin observations, one can effectively determine if a check node is a zero-ton, a single-
ton or a multi-ton. For example, a single-ton, say U1[01], satisfies |Uq0[01]] = |U1,1[01]] =

|U1,2[01]] = |Uy3[01]| = |U1,4[01]|. Then, the index k = [k[1], k[2], k[3], k[4]]T and the value
of a single-ton can be obtained by a simple ratio test

U1 [01] = a[0100] x

—

1 1
(-1 1
(—1 1
(-1 1
(—1 1

O - g - e (H=0
U, 2[01 =
(1)k = UI’0 ol (_1)1 -~
B3] _ Unslol] _ 0o = (kBB =0
(1) = Tol01] (_1) ’];[4} -0
(-1)k[4] _ Ui4f01] (_1)0 =
Ui ,0[01 Oé[] UL()[O];]

The above tests are easy to verify for all observations such that the index-value pair is obtained
for peeling. In fact, this detection scheme for obtaining the oracle information is mentioned in the
noiseless scenario [[16] by using P = n + 1 offsets. However, this procedure fails in the presence of
noise. In the following, we propose the general detection scheme for the noisy scenario while using
P = O(n) offsets.

3 Learning in the Presence of Noise

In this section, we propose a robust bin detection scheme that identifies the type of each observation
bin and estimate the index-value pair (k, a[k]) of a single-ton in the presence of noise. For conve-
nience, we drop the group index c and the node index j without loss of clarity, because the detection
scheme is identical for all nodes from all groups. The bin detection scheme consists of the single-ton
detection scheme and the zero-ton/multi-ton detection scheme, as described next.

3.1 Single-ton Detection

Proposition 2. Given a single-ton with (k, a[k]) observed in the presence of noise N'(0,0?), then
by collecting the signs of the observations, we have

c=Dk®sgnak]] Dz
where z contains P independent Bernoulli variables with probability at most P, = e~ B0 207
and the sign function is defined as sgn [x] = 1 ifx < 0 and sgn [x] = 0 if © > 0.

Note that the P-bit vector c is a received codeword of the n-bit message k over a binary symmetric
channel (BSC) under an unknown flip sgn [a[k]]. Therefore, we can design the offset matrix D
according to linear block codes. The codes should include 1 as a valid codeword such that both Dk
and Dk @ 1 can be decoded correctly and then obtain the correct codeword Dk and hence k.

Definition 3. Let the offset matrix D € IE‘§ X" constitute a P x n generator matrix of some linear
code, which satisfies a minimum distance 5P with a code rate R(3) > 0 and § > P,.

Since there are n information bits in the index k, there exists some linear code (i.e. D) with block
length P = n/R(3) that achieves a minimum distance of SP, where R((3) is the rate of the code
[15]. As long as 8 > P, it is obvious that the unknown k can be decoded with exponentially
decaying probability of error. Excellent examples include the class of expander codes or LDPC
codes, which admits a linear time decoding algorithm. Therefore, the single-ton detection can be
performed in time O(n), same as the noiseless case.

3.2 Zero-ton and Multi-ton Detection

The single-ton detection scheme works when the underlying bin is indeed a single-ton. However,
it does not work on isolating single-tons from zero-tons and multi-tons. We address this issue by
further introducing P extra random offsets.

Definition 4. Ler the offset matrix D € Ff X" constitute a P x n random matrix consisting of
independent identically distributed (i.i.d.) Bernoulli entries with probability 1/2.

Denote by U = [(71, Sy U p]7T the observations associated with D, we perform the following:

e zero-ton verification: the bin is a zero-ton if |U||2/P < (14-)o2/B for some v € (0,1).
o multi-ton verification: the bin is a multi-ton if [|U — a[k](~1)PX||> > (1 + ~)o?/B,

where (E, &[E]) are the single-ton detection estimates.

It is shown in the supplemental material that this bin detection scheme works with probability at
least 1 —O(1/s). Together with Lemma the learning framework in the presence of noise succeeds
with probability at least 1 — O(1/s). As detailed in the supplemental material, this leads to a overall
sample complexity of O(sn) and runtime of O(nslog s).

4 Application in Hypergraph Sketching

Consider a d-rank hypergraph G = (V, E) with |E| = r edges, where V. = {1,--- ,n}. A cut

S C V is a set of selected vertices, denoted by the boolean cube x = [z1,-- -, x,] over {£1}",
where z; = —1ifi € Sand x; = 1if i ¢ S. The value of a specific cut x can be written as
(1 + xz) (1 — xl)
= 1— . 6
=3 |1 (52 11 ©

Letting ; = (—1)™0, we have f(x) = u[m] = Zkng c[k](—1)®™) with ; = (—1)™0 for all
i € [n], where the coefficient c[k] is a scaled WHT coefficient. Clearly, if the number of hyperedges
is small r < 2™ and the maximum size of each hyperedge is small d < n, the coefficients c[Kk]’s
are sparse and the sparsity can be well upper bounded by s < 29~ Now, we can use our learning
framework to compute the sparse coefficients c[k] from only a few cut queries. Note that in the
graph sketching problem, the weight of k is bounded by d due to the special structure of cut function.
Therefore, in the noiseless setting, we can leverage the sparsity d and use much fewer offsets P < n
in the spirit of compressed sensing. In the supplemental material, we adapt our framework to derive
the GraphSketch bin detection scheme with even lower query costs and runtime.

Proposition 3. The GraphSketch bin detection scheme uses P = O(d(logn + log s)) offsets and
successfully detects single-tons and their index-value pairs with probability at least 1 — O(1/s).

Next, we provide numerical experiments of our learning algorithm for sketching large random hyper-
graphs as well as actual hypergraphs formed by real datasetﬂ In Fig.[3] we compare the probability
of success in sketching hypergraphs with n = 1000 nodes over 100 trials against the LearnGraph
procedur in [9], by randomly generating » = 1 to 10 hyperedges with rank d = 5. The perfor-
mance is plotted against the number of edges r and the query complexity of learning. As seen from
Fig. |3} the query complexity of our framework is significantly lower (< 1%) than that of [9].

4.1 Sketching the Yahoo! Messenger User Communication Pattern Dataset

We sketch the hypergraphs extracted from Yahoo! Messenger User Communication Pattern Dataset
[19], which records communications for 28 days. The dataset is recorded entry-wise as (day, time,
transmitter, origin-zipcode, receiver, flag), where day and time represent the time stamp of each
message, the rransmitter and receiver represent the IDs of the sender and the recipient, the zipcode is
a spatial stamp of each message, and the flag indicates if the recipient is in the contact list. There are
10° unique users and 5649 unique zipcodes. A hidden hypergraph structure is captured as follows.

>We used MATLAB on a Macbook Pro with an Intel Core i5 processor at 2.4 GHz and 8 GB RAM.
3We would like to acknowledge and thank the authors [9] for providing their source codes.

Prob. of Success Run-time

Run-time (secs)

of Edges
© ® N o o B w N e

10

1 15 2 25 3 # of Edges 01

. # of Queries
of Queries x 10°

(a) Our Framework (b) Our Framework

Prob. of Success Run-time

5
0 15
of Edges 01 # of Queries

of Edges
g © o N o O S W N e
-
=
@
N
N
(&
w
o o o o Ll
N S o @
Run-time (secs)
= = N w B
oo o o o o
N
N
2
>
5

of Queries x 10°

(c) LearnGraph (d) LearnGraph

Figure 3: Sketching performance of random hypergraphs with n = 1000 nodes.

Over an interval Jt, each sender with a unique zipcode forms a hyperedge, and the recipients are
the members of the hyperedge. By considering T' consecutive intervals Jt over a set of iz < 5649
zipcodes, the communication pattern gives rise to a hypergraph with only few hyperedges in each
interval and each hyperedge contains only few d nodes. The complete set of nodes in the hypergraph
n is the set of recipients who are active during the 7" intervals. In Table 2} we choose the sketching
interval ¢t = 0.5hr and consider T' = 5 intervals. For each interval, we extract the communication
hypergraph from the dataset by sketching the communications originating from a set of 6z = 20
zipcodeq’| by posing queries constructed at random in our framework. We average our performance
over 100 trial runs and obtain the success probability.

Temporal Graph n # of edges (F) | degree (d) | 1 — Pr | Run-time (sec)
(9:00 a.m. ~ 9:30 a.m.) 12648 87 9 0.97 422.3
(9:30 am. ~ 10:00 a.m.) | 12648 102 8 0.99 310.1
(10:00 a.m. ~ 10:30 a.m.) | 12648 109 7 0.99 2914
(10:30 a.m. ~ 11:00 a.m.) | 12648 84 9 0.93 571.3
(11:00 a.m. ~ 11:00 a.m.) | 12648 89 10 0.93 295.1

Table 2: Sketching performance with C' = 8 groups and P = 421 query sets of size B = 128.

We maintain C' = 8 groups of queries with P = 421 query sets of size B = 256 per group
throughout all the experiments (i.e., 8.6 x 10° queries ~ 60n). It is also seen that we can sketch the
temporal communication hypergraphs from the real dataset over much larger intervals (0.5 hr) than
that by LearnGraph (around 30 sec to 5 min), also more reliably in terms of success probability.

5 Conclusions

In this paper, we introduce a coding-theoretic active learning framework for sparse polynomials un-
der a much more challenging sparsity regime. The proposed framework effectively lowers the query
complexity and especially the computational complexity. Our framework is useful in sketching large
hypergraphs, where the queries are obtained by specific graph cuts. We further show via experiments
that our learning algorithm performs very well over real datasets compared with existing approaches.

*We did now show the performance of LearnGraph because it fails to work on hypergraphs with the number
of hyperedges at this scale with a reasonable number of queries (i.e., < 1000n), as mentioned in [9].

References

[1] D. Angluin. Computational learning theory: survey and selected bibliography. In Proceedings
of the twenty-fourth annual ACM symposium on Theory of computing, pages 351-369. ACM,
1992.

[2] M. Bouvel, V. Grebinski, and G. Kucherov. Combinatorial search on graphs motivated by
bioinformatics applications: A brief survey. In Graph-Theoretic Concepts in Computer Sci-
ence, pages 16-27. Springer, 2005.

[3] N. Bshouty and Y. Mansour. Simple learning algorithms for decision trees and multivariate
polynomials. In Foundations of Computer Science, 1995. Proceedings., 36th Annual Sympo-
sium on, pages 304-311, Oct 1995.

[4] N. H. Bshouty and H. Mazzawi. Optimal query complexity for reconstructing hypergraphs.
In 27th International Symposium on Theoretical Aspects of Computer Science-STACS 2010,
pages 143-154, 2010.

[5] S.-S. Choi, K. Jung, and J. H. Kim. Almost tight upper bound for finding fourier coefficients of
bounded pseudo-boolean functions. Journal of Computer and System Sciences, 77(6):1039—
1053, 2011.

[6] S. A. Goldman. Computational learning theory. In Algorithms and theory of computation
handbook, pages 26-26. Chapman & Hall/CRC, 2010.

[7] J. Jackson. An efficient membership-query algorithm for learning dnf with respect to the
uniform distribution. In Foundations of Computer Science, 1994 Proceedings., 35th Annual
Symposium on, pages 42-53. IEEE, 1994.

[8] M. J. Kearns. The computational complexity of machine learning. MIT press, 1990.

[9] M. Kocaoglu, K. Shanmugam, A. G. Dimakis, and A. Klivans. Sparse polynomial learning and
graph sketching. In Advances in Neural Information Processing Systems, pages 3122-3130,
2014.

[10] E. Kushilevitz and Y. Mansour. Learning decision trees using the fourier spectrum. SIAM
Journal on Computing, 22(6):1331-1348, 1993.

[11] Y. Mansour. Learning boolean functions via the fourier transform. In Theoretical advances in
neural computation and learning, pages 391-424. Springer, 1994.

[12] Y. Mansour. Randomized interpolation and approximation of sparse polynomials. SIAM Jour-
nal on Computing, 24(2):357-368, 1995.

[13] H. Mazzawi. Reconstructing Graphs Using Edge Counting Queries. PhD thesis, Technion-
Israel Institute of Technology, Faculty of Computer Science, 2011.

[14] S. Negahban and D. Shah. Learning sparse boolean polynomials. In Communication, Control,
and Computing (Allerton), 2012 50th Annual Allerton Conference on, pages 2032-2036. IEEE,
2012.

[15] T. Richardson and R. Urbanke. Modern coding theory. Cambridge University Press, 2008.

[16] R. Scheibler, S. Haghighatshoar, and M. Vetterli. A fast hadamard transform for signals with
sub-linear sparsity. arXiv preprint arXiv:1310.1803, 2013.

[17] B. Settles. Active learning literature survey. University of Wisconsin, Madison, 52:55-66,
2010.

[18] P. Stobbe and A. Krause. Learning fourier sparse set functions. In International Conference
on Artificial Intelligence and Statistics, pages 1125-1133, 2012.

[19] Yahoo. Yahoo! webscope dataset ydata-ymessenger-user-communication-pattern-v1_0.

