A Structural Smoothing Framework For Robust

Graph-Comparison
Pinar Yanardag S.V.N. Vishwanathan
Department of Computer Science Department of Computer Science
Purdue University University of California
West Lafayette, IN, 47906, USA Santa Cruz, CA, 95064, USA
ypinar@purdue.edu vishy@ucsc.edu
Abstract

In this paper, we propose a general smoothing framework for graph kernels by
taking structural similarity into account, and apply it to derive smoothed variants
of popular graph kernels. Our framework is inspired by state-of-the-art smoothing
techniques used in natural language processing (NLP). However, unlike NLP ap-
plications that primarily deal with strings, we show how one can apply smoothing
to a richer class of inter-dependent sub-structures that naturally arise in graphs.
Moreover, we discuss extensions of the Pitman-Yor process that can be adapted
to smooth structured objects, thereby leading to novel graph kernels. Our kernels
are able to tackle the diagonal dominance problem while respecting the structural
similarity between features. Experimental evaluation shows that not only our ker-
nels achieve statistically significant improvements over the unsmoothed variants,
but also outperform several other graph kernels in the literature. Our kernels are
competitive in terms of runtime, and offer a viable option for practitioners.

1 Introduction

In many applications we are interested in computing similarities between structured objects such
as graphs. For instance, one might aim to classify chemical compounds by predicting whether a
compound is active in an anti-cancer screen or not. A kernel function which corresponds to a dot
product in a reproducing kernel Hilbert space offers a flexible way to solve this problem [19]. R-
convolution [10] is a framework for computing kernels between discrete objects where the key idea
is to recursively decompose structured objects into sub-structures. Let (-, -),, denote a dot product in
a reproducing kernel Hilbert space, G represent a graph and ¢ (G) represent a vector of sub-structure
frequencies. The kernel between two graphs G and G’ is computed by K (G,G’) = (¢ (G), ¢ (G')) 4
Many existing graph kernels can be viewed as instances of R-convolution kernels. For instance, the
graphlet kernel [22] decomposes a graph into graphlets, Weisfeiler-Lehman Subtree kernel (referred
as Weisfeiler-Lehman for the rest of the paper) [23] decomposes a graph into subtrees, and the
shortest-path kernel [1] decomposes a graph into shortest-paths. However, R-convolution based
graph kernels suffer from a few drawbacks. First, the size of the feature space often grows exponen-
tially. As size of the space grows, the probability that two graphs will contain similar sub-structures
becomes very small. Therefore, a graph becomes similar to itself but not to any other graph in the
training data. This is well known as the diagonal dominance problem [11] where the resulting kernel
matrix is close to the identity matrix. Second, lower order sub-structures tend to be more numerous
while a vast majority of the sub-structures occurs rarely. In other words, a few sub-structures dom-
inate the distribution. This exhibits a strong power-law behavior and results in underestimation of
the true distribution. Third, the sub-structures used to define a graph kernel are often related to each
other. However, an R-convolution kernel only respects exact matchings. This problem is particu-

10 ” 4
i o= 1) g ()
Gy G. G G. Gy Gay Gos (e Gy Gas Gao Gso Ga Gsz Gas Gas Gs, Gas
A _ I 7 AN 7 AN
U v \ \ I\ A\ VAN VA \\ . NN \ 4 v = y
G37 Gas G39 G4n Gaq G42 Gus Gu G45 GAﬁ G47 Gas G49 Gsu Gsx Gsa

Figure 1: Graphlets of size k < 5.

larly important when noise is present in the training data and considering partial similarity between
sub-structures might alleviate the noise problem.

Our solution: In this paper, we propose to tackle the above problems by using a general framework
to smooth graph kernels that are defined using a frequency vector of decomposed structures. We
use structure information by encoding relationships between lower and higher order sub-structures
in order to derive our method. The remainder of this paper is structured as follows. In Section 2,
we review three families of graph kernels for which our smoothing is applicable. In Section 3, we
review smoothing methods for multinomial distributions. In Section 4, we introduce a framework
for smoothing structured objects. In Section 5, we propose a Bayesian variant of our model that
is extended from the Hierarchical Pitman-Yor process [25]. In Section 6, we discuss related work.
In Section 7, we compare smoothed graph kernels to their unsmoothed variants as well as to other
state-of-the-art graph kernels. We report results on classification accuracy on several benchmark
datasets as well as their noisy-variants. Section 8 concludes the paper.

2 Graph kernels

Existing graphs kernels based on R-convolution can be categorized into three major families: graph
kernels based on limited-sized subgraphs [e.g. 22], graph kernels based on subtree patterns [e.g.
18, 21], and graph kernels based on walks [e.g. 27] or paths [e.g. 1].

Graph kernels based on subgraphs: A graphlet G [17] is non-isomorphic sub-graph of size-k,
(see Figure 1). Given two graphs G and G’, the kernel [22] is defined as Kgx (G,G') = <fg, fg/>

where f9 and £9° are vectors of normalized counts of graphlets, that is, the i-th component of f9
(resp. £ ") denotes the frequency of graphlet GG; occurring as a sub-graph of G (resp. G').

Graph kernels based on subtree patterns: Weisfeiler-Lehman [21] is a popular instance of graph
kernels that decompose a graph into its subtree patterns. It simply iterates over each vertex in a
graph, and compresses the label of the vertex and labels of its neighbors into a multiset label. The
vertex is then relabeled with the compressed label to be used for the next iteration. Algorithm con-
cludes after running for £ iterations, and the compressed labels are used for constructing a frequency

vector for each graph. Formally, given G and G’, this kernel is defined as Ky 1.(G,G’) = <lg, lg/>

where 19 contains the frequency of each compressed label occurring in h iterations.

Graph kernels based on walks or paths: Shortest-path graph kernel [1] is a popular instance of
this family. This kernel simply compares the sorted endpoints and the length of shortest-paths that
are common between two graphs. Formally, let Pg represent the set of all shortest-paths in graph
G, and p; € Pg denote a triplet (s, l., ny) where ny, is the length of the path and [, and [. are the
labels of the source and sink vertices, respectively. The kernel between graphs G and G’ is defined

as Ksp(G,G') = <pg, pgl> where i-th component of pY contains the frequency of i-th triplet
occurring in graph G (resp. pg/).

3 Smoothing multinomial distributions

In this section, we briefly review smoothing techniques for multinomial distributions. Let
€1, e, .., ey represent a sequence of n discrete events drawn from a ground set A = {1,2,...,V}.

Figure 2: Topologically sorted graphlet DAG for k£ < 5 where nodes are colored based on degree.

Suppose, we would like to estimate the probability P (e; = a) for some a € A. It is well known
that the Maximum Likelihood Estimate (MLE) can be computed as Py (¢; = a) = = where ¢,
denotes the number of times the event a appears in the observed sequence and m = > ; ¢; denotes
the total number of observed events. However, MLE of the multinomial distribution is spiky since it
assigns zero probability to the events that did not occur in the observed sequence. In other words, an
event with low probability is often estimated to have zero probability mass. The general idea behind
smoothing is to adjust the MLE of the probabilities by pushing the high probabilities downwards
and pushing low or zero probabilities upwards in order to produce a more accurate distribution on
the events [30]. Interpolated smoothing methods offer a flexible solution between the higher-order
maximum likelihood model and lower-order smoothed model (or so-called, fallback model). The
way the fallback model is designed is the key to define a new smoothing method'. Absolute dis-
counting [15] and Interpolated Kneser-Ney [12] are two popular instances of interpolated smoothing
methods:

max {c, — d,0} L Ma X d

Py (e; =a) = - P, (e;=a). ()
Here, d > 0 is a discount factor, mgq := [{a: ¢, > d}| is the number of events whose counts
are larger than d, while P/, is the fallback distribution. Absolute discounting defines the fallback
distribution as the smoothed version of the lower-order MLE while Kneser-Ney uses an unusual
estimate of the fallback distribution by using number of different contexts that the event follows in
the lower order model.

4 Smoothing structured objects

In this section, we first propose a new interpolated smoothing framework that is applicable to a
richer set of objects such as graphs by using a Directed Acyclic Graph (DAG). We then discuss how
to design such DAGs for various graph kernels.

4.1 Structural smoothing

The key to designing a new smoothing method is to define a fallback distribution, which not only
incorporates domain knowledge but is also easy to estimate recursively. Suppose, we have access
to a weighted DAG where every node at the k-th level represents an event from the ground set A.
Moreover let w;; denote the weight of the edge connecting event 4 to event j, and P, (resp. C,)
denote the parents (resp. children) of event a € A in the DAG. We define our structural smoothing
for events at level k as follows:

max {c, — d,0 mg X d . Wig
Pég(e; =a) = { by m S PTG =—2—. 2

" o jep. Yaree, Wia

The way to understand the above equation is as follows: we subtract a fixed discounting factor d
from every observed event which accumulates to a total mass of my X d. Each event a receives
some portion of this accumulated probability mass from its parents. The proportion of the mass that
a parent j at level £ — 1 transmits to a given child a depends on the weight w;, between the parent
and the child (normalized by the sum of the weights of the edges from j to all its children), and the
probability mass P§§1 (7) that is assigned to node j. In other words, the portion a child event a is
able to obtain from the total discounted mass depends on how authoritative its parents are, and how
strong the relationship between the child and its parents.

'See Table 2 in [3] for summarization of various smoothing algorithms using this general framework.

4.2 Designing the DAG

In order to construct a DAG for smoothing structured objects, we first construct a vocabulary V'
that denotes the set of all unique sub-structures that are going to be smoothed. Each item in the
vocabulary V' corresponds to a node in the DAG. V' can be generated statically or dynamically
based on the type of sub-structure the graph kernel exploits. For instance, it requires a one-time
O(2%) effort to generate the vocabulary of size < k graphlets for graphlet kernel. However, one
needs to build the vocabulary dynamically in Weisfeiler-Lehman and Shortest-Path kernels since
the sub-structures depend on the node labels obtained from the datasets. After constructing the
vocabulary V, the parent/child relationship between sub-structures needs to be obtained. Given a
sub-structure s of size k, we apply a transformation to find all possible sub-structures of size k — 1
that s can be reduced into. Each sub-structure s’ that is obtained by this transformation is assigned
as a parent of s. After obtaining the parent/child relationship between sub-structures, the DAG is
constructed by drawing a directed edge from each parent to its children nodes. Since all descendants
of a given sub-structure at depth k£ — 1 are at depth k, this results in a topological ordering of the
vertices, and hence the resulting graph is indeed a DAG. Next, we discuss how to construct such
DAGs for different graph kernels.

Graphlet Kernel: We construct the vocabulary V' for graphlet kernel by enumerating all canonical
graphlets of size up to k*>. Each canonically-labeled graphlet is a node in the DAG. We then apply
a transformation to infer the parent/child relationship between graphlets as follows: we place a
directed edge from graphlet G to G if, and only if, G can be obtained from G’ by deleting a node.
In other words, all edges from a graphlet G of size k — 1 point to a graphlet G’ of size k. In order to
assign weights to the edges, given a graphlet pair G and G’, we count the number of times G can be
obtained from G’ by deleting a node (call this number ngg). Recall that G is of size k — 1 and G’
is of size k, and therefore ng ¢ can at most be k. Let C denote the set of children of node G in the
DAG, and ng = > _gcc,, M- Then we define the weight wger of the edge connecting G and G
as ngar /ne. The idea here is that the weight encodes the proportion of different ways of extending
G which results in the graphlet G'. For instance, let us consider G'15 and its parents G5, Gg, G7 (see
Figure 2 for the DAG of graphlets with size k& < 5). Even if graphlet G5 is not observed in the
training data, it still gets a probability mass proportional to the edge weight from its parents in order
to overcome the sparsity problem of unseen data.

Weisfeiler-Lehman Kernel: The Weisfeiler-Lehman kernel performs an exact matching between
the compressed multiset labels. For instance, given two labels ABCDE and ABCDF, it simply as-
signs zero value for their similarity even though two labels have a partial similarity. In order to
smooth Weisfeiler-Lehman kernel, we first run the original algorithm and obtain the multiset repre-
sentation of each graph in the dataset. We then apply a transformation to infer the parent/child re-
lationship between compressed labels as follows: in each iteration of Weisfeiler-Lehman algorithm,
and for each multiset label of size k in the vocabulary, we generate its power set by computing all
subsets of size £ — 1 while keeping the root node fixed. For instance, the parents of a multiset label
ABCDE are {ABCD, ABCE, ABDE, ACDE}. Then, we simply construct the DAG by drawing a
directed edge from parent labels to children. Notice that considering only the set of labels gener-
ated from the Weisfeiler-Lehman kernel is not sufficient enough for constructing a valid DAG. For
instance, it might be the case that none of the possible parents of a given label exists in the vocab-
ulary simply due to the sparsity problem (e.g.out of all possible parents of ABCDE, we might only
observe ABCE in the training data). Thus, restricting ourselves to the original vocabulary leaves
such labels orphaned in the DAG. Therefore, we consider so-called pseudo parents as a part of the
vocabulary when constructing the DAG. Since the sub-structures in this kernel are data-dependent,
we use a uniform weight between a parent and its children.

Shortest-Path Kernel: Similar to other graph kernels discussed above, shortest-path graph kernel
does not take partial similarities into account. For instance, given two shortest-paths ABCDE and
ABCDF (compressed as AES and AFS, respectively), it assigns zero for their similarity since their
sink labels are different. However, one can notice that shortest-path sub-structures exhibit a strong
dependency relationship. For instance, given a shortest-path p;; = {ABCDE} of size k, one can
derive the shortest-paths {ABCD, ABC, AB} of size < k as a result of the optimal sub-structure
property, that is, one can show that all sub-paths of a shortest-path are also shortest-paths with

>We used Nauty [13] to obtain canonically-labeled isomorphic representations of graphlets.

....o o .. [
N (%
AN
Gs2 Gy

Figure 3: An illustration of table assignment, adapted from [9]. In this example, labels at the tables
are given by (I1,...,l4) = (Ga4, G30, G32, G44). Black dots indicate the number of occurrences of
each label in 10 draws from the Pitman-Yor process.

the same source node [6]. In order to smooth shortest-path kernel, we first build the vocabulary by
computing all shortest-paths for each graph. Let p;; be a shortest-path of size k and p; ;- be a shortest-
path of size k& — 1 that is obtained by removing the sink node of p;;. Let I;; be the compressed form
of p;; that represents the sorted labels of its endpoints ¢ and j concatenated to its length (resp. [;;/).
Then, in order to build the DAG, we draw a directed edge from /;;» of depth & — 1 to [;; of depth k if
and only if p;;- is a sub-path of p;;. In other words, all ascendants of /;; consist of the compressed
labels obtained from sub-paths of p;; of size < k. Similar to Weisfeiler-Lehman kernel, we assign a
uniform weight between parents and children.

S Pitman-Yor Smoothing

Pitman-Yor processes are known to produce power-law distributions [8]. A novel interpretation of
interpolated Kneser-Ney is proposed by [25] as approximate inference in a hierarchical Bayesian
model consisting of Pitman-Yor process [16]. By following a similar spirit, we extend our model
to adapt Pitman-Yor process as an alternate smoothing framework. A Pitman-Yor process P on a
ground set G 1 of size-(k + 1) graphlets is defined via Py11 ~ PY (dg+1,0k+1, Pr) where dgy1
is a discount parameter, 0 < dpy1 < 1, 8 > —dj41 is a strength parameter, and Py is a base
distribution. The most intuitive way to understand draws from the Pitman-Yor process is via the
Chinese restaurant process (see Figure 3). Consider a restaurant with an infinite number of tables

Algorithm 1 Insert a Customer

Input: di1, O 41, P

t <— 0 // Occupied tables

¢ < () // Counts of customers

[< () // Labels of tables

if £ = 0 then
t<+1
append 1 to ¢
draw graphlet G; ~ P // Insert customer in parent
draw Gj ~ Wiy
append G to [
return G

else
with probability oc max(0, ¢; — d)
cj < ¢j+ 1
return [;
with probability proportional to 6 + dt
t—t+1
append 1 to ¢
draw graphlet G; ~ P // Insert customer in parent
draw Gj ~ Wiy
append G to [
return G,

end if

where customers enter the restaurant one by one. The first customer sits at the first table, and a
graphlet is assigned to it by drawing a sample from the base distribution since this table is occupied
for the first time. The label of the first table is the first graphlet drawn from the Pitman-Yor process.

Subsequent customers when they enter the restaurant decide to sit at an already occupied table with
probability proportional to ¢; — dj+1, Where ¢; represents the number of customers already sitting at
table 7. If they sit at an already occupied table, then the label of that table denotes the next graphlet
drawn from the Pitman-Yor process. On the other hand, with probability 61 + dj41t, where ¢ is
the current number of occupied tables, a new customer might decide to occupy a new table. In this
case, the base distribution is invoked to label this table with a graphlet. Intuitively the reason this
process generates power-law behavior is because popular graphlets which are served on tables with
a large number of customers have a higher probability of attracting new customers and hence being
generated again, similar to a rich gets richer phenomenon. In a hierarchical Pitman-Yor process, the
base distribution Py is recursively defined via a Pitman-Yor process P, ~ PY (d, 0, P;—1). In
order to label a table, we need a draw from P, which is obtained by inserting a customer into the
corresponding restaurant. However, adopting the traditional hierarchical Pitman-Yor process is not
straightforward in our case since the size of the context differs between levels of hierarchy, that is, a
child restaurant in the hierarchy can have more than one parent restaurant to request a label from. In
other words, Py is defined over Gy 1 of size ny1 while Py, is defined over Gy, of size ny < ngy1.
Therefore, one needs a transformation function to transform base distributions of different sizes. We
incorporate edge weights between parent and child restaurants by using the same weighting scheme
in Section 4.2. This changes the Chinese Restaurant process as follows: When we need to label a
table, we will first draw a size-k graphlet G; ~ P} by inserting a customer into the corresponding
restaurant. Given G;, we will draw a size-(k + 1) graphlet G; proportional to w;;, where w;; is
obtained from the DAG. See Algorithm 1 for pseudo code of inserting a customer. Deletion of a
customer is handled similarly (see Algorithm 2).

Algorithm 2 Delete a Customer
Input: d,0, Fy,C, L, t
with probability o< ¢;
caq+—c—1
Gj < lj
if ¢, = 0 then
Pk 0.8 1/’11)”‘
delete ¢; from ¢
delete [; from [
t+t—1
end if
return G

6 Related work

A survey of most popular graph kernel methods is already given in previous sections. Several meth-
ods proposed in smoothing structured objects [4], [20]. Our framework is similar to dependency
tree kernels [4] since both methods are using the notion of smoothing for structured objects. How-
ever, our method is interested in the problem of smoothing the count of structured objects. Thus,
while smoothing is achieved by using a DAG, we discard the DAG once the counts are smoothed.
Another related work to ours is propagation kernels [14] that define graph features as counts of sim-
ilar node-label distributions on the respective graphs by using Locality Sensitive Hashing (LSH).
Our framework not only considers node label distributions, but also explicitly incorporates struc-
tural similarity via the DAG. Another similar work to ours is recently proposed framework by [29]
which learns the co-occurrence relationship between sub-structures by using neural language mod-
els. However, their framework do not respect the structural similarity between sub-structures, which
is an important property to consider especially in the presence of noise in edges or labels.

7 Experiments

The aim of our experiments is threefold. First, we want to show that smoothing graph kernels
significantly improves the classification accuracy. Second, we want to show that the smoothed
kernels are comparable to or outperform state-of-the-art graph kernels in terms of classification

Table 1: Comparison of classification accuracy (£ standard deviation) of shortest-path (SP),
Weisfeiler-Lehman (WL), graphlet (GK) kernels with their smoothed variants. Smoothed variants
with statistically significant improvements over the base kernels are shown in bold as measured by
a t-test with a p value of < 0.05. Ramon & Girtner (Ram & Gir), p-random walk and random
walk kernels are included for additional comparison where > 72H indicates the computation did not
finish in 72 hours. Runtime for constructing the DAG and smoothing (SMTH) the counts are also
reported where ” indicates seconds and ’ indicates minutes.

DATASET MUTAG PTC ENZYMES PROTEINS Ncil Nc1109
SP 85.22 +2.43 | 58.24 +244 | 40.10 150 | 75.07 +o054 | 73.00+0.24 | 73.00+0.21
SMOOTHED SP 87.94 +258 | 60.82 +1.84 | 42.27 +1.07 | 75.85 +0.28 | 73.26+024 | 73.01+0.31
WL 82.22 +1.87 | 60.41 +1.93 | 53.88 095 | 74.49 +to.49 | 84.13+022 | 83.83+0.31
SMOOTHED WL 87.44 +1.95 | 60.47 +2.39 | 55.30 +o0.65 | 75.53 1050 | 84.66+0.18 | 84.72+0.21
GK 81.33 £1.02 | 55.56 146 | 27.32 +096 | 69.69 +o46 | 62.46+0.19 | 62.33+0.14
SMOOTHED GK 83.17 +o0.64 | 58.44 +1.00 | 30.90 +1.51 | 69.83 +0.46 | 62.48+0.15 | 62.48+0.11
Pyp GK 83.11 +123 | 57.44 +1.44 | 29.63 +1.30 | 70.00 +o0.80 | 62.50+020 | 62.68+0.18
RAM & GAR 84.88 +1.86 | 58.47 +090 | 16.96 +1.46 | 70.73 +035 | 56.61+0.53 | 54.62+0.23
P-RANDOMWALK | 80.05 +1.64 | 59.38 +1.66 | 30.01 £1.00 | 71.16 035 | > 72H > 72H
RANDOM WALK 83.72 +150 | 57.85 +1.30 | 24.16 +1.64 | 74.22 +042 | > 72H > 72H
DAG/SMTH (GK) 6” 1” 6”7 |17 6” |17 6” |17 6” | 37 6” |37
DAG/SMTH (SP) 3” 1” 19717 45”7117 9’ 1”7 9’ 177 10’ 16”
DAG/SMTH (WL) 1” 27 1”7 1177 10”12’ 7 70’ 27 21 27 1217
DAG/SMTH (PYP) | 67 5” 6”7 | 127 6” |21” 6”7 |1’ 6”7 | 8§ 6” |8

accuracy, while remaining competitive in terms of computational requirements. Third, we want to
show that our methods outperform base kernels when edge or label noise is presence.

Datasets We used the following benchmark datasets used in graph kernels: MUTAG, PTC, EN-
ZYMES, PROTEINS, NCII and NCI109. MUTAG is a dataset of 188 mutagenic aromatic and
heteroaromatic nitro compounds [5] with 7 discrete labels. PTC [26] is a dataset of 344 chemical
compounds has 19 discrete labels. ENZYMES is a dataset of 600 protein tertiary structures obtained
from [2], and has 3 discrete labels. PROTEINS is a dataset of 1113 graphs obtained from [2] having
3 discrete labels. NCI1 and NCI109 [28] are two balanced datasets of chemical compounds having
size 4110 and 4127 with 37 and 38 labels, respectively.

Experimental setup We compare our framework against representative instances of major families
of graph kernels in the literature. In addition to the base kernels, we also compare our smoothed
kernels with the random walk kernel [7], the Ramon-Girtner subtree [18], and p-step random walk
kernel [24]. The Random Walk, p-step Random Walk and Ramon-Gértner are written in Matlab and
obtained from [22]. All other kernels were coded in Python except Pitman-Yor smoothing which is
coded in C++°. We used a parallel implementation for smoothing the counts of Weisfeiler-Lehman
kernel for efficiency. All kernels are normalized to have a unit length in the feature space. Moreover,
we use 10-fold cross validation with a binary C-Support Vector Machine (SVM) where the C' value
for each fold is independently tuned using training data from that fold. In order to exclude random
effects of the fold assignments, this experiment is repeated 10 times and average prediction accuracy
of 10 experiments with their standard deviations are reported*.

7.1 Results

In our first experiment, we compare the base kernels with their smoothed variants. As can be seen
from Table 1, smoothing improves the classification accuracy of every base kernel on every dataset
with majority of the improvements being statistically significant with p < 0.05. We observe that
even though smoothing improves the accuracy of graphlet kernels on PROTEINS and NCI1, the im-
provements are not statistically significant. We believe this is due to the fact that these datasets are
not sensitive to structural noise as much as the other datasets, thus considering the partial similarities

3We modified the open source implementation of PYP: https://github.com/redpony/cpyp.

“Implementations of original and smoothed versions of the kernels, datasets and detailed discussion of
parameter selection procedure with the list of parameters used in our experiments can be accessed from http:
//web.ics.purdue.edu/~ypinar/nips.

https://github.com/redpony/cpyp
http://web.ics.purdue.edu/~ypinar/nips
http://web.ics.purdue.edu/~ypinar/nips

*—+ MUTAG +—+ ENZYMES +— NCI1 ~— PTC e— PROTEINS *— NCI109
90 90

©
=3

@
=]
+
*

80

-
=]

-------- 70

60

T
R
4
é

o
=]

50

Classification accuracy

IS
S

401 €T

w
=3

30

N
=]

20 0
0% 10% 20% 30% 0% 25% 50% 75% 0% 25% 50% 75%

Edge noise (Graphlet Kernel) Label noise (Shortest-Path Kernel) Label noise (Weisfeiler-Lehman Kernel)

Figure 4: Classification accuracy vs. noise for base graph kernels (dashed lines) and their smoothed
variants (non-dashed lines).

do not improve the results significantly. Moreover, PYP smoothed graphlet kernels achieve statisti-
cally significant improvements in most of the datasets, however they are outperformed by smoothed
graphlet kernels introduced in Section 3.

In our second experiment, we picked the best smoothed kernel in terms of classification accuracy for
each dataset, and compared it against the performance of state-of-the-art graph kernels (see Table
1). Smoothed kernels outperform other methods on all datasets, and the results are statistically
significant on every dataset except PTC.

In our third experiment, we investigated the runtime behavior of our framework with two major
costs. First, one has to compute a DAG by using the original feature vectors. Next, the constructed
DAG need to be used to compute smoothed representations of the feature vectors. Table 1 shows
the total wallclock runtime taken by all graphs for constructing the DAG, and smoothing the counts
for each dataset. As can be seen from the runtimes, our framework adds a constant factor to the
original runtime for most of the datasets. While the DAG creation in Weisfeiler-Lehman kernel also
adds a negligible overhead, the cost of smoothing becomes significant if the vocabulary size gets
prohibitively large due to the exponential growing nature of the kernel w.rz. to subtree parameter h.

Finally, in our fourth experiment, we test the performance of graph kernels when edge or label
noise is present. For edge noise, we randomly removed and added {10%, 20%, 30%} of the edges
in each graph. For label noise, we randomly flipped {25%, 50%, 75%} of the node labels in each
graph where random labels are selected proportionally to the original label-distribution of the graph.
Figure 4 shows the performance of smoothed graph kernels under noise. As can be seen from
the figure, smoothed kernels are able to outperform their base variants when noise is present. An
interesting observation is that even though a significant amount of edge noise is added to PROTEINS
and NCI datasets, the performance of base kernels do not change drastically. This further supports
our observation that these datasets are not sensitive to structural noise as much as the other datasets.

8 Conclusion and Future Work

We presented a novel framework for smoothing graph kernels inspired by smoothing techniques
from natural language processing and applied our method to state-of-the-art graph kernels. Our
framework is rather general, and lends itself to many extensions. For instance, by defining domain-
specific parent-child relationships, one can construct different DAGs with different weighting
schemes. Another interesting extension of our smoothing framework would be to apply it to graphs
with continuous labels. Moreover, even though we restricted ourselves to graph kernels in this pa-
per, our framework is applicable to any R-convolution kernel that uses a frequency-vector based
representation, such as string kernels.

9 Acknowledgments

We thank to Hyokun Yun for his tremendous help in implementing Pitman-Yor Processes. We also
thank to anonymous NIPS reviewers for their constructive comments, and Jiasen Yang, Joon Hee
Choi, Amani Abu Jabal and Parameswaran Raman for reviewing early drafts of the paper. This work
is supported by the National Science Foundation under grant No. #1219015.

References

(1]
(2]

(3]

[4

—

(5]

[6

—

(7]

[8

—_—

(9]

(10]

(11]

[12]

[13]
(14]

[15]

(16]

(17]
(18]

(19]
[20]

(21]
[22]

(23]

[24]
[25]
[26]

(27]

(28]

[29]
(30]

K. M. Borgwardt and H.-P. Kriegel. Shortest-path kernels on graphs. In ICML, pages 74-81, 2005.

K. M. Borgwardt, C. S. Ong, S. Schonauer, S. V. N. Vishwanathan, A. J. Smola, and H.-P. Kriegel. Protein
function prediction via graph kernels. In ISMB, Detroit, USA, 2005.

S. F. Chen and J. Goodman. An empirical study of smoothing techniques for language modeling. In ACL,
pages 310-318, 1996.

D. Croce, A. Moschitti, and R. Basili. Structured lexical similarity via convolution kernels on dependency
trees. In Proceedings of EMNLP, pages 1034-1046. Association for Computational Linguistics, 2011.

A. K. Debnath, R. L. Lopez de Compadre, G. Debnath, A. J. Shusterman, and C. Hansch. Structure-
activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. correlation with molec-
ular orbital energies and hydrophobicity. J. Med. Chem, 34:786-797, 1991.

A. Feragen, N. Kasenburg, J. Petersen, M. de Bruijne, and K. Borgwardt. Scalable kernels for graphs with
continuous attributes. In NIPS, pages 216-224, 2013.

T. Gértner, P. Flach, and S. Wrobel. On graph kernels: Hardness results and efficient alternatives. In
COLT, pages 129-143, 2003.

S. Goldwater, T. Griffiths, and M. Johnson. Interpolating between types and tokens by estimating power-
law generators. NIPS, 2006.

S. Goldwater, T. L. Griffiths, and M. Johnson. Producing power-law distributions and damping word
frequencies with two-stage language models. JMLR, 12:2335-2382, 2011.

D. Haussler. Convolution kernels on discrete structures. Technical Report UCS-CRL-99-10, UC Santa
Cruz, 1999.

J. Kandola, T. Graepel, and J. Shawe-Taylor. Reducing kernel matrix diagonal dominance using semi-
definite programming. In COLT, volume 2777 of Lecture Notes in Computer Science, pages 288-302,
Washington, DC, 2003.

R. Kneser and H. Ney. Improved backing-oft for M-gram language modeling. In ICASSP, 1995.
B. D. McKay. Nauty user’s guide (version 2.4). Australian National University, 2007.

M. Neumann, R. Garnett, P. Moreno, N. Patricia, and K. Kersting. Propagation kernels for partially
labeled graphs. In ICML-2012 Workshop on Mining and Learning with Graphs, Edinburgh, UK, 2012.

H. Ney, U. Essen, and R. Kneser. On structuring probabilistic dependences in stochastic language mod-
eling. In Computer Speech and Language, pages 1-38, 1994.

J. Pitman and M. Yor. The two-parameter poisson-dirichlet distribution derived from a stable subordinator.
Annals of Probability, 25(2):855-900, 1997.

N. Przulj. Biological network comparison using graphlet degree distribution. In ECCB, 2006.

J. Ramon and T. Gértner. Expressivity versus efficiency of graph kernels. Technical report, First Interna-
tional Workshop on Mining Graphs, Trees and Sequences (held with ECML/PKDD’03), 2003.

B. Scholkopf and A. J. Smola. Learning with Kernels. 2002.

A. Severyn and A. Moschitti. Fast support vector machines for convolution tree kernels. Data Mining
and Knowledge Discovery, 25(2):325-357, 2012.

N. Shervashidze and K. Borgwardt. Fast subtree kernels on graphs. In NIPS, 2010.

N. Shervashidze, S. V. N. Vishwanathan, T. Petri, K. Mehlhorn, and K. Borgwardt. Efficient graphlet
kernels for large graph comparison. In AISTATS, 2009.

N. Shervashidze, P. Schweitzer, E. J. Van Leeuwen, K. Mehlhorn, and K. M. Borgwardt. Weisfeiler-
lehman graph kernels. JMLR, 12:2539-2561, 2011.

A.J. Smola and R. Kondor. Kernels and regularization on graphs. In COLT, pages 144—158, 2003.
Y. W. Teh. A hierarchical bayesian language model based on pitman-yor processes. In ACL, 2006.

H. Toivonen, A. Srinivasan, R. D. King, S. Kramer, and C. Helma. Statistical evaluation of the predictive
toxicology challenge 2000-2001. Bioinformatics, 19(10):1183-1193, July 2003.

S. V. N. Vishwanathan, N. N. Schraudolph, I. R. Kondor, and K. M. Borgwardt. Graph kernels. JMLR,
2010.

N. Wale, I. A. Watson, and G. Karypis. Comparison of descriptor spaces for chemical compound retrieval
and classification. Knowledge and Information Systems, 14(3):347-375, 2008.

P. Yanardag and S. Vishwanathan. Deep graph kernels. In KDD, pages 1365-1374. ACM, 2015.

C. Zhai and J. Lafferty. A study of smoothing methods for language models applied to information
retrieval. ACM Trans. Inf. Syst., 22(2):179-214, 2004.

