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Abstract

We study the restless bandit associated with an extremely simple scalar Kalman
filter model in discrete time. Under certain assumptions, we prove that the prob-
lem is indexable in the sense that the Whittle index is a non-decreasing function of
the relevant belief state. In spite of the long history of this problem, this appears
to be the first such proof. We use results about Schur-convexity and mechanical
words, which are particular binary strings intimately related to palindromes.

1 Introduction

We study the problem of monitoring several time series so as to maintain a precise belief while min-
imising the cost of sensing. Such problems can be viewed as POMDPs with belief-dependent re-
wards [3] and their applications include active sensing [7], attention mechanisms for multiple-object
tracking [22], as well as online summarisation of massive data from time-series [4]. Specifically, we
discuss the restless bandit [24] associated with the discrete-time Kalman filter [19]. Restless bandits
generalise bandit problems [6, 8] to situations where the state of each arm (project, site or target)
continues to change even if the arm is not played. As with bandit problems, the states of the arms
evolve independently given the actions taken, suggesting that there might be efficient algorithms for
large-scale settings, based on calculating an index for each arm, which is a real number associated
with the (belief-)state of that arm alone. However, while bandits always have an optimal index pol-
icy (select the arm with the largest index), it is known that no index policy can be optimal for some
discrete-state restless bandits [17] and such problems are in general PSPACE-hard even to approxi-
mate to any non-trivial factor [10]. Further, in this paper we address restless bandits with real-valued
rather than discrete states. On the other hand, Whittle proposed a natural index policy for restless
bandits [24], but this policy only makes sense when the restless bandit is indexable (Section 2).
Briefly, a restless bandit is said to be indexable when an optimal solution to a relaxed version of the
problem consists in playing all arms whose indices exceed a given threshold. (The relaxed version
of the problem relaxes the constraint on the number of arms pulled per turn to a constraint on the
average number of arms pulled per turn). Under certain conditions, indexability implies a form of
asymptotic optimality of Whittle’s policy for the original problem [23, 20].

Restless bandits associated with scalar Kalman(-Bucy) filters in continuous time were recently
shown to be indexable [12] and the corresponding discrete-time problem has attracted considerable
attention over a long period [15, 11, 16, 21]. However, that attention has produced no satisfactory
proof of indexability – even for scalar time-series and even if we assume that there is a monotone
optimal policy for the single-arm problem, which is a policy that plays the arm if and only if the
relevant belief-state exceeds some threshold (here the relevant belief-state is a posterior variance).
Theorem 1 of this paper addresses that gap. After formalising the problem (Section 2), we de-
scribe the concepts and intuition (Section 3) behind the main result (Section 4). The main tools
are mechanical words (which are not sufficiently well-known) and Schur convexity. As these tools
are associated with rather general theorems, we believe that future work (Section 5) should enable
substantial generalisation of our results.

1



2 Problem and Index

We consider the problem of tracking N time-series, which we call arms, in discrete time. The state
Zi,t ∈ R of arm i at time t ∈ Z+ evolves as a standard-normal random walk independent of every-
thing but its immediate past (Z+,R− and R+ all include zero). The action space is U := {1, . . . , N}.
Action ut = imakes an expensive observation Yi,t of arm i which is normally-distributed about Zi,t
with precision bi ∈ R+ and we receive cheap observations Yj,t of each other arm j with precision
aj ∈ R+ where aj < bj and aj = 0 means no observation at all.

Let Zt, Yt,Ht,Ft be the state, observation, history and observed history, so that Zt :=
(Z1,t, . . . , ZN,t), Yt := (Y1,t, . . . , YN,t),Ht := ((Z0, u0, Y0), . . . , (Zt, ut, Yt)) and Ft :=
((u0, Y0), . . . , (ut, Yt)). Then we formalise the above as (1· is the indicator function)

Zi,0 ∼ N (0, 1), Zi,t+1 | Ht ∼ N (Zi,t, 1), Yi,t | Ht−1, Zt, ut ∼ N
(
Zi,t,

1ut 6=i

ai
+

1ut=i

bi

)
.

Note that this setting is readily generalised to E[(Zi,t+1 − Zi,t)2] 6= 1 by a change of variables.

Thus the posterior belief is given by the Kalman filter as Zi,t | Ft ∼ N (Ẑi,t, xi,t) where the
posterior mean is Ẑi,t ∈ R and the error variance xi,t ∈ R+ satisfies

xi,t+1 = φi,1ut+1=i
(xi,t) where φi,0(x) :=

x+ 1

aix+ ai + 1
and φi,1(x) :=

x+ 1

bix+ bi + 1
. (1)

Problem KF1. Let π be a policy so that ut = π(Ft−1). Let xπi,t be the error variance under π. The
problem is to choose π so as to minimise the following objective for discount factor β ∈ [0, 1). The
objective consists of a weighted sum of error variances xπi,t with weights wi ∈ R+ plus observation
costs hi ∈ R+ for i = 1, . . . , N :

E

[ ∞∑
t=0

N∑
i=1

βt
{
hi1ut=i + wix

π
i,t

}]
=

∞∑
t=0

N∑
i=1

βt
{
hi1ut=i + wix

π
i,t

}
where the equality follows as (1) is a deterministic mapping (and assuming π is deterministic).

Single-Arm Problem and Whittle Index. Now fix an arm i and write xπt , φ0(·), . . . instead of
xπt,i, φi,0(·), . . . . Say there are now two actions ut = 0, 1 corresponding to cheap and expensive
observations respectively and the expensive observation now costs h+ ν where ν ∈ R. The single-
arm problem is to choose a policy, which here is an action sequence, π := (u0, u1, . . . )

so as to minimise V π(x|ν) :=

∞∑
t=0

βt {(h+ ν)ut + wxπt } where x0 = x. (2)

Let Q(x, α|ν) be the optimal cost-to-go in this problem if the first action must be α and let π∗ be an
optimal policy, so that

Q(x, α|ν) := (h+ ν)α+ wx+ βV π
∗
(φα(x)|ν).

For any fixed x ∈ R+, the value of ν for which actions u0 = 0 and u0 = 1 are both optimal is
known as the Whittle index λW (x) assuming it exists and is unique. In other words

The Whittle index λW (x) is the solution to Q(x, 0|λW (x)) = Q(x, 1|λW (x)). (3)
Let us consider a policy which takes action u0 = α then acts optimally producing actions uα∗t (x)
and error variances xα∗t (x). Then (3) gives

∞∑
t=0

βt
{

(h+ λW (x))u0∗t + wx0∗t (x)
}

=

∞∑
t=0

βt
{

(h+ λW (x))u1∗t + wx1∗t (x)
}
.

Solving this linear equation for the index λW (x) gives

λW (x) = w

∑∞
t=1 β

t(x0∗t (x)− x1∗t (x))∑∞
t=0 β

t(u1∗t (x)− u0∗t (x))
− h. (4)

Whittle [24] recognised that for his index policy (play the arm with the largest λW (x)) to make
sense, any arm which receives an expensive observation for added cost ν, must also receive an
expensive observation for added cost ν′ < ν. Such problems are said to be indexable. The question
resolved by this paper is whether Problem KF1 is indexable. Equivalently, is λW (x) non-decreasing
in x ∈ R+?
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Figure 1: Orbit x0∗t (x) traces the pathABCDE . . . for the word 01w = 01101. Orbit x1∗t (x) traces
the path FGHIJ . . . for the word 10w = 10101. Word w = 101 is a palindrome.

3 Main Result, Key Concepts and Intuition

We make the following intuitive assumption about threshold (monotone) policies.

A1. For some x ∈ R+ depending on ν ∈ R, the policy ut = 1xt≥x is optimal for problem (2).

Note that under A1, definition (3) means the policy ut = 1xt>x is also optimal, so we can choose

u0∗t (x) :=

{
0 if x0∗t−1(x) ≤ x
1 otherwise

and x0∗t (x) :=

{
φ0(x0∗t−1(x)) if x0∗t−1(x) ≤ x
φ1(x0∗t−1(x)) otherwise

u1∗t (x) :=

{
0 if x1∗t−1(x) < x

1 otherwise
and x1∗t (x) :=

{
φ0(x1∗t−1(x)) if x1∗t−1(x) < x

φ1(x1∗t−1(x)) otherwise

 (5)

where x0∗0 (x) = x1∗0 (x) = x. We refer to x0∗t (x), x1∗t (x) as the x-threshold orbits (Figure 1).

We are now ready to state our main result.

Theorem 1. Suppose a threshold policy (A1) is optimal for the single-arm problem (2). Then
Problem KF1 is indexable. Specifically, for any b > a ≥ 0 let

φ0(x) :=
x+ 1

ax+ a+ 1
, φ1(x) :=

x+ 1

bx+ b+ 1

and for any w ∈ R+, h ∈ R and 0 < β < 1, let

λW (x) := w

∑∞
t=1 β

t(x0∗t (x)− x1∗t (x))∑∞
t=0 β

t(u1∗t (x)− u0∗t (x))
− h (6)

in which action sequences u0∗t (x), u1∗t (x) and error variance sequences x0∗t (x), x1∗t (x) are given
in terms of φ0, φ1 by (5). Then λW (x) is a continuous and non-decreasing function of x ∈ R+.

We are now ready to describe the key concepts underlying this result.

Words. In this paper, a word w is a string on {0, 1}∗ with kth letter wk and wi:j := wiwi+1 . . . wj .
The empty word is ε, the concatenation of words u, v is uv, the word that is the n-fold repetition
of w is wn, the infinite repetition of w is wω and w̃ is the reverse of w, so w = w̃ means w is
a palindrome. The length of w is |w| and |w|u is the number of times that word u appears in w,
overlaps included.

Christoffel, Sturmian and Mechanical Words. It turns out that the action sequences in (5) are
given by such words, so the following definitions are central to this paper.
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Figure 2: Part of the Christoffel tree.

The Christoffel tree (Figure 2) is an infinite complete binary tree [5] in which each node is labelled
with a pair (u, v) of words. The root is (0, 1) and the children of (u, v) are (u, uv) and (uv, v).
The Christoffel words are the words 0, 1 and the concatenations uv for all (u, v) in that tree. The
fractions |uv|1/|uv|0 form the Stern-Brocot tree [9] which contains each positive rational number
exactly once. Also, infinite paths in the Stern-Brocot tree converge to the positive irrational numbers.
Analogously, Sturmian words could be thought of as infinitely-long Christoffel words.

Alternatively, among many known characterisations, the Christoffel words can be defined as the
words 0, 1 and the words 0w1 where a := |0w1|1/|0w1| and

(01w)n := b(n+ 1)ac − bnac

for any relatively prime natural numbers |0w1|0 and |0w1|1 and for n = 1, 2, . . . , |0w1|. The
Sturmian words are then the infinite words 0w1w2 · · · where, for n = 1, 2, . . . and a ∈ (0, 1)\Q,

(01w1w2 · · · )n := b(n+ 1)ac − bnac.

We use the notation 0w1 for Sturmian words although they are infinite.

The set of mechanical words is the union of the Christoffel and Sturmian words [13]. (Note that the
mechanical words are sometimes defined in terms of infinite repetitions of the Christoffel words.)

Majorisation. As in [14], let x, y ∈ Rm and let x(i) and y(i) be their elements sorted in ascending
order. We say x is weakly supermajorised by y and write x ≺w y if

j∑
k=1

x(k) ≥
j∑

k=1

y(k) for all j = 1, . . . ,m.

If this is an equality for j = m we say x is majorised by y and write x ≺ y. It turns out that

x ≺ y ⇔
j∑

k=1

x[k] ≤
j∑

k=1

y[k] for j = 1, . . . ,m− 1 with equality for j = m

where x[k], y[k] are the sequences sorted in descending order. For x, y ∈ Rm we have [14]

x ≺ y ⇔
m∑
i=1

f(xi) ≤
m∑
i=1

f(yi) for all convex functions f : R→ R.

More generally, a real-valued function φ defined on a subset A of Rm is said to be Schur-convex on
A if x ≺ y implies that φ(x) ≤ φ(y).

Möbius Transformations. Let µA(x) denote the Möbius transformation µA(x) := A11x+A12

A21x+A22

where A ∈ R2×2. Möbius transformations such as φ0(·), φ1(·) are closed under composition, so
for any word w we define φw(x) := φw|w| ◦ · · · ◦ φw2

◦ φw1
(x) and φε(x) := x.

Intuition. Here is the intuition behind our main result.

For any x ∈ R+, the orbits in (5) correspond to a particular mechanical word 0, 1 or 0w1 depending
on the value of x (Figure 1). Specifically, for any word u, let yu be the fixed point of the mapping φu
on R+ so that φu(yu) = yu and yu ∈ R+. Then the word corresponding to x is 1 for 0 ≤ x ≤ y1,
0w1 for x ∈ [y01w, y10w] and 0 for y0 ≤ x < ∞. In passing we note that these fixed points
are sorted in ascending order by the ratio ρ := |01w|0/|01w|1 of counts of 0s to counts of 1s, as
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Figure 3: Lower fixed points y01w of Christoffel words (black dots), majorisation points for those
words (black circles) and the tree of φw(0) (blue).

illustrated by Figure 3. Interestingly, it turns out that ratio ρ is a piecewise-constant yet continuous
function of x, reminiscent of the Cantor function.

Also, composition of Möbius transformations is homeomorphic to matrix multiplication so that

µA ◦ µB(x) = µAB(x) for any A,B ∈ R2×2.

Thus, the index (6) can be written in terms of the orbits of a linear system (11) given by 0, 1 or 0w1.
Further, ifA ∈ R2×2 and det(A) = 1 then the gradient of the corresponding Möbius transformation
is the convex function

dµA(x)

dx
=

1

(A21x+A22)2
.

So the gradient of the index is the difference of the sums of a convex function of the linear-system
orbits. However, such sums are Schur-convex functions and it follows that the index is increasing
because one orbit weakly supermajorises the other, as we now show for the case 0w1 (noting that
the proof is easier for words 0, 1). As 0w1 is a mechanical word, w is a palindrome. Further, if w is
a palindrome, it turns out that the difference between the linear-system orbits increases with x. So,
we might define the majorisation point for w as the x for which one orbit majorises the other. Quite
remarkably, if w is a palindrome then the majorisation point is φw(0) (Proposition 7). Indeed the
black circles and blue dots of Figure 3 coincide. Finally, φw(0) is less than or equal to y01w which
is the least x for which the orbits correspond to the word 0w1. Indeed, the blue dots of Figure 3 are
below the corresponding black dots. Thus one orbit does indeed supermajorise the other.

4 Proof of Main Result

4.1 Mechanical Words

The Möbius transformations of (1) satisfy the following assumption for I := R+. We prove that the
fixed point yw of word w (the solution to φw(x) = x on I) is unique in the supplementary material.

Assumption A2. Functions φ0 : I → I, φ1 : I → I, where I is an interval of R, are increasing
and non-expansive, so for all x, y ∈ I : x < y and for k ∈ {0, 1} we have

φk(x) < φk(y)︸ ︷︷ ︸
increasing

and φk(y)− φk(x) < y − x︸ ︷︷ ︸
non-expansive

.

Furthermore, the fixed points y0, y1 of φ0, φ1 on I satisfy y1 < y0.

Hence the following two propositions (supplementary material) apply to φ0, φ1 of (1) on I = R+.
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Proposition 1. Suppose A2 holds, x ∈ I and w is a non-empty word. Then

x < φw(x) ⇔ φw(x) < yw ⇔ x < yw and x > φw(x) ⇔ φw(x) > yw ⇔ x > yw.

For a given x, in the notation of (5), we call the shortest word u such that (u1∗1 , u
1∗
2 , . . . ) = uω

the x-threshold word. Proposition 2 generalises a recent result about x-threshold words in a setting
where φ0, φ1 are linear [18].
Proposition 2. Suppose A2 holds and 0w1 is a mechanical word. Then

0w1 is the x-threshold word ⇔ x ∈ [y01w, y10w].

Also, if x0, x1 ∈ I with x0 ≥ y0 and x1 ≤ y1 then the x0- and x1-threshold words are 0 and 1.

We also use the following very interesting fact (Proposition 4.2 on p.28 of [5]).
Proposition 3. Suppose 0w1 is a mechanical word. Then w is a palindrome.

4.2 Properties of the Linear-System Orbits M(w) and Prefix Sums S(w)

Definition. Assume that a, b ∈ R+ and a < b. Consider the matrices

F :=

(
1 1
a 1 + a

)
, G :=

(
1 1
b 1 + b

)
and K :=

(
−1 −1
0 1

)
so that the Möbius transformations µF , µG are the functions φ0, φ1 of (1) andGF−FG = (b−a)K.
Given any word w ∈ {0, 1}∗, we define the matrix product M(w)

M(w) := M(w|w|) · · ·M(w1), where M(ε) := I,M(0) := F and M(1) := G

where I ∈ R2×2 is the identity and the prefix sum S(w) as the matrix polynomial

S(w) :=

|w|∑
k=1

M(w1:k), where S(ε) := 0 (the all-zero matrix). (7)

For any A ∈ R2×2, let tr(A) be the trace of A, let Aij = [A]ij be the entries of A and let A ≥ 0
indicate that all entries of A are non-negative.

Remark. Clearly, det(F ) = det(G) = 1 so that det(M(w)) = 1 for any word w. Also, S(w)
corresponds to the partial sums of the linear-system orbits, as hinted in the previous section.

The following proposition captures the role of palindromes (proof in the supplementary material).
Proposition 4. Suppose w is a word, p is a palindrome and n ∈ Z+. Then

1. M(p) =

(
fh+1
h+f f
h2−1
h+f h

)
for some f, h ∈ R,

2. tr(M(10p)) = tr(M(01p)),

3. If u ∈ {p(10p)n, (10p)n10} then M(u)−M(ũ) = λK for some λ ∈ R−,

4. If w is a prefix of p then [M(p(10p)n10w)]22 ≤ [M(p(01p)n01w)]22,

5. [M((10p)n10w)]21 ≥ [M((01p)n01w)]21,

6. [M((10p)n1)]21 ≥ [M((01p)n0)]21.

We now demonstrate a surprisingly simple relation between S(w) and M(w).
Proposition 5. Suppose w is a palindrome. Then

S21(w) = M22(w)− 1 and S22(w) = M12(w) + S21(w). (8)

Furthermore, if ∆k := [S(10w)M(w(10w)k)− S(01w)M(w(01w)k)]22 then

∆k = 0 for all k ∈ Z+. (9)
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Proof. Let us write M := M(w), S := S(w). We prove (8) by induction on |w|. In the base
case w ∈ {ε, 0, 1}. For w = ε, M22 − 1 = 0 = S21,M12 + S21 = 0 = S22. For w ∈ {0, 1},
M22 − 1 = c = S21,M12 + S21 = 1 + c = S22 for some c ∈ {a, b}. For the inductive step, in
accordance with Claim 1 of Proposition 4, assume w ∈ {0v0, 1v1} for some word v satisfying

M(v) =

(
fh+1
h+f f
h2−1
h+f h

)
, S(v) =

(
c d

h− 1 f + h− 1

)
for some c, d, f, h ∈ R.

Forw = 1v1,M := M(1v1) = GM(v)G and S := S(1v1) = GM(v)G+S(v)G+G. Calculating
the corresponding matrix products and sums gives

S21 = (bh+ h+ bf − 1)(bh+ 2h+ bf + f + 1)(h+ f)−1 = M22 − 1

S22 − S21 = bh+ 2h+ bf + f = M12

as claimed. For w = 0u0 the claim also holds as F = G|b=a. This completes the proof of (8).

Furthermore Part. Let A := S(w)FG+ FG+G and B := S(w)GF +GF + F . Then

∆k = [(A(M(w)FG)k −B(M(w)GF )k)M(w)]22 (10)
by definition of S(·). By Claim 1 of Proposition 4 and (8) we know that

M(w) =

(
fh+1
h+f f
h2−1
h+f h

)
, S(w) =

(
c d

h− 1 f + h− 1

)
for some c, d, f, h ∈ R.

Substituting these expressions and the definitions of F,G into the definitions of A,B and then
into (10) for k ∈ {0, 1} directly gives ∆0 = ∆1 = 0 (although this calculation is long).

Now consider the case k ≥ 2. Claim 2 of Proposition 4 says tr(M(10w)) = tr(M(01w)) and clearly
det(M(10w)) = det(M(01w)) = 1. Thus we can diagonalise as

M(w)FG =: UDU−1, M(w)GF =: V DV −1, D := diag(λ, 1/λ) for some λ ≥ 1

so that ∆k = [AUDkU−1M(w) − eTBVDkV −1M(w)]22 =: γ1λ
k + γ2λ

−k. So, if λ = 1 then
∆k = γ1 + γ2 = ∆0 and we already showed that ∆0 = 0. Otherwise λ 6= 1, so ∆0 = ∆1 = 0
implies γ1 + γ2 = γ1λ + γ2λ

−1 = 0 which gives γ1 = γ2 = 0. Thus for any k ∈ Z+ we have
∆k = γ1λ

k + γ2λ
−k = 0.

4.3 Majorisation

The following is a straightforward consequence of results in [14] proved in the supplementary ma-
terial. We emphasize that the notation ≺w has nothing to do with the notion of w as a word.
Proposition 6. Suppose x, y ∈ Rm+ and f : R → R is a symmetric function that is convex and
decreasing on R+. Then x ≺w y and β ∈ [0, 1] ⇒

∑m
i=1 β

if(x(i)) ≥
∑m
i=1 β

if(y(i)).

For any x ∈ R and any fixed word w, define the sequences for n ∈ Z+ and k = 1, . . . ,m

xnm+k(x) := [M((10w)n(10w)1:k)v(x)]2, σ(n)
x := (xnm+1(x), . . . , xnm+m(x))

ynm+k(x) := [M((01w)n(01w)1:k)v(x)]2, σ(n)
y := (ynm+1(x), . . . , ynm+m(x))

}
(11)

where m := |10w| and v(x) := (x, 1)T .

Proposition 7. Suppose w is a palindrome and x ≥ φw(0). Then σ(n)
x and σ(n)

y are ascending
sequences on R+ and σ(n)

x ≺w σ(n)
y for any n ∈ Z+.

Proof. Clearly φw(0) ≥ 0 so x ≥ 0 and hence v(x) ≥ 0. So for any word u and letter c ∈ {0, 1} we
have M(uc)v(x) = M(c)M(u)v(x) ≥ M(u)v(x) ≥ 0 as M(c) ≥ I . Thus xk+1(x) ≥ xk(x) ≥ 0

and yk+1(x) ≥ yk(x) ≥ 0. In conclusion, σ(n)
x and σ(n)

y are ascending sequences on R+.

Now φw(0) = [M(w)]12
[M(w)]22

. Thus [Av(φw(0))]2 := [AM(w)]22
[M(w)]22

for any A ∈ R2×2. So

xnm+k(φw(0))− ynm+k(φw(0))

=
1

[M(w)]22
[(M((10w)n(10w)1:k)−M((01w)n(01w)1:k))M(w)]22 ≤ 0

7



for k = 2, . . . ,m by Claim 4 of Proposition 4. So all but the first term of the sum Tm(φw(0)) is
non-positive where

Tj(x) :=

j∑
k=1

(xnm+k(x)− ynm+k(x)).

Thus T1(φw(0)) ≥ T2(φw(0)) ≥ . . . Tm(φw(0)). But

Tm(φw(0)) =
1

[M(w)]22

m∑
k=1

[(M((10w)n(10w)1:k)−M((01w)n(01w)1:k))M(w)]22

=
1

[M(w)]22
[S(10w)M(w(10w)n)− S(01w)M(w(01w)n)]22 = 0

where the last step follows from (9). So Tj(φw(0)) ≥ 0 for j = 1, . . . ,m. Yet Claims 5 and 6 of
Proposition 4 give d

dxTj(x) =
∑j
k=1[M((10w)n(10w)1:k) −M((01w)n(01w)1:k)]21 ≥ 0. So for

x ≥ φw(0) we have Tj(x) ≥ 0 for j = 1, . . . ,m which means that σ(n)
x ≺w σ(n)

y .

4.4 Indexability

Theorem 1. The index λW (x) of (6) is continuous and non-decreasing for x ∈ R+.

Proof. As weight w is non-negative and cost h is a constant we only need to prove the result for
λ(x) := λW (x)

∣∣
w=1,h=0

and we can use w to denote a word. By Proposition 2, x ∈ [y01w, y10w]

for some mechanical word 0w1. (Cases x /∈ (y1, y0) are clarified in the supplementary material.)

Let us show that the hypotheses of Proposition 7 are satisfied by w and x. Firstly, w is a palindrome
by Proposition 3. Secondly, φw01(0) ≥ 0 and as φw(·) is monotonically increasing, it follows that
φw◦φw01(0) ≥ φw(0). Equivalently, φ01w◦φw(0) ≥ φw(0) so that φw(0) ≤ y01w by Proposition 1.
Hence x ≥ y01w ≥ φw(0).

Thus Proposition 7 applies, showing that the sequences σ(n)
x and σ(n)

y , with elements xnm+k(x) and
ynm+k(x) as defined in (11), are non-decreasing sequences on R+ with σ(n)

x ≺w σ
(n)
y . Also, 1/x2

is a symmetric function that is convex and decreasing on R+. Therefore Proposition 6 applies giving
m∑
k=1

(
βnm+k−1

(xnm+k(x))2
− βnm+k−1

(ynm+k(x))2

)
≥ 0 for any n ∈ Z+ where m := |01w|. (12)

Also Proposition 2 shows that the x-threshold orbits are (φu1
(x), . . . , φu1:k

(x), . . . ) and
(φl1(x), . . . , φl1:k(x), . . . ) where u := (01w)ω and l := (10w)ω . So the denominator of (6) is
∞∑
k=0

βk(1lk+1=1 − 1uk+1=1) =

∞∑
k=0

βmk(1− β)⇒ λ(x) =
1− βm

1− β

∞∑
k=1

βk−1(φu1:k
(x)− φl1:k(x)).

Note that d
dx

ex+f
gx+h = 1

(gx+h)2 for any eh− fg = 1. Then (12) gives

dλ(x)

dx
=

1− βm

1− β

∞∑
n=0

m∑
k=1

(
βnm+k−1

(xnm+k(x))2
− βnm+k−1

(ynm+k(x))2

)
≥ 0.

But λ(x) is continuous for x ∈ R+ (as shown in the supplementary material). Therefore we con-
clude that λ(x) is non-decreasing for x ∈ R+.

5 Further Work

One might attempt to prove that assumption A1 holds using general results about monotone optimal
policies for two-action MDPs based on submodularity [2] or multimodularity [1]. However, we find
counter-examples to the required submodularity condition. Rather, we are optimistic that the ideas
of this paper themselves offer an alternative approach to proving A1. It would then be natural to
extend our results to settings where the underlying state evolves as Zt+1 | Ht ∼ N (mZt, 1) for
some multiplier m 6= 1 and to cost functions other than the variance. Finally, the question of the
indexability of the discrete-time Kalman filter in multiple dimensions remains open.
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