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Abstract

Matrix completion problems have been widely studied under special low dimen-
sional structures such as low rank or structure induced by decomposable norms.
In this paper, we present a unified analysis of matrix completion under general
low-dimensional structural constraints induced by any norm regularization. We
consider two estimators for the general problem of structured matrix completion,
and provide unified upper bounds on the sample complexity and the estimation
error. Our analysis relies on generic chaining, and we establish two intermediate
results of independent interest: (a) in characterizing the size or complexity of low
dimensional subsets in high dimensional ambient space, a certain partial complex-
ity measure encountered in the analysis of matrix completion problems is charac-
terized in terms of a well understood complexity measure of Gaussian widths, and
(b) it is shown that a form of restricted strong convexity holds for matrix com-
pletion problems under general norm regularization. Further, we provide several
non-trivial examples of structures included in our framework, notably including
the recently proposed spectral k-support norm.

1 Introduction

The task of completing the missing entries of a matrix from an incomplete subset of (potentially
noisy) entries is encountered in many applications including recommendation systems, data impu-
tation, covariance matrix estimation, and sensor localization among others. Traditionally ill–posed
high dimensional estimation problems, where the number of parameters to be estimated is much
higher than the number of observations, has been extensively studied in the recent literature. How-
ever, matrix completion problems are particularly ill–posed as the observations are both limited
(high dimensional), and the measurements are extremely localized, i.e., the observations consist of
individual matrix entries. The localized measurement model, in contrast to random Gaussian or sub–
Gaussian measurements, poses additional complications in general high dimensional estimation.

For well–posed estimation in high dimensional problems including matrix completion, it is imper-
ative that low dimensional structural constraints are imposed on the target. For matrix completion,
the special case of low–rank constraint has been widely studied. Several existing work propose
tractable estimators with near–optimal recovery guarantees for (approximate) low–rank matrix com-
pletion [8, 7, 28, 26, 18, 19, 22, 11, 20, 21]. A recent work [16] addresses the extension to structures
with decomposable norm regularization. However, the scope of matrix completion extends for low
dimensional structures far beyond simple low–rankness or decomposable norm structures.

In this paper, we consider a unified statistical analysis of matrix completion under a general set of
low dimensional structures that are induced by any suitable norm regularization. We provide statis-
tical analysis of two generalized matrix completion estimators, the constrained norm minimizer, and
the generalized matrix Dantzig selector (Section 2.2). The main results in the paper (Theorem 1a–
1b) provide unified upper bounds on the sample complexity and estimation error of these estimators
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for matrix completion under any norm regularization. Existing results on matrix completion with
low rank or other decomposable structures can be obtained as special cases of our general results.

Our unified analysis of sample complexity is motivated by recent work on high dimensional estima-
tion using global (sub) Gaussian measurements [10, 1, 35, 3, 37, 5]. A key ingredient in the recov-
ery analysis of high dimensional estimation involves establishing a certain variation of Restricted
Isometry Property (RIP) [9] of the measurement operator. It has been shown that such properties
are satisfied by Gaussian and sub–Gaussian measurement operators with high probability. Unfor-
tunately, as has been noted before by Candes et al. [8], owing to highly localized measurements,
such conditions are not satisfied in the matrix completion problem, and the existing results based on
global (sub) Gaussian measurements are not directly applicable. In fact, a key question we consider
is: given the radically limited measurement model in matrix completion, by how much would the
sample complexity of estimation increase beyond the known sample complexity bounds for global
(sub) Gaussian measurements. Our results upper bounds the sample complexity for matrix comple-
tion to within only a log d factor larger over that of global (sub) Gaussian measurements [10, 3, 5].
While the result is known for low rank matrix completion using nuclear norm minimization [26, 20],
with a careful use of generic chaining, we show that the log d factor suffices for structures induced
by any norm! As a key intermediate result, we show that a useful form restricted strong convexity
(RSC) [27] holds for the localized measurements encountered in matrix completion under general
norm regularized structures. The result substantially generalizes existing RSC results for matrix
completion under the special cases of nuclear norm and decomposable norm regularization [26, 16].

For our analysis, we use tools from generic chaining [33] to characterize the main results (Theo-
rem 1a–1b) in terms of the Gaussian width (Definition 1) of certain error sets. Gaussian widths
provide a powerful geometric characterization for quantifying the complexity of a structured low
dimensional subset in a high dimensional ambient space. Such a unified characterization in terms
of Gaussian width has the advantage that numerous tools have been developed in the literature for
bounding the Gaussian width for structured sets, and this literature can be readily leveraged to derive
new recovery guarantees for matrix completion under suitable structural constraints (Appendix D.2).

In addition to the theoretical elegance of such a unified framework, identifying useful but potentially
non–decomposable low dimensional structures is of significant practical interest. The broad class
of structures enforced through symmetric convex bodies and symmetric atomic sets [10] can be
analyzed under this paradigm (Section 2.1). Such specialized structures can potentially capture the
constraints in certain applications better than simple low–rankness. In particular, we discuss in
detail, a non–trivial example of the spectral k–support norm introduced by McDonald et al. [25].

To summarize the key contributions of the paper:
• Theorem 1a–1b provide unified upper bounds on sample complexity and estimation error for
matrix completion estimators using general norm regularization: a substantial generalization of the
existing results on matrix completion under structural constraints.
• Theorem 1a is applied to derive statistical results for the special case of matrix completion under
spectral k–support norm regularization.
• An intermediate result, Theorem 5 shows that under any norm regularization, a form of Restricted
Strong Convexity (RSC) holds in the matrix completion setting with extremely localized measure-
ments. Further, a certain partial measure of complexity of a set is encountered in matrix completion
analysis (12). Another intermediate result, Theorem 2 provides bounds on the partial complexity
measures in terms of a better understood complexity measure of Gaussian width. These intermediate
results are of independent interest beyond the scope of the paper.

Notations and Preliminaries

Indexes i, j are typically used to index rows and columns respectively of matrices, and index k is
used to index the observations. ei, ej , ek, etc. denote the standard basis in appropriate dimensions1.
Notation G ans g are used to denote a matrix and vector respectively, with independent standard
Gaussian random variables. P(.) and E(.) denote the probability of an event and the expectation of
a random variable, respectively. Given an integer N , let [N ] = {1, 2, . . . , N}. Euclidean norm in a
vector space is denoted as ‖x‖2 =

√
〈x, x〉. For a matrix X with singular values σ1 ≥ σ2 ≥ . . .,

common norms include the Frobenius norm ‖X‖F =
√∑

i σ
2
i , the nuclear norm ‖X‖∗ =

∑
i σi,

1for brevity we omit the explicit dependence of dimension unless necessary
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the spectral norm ‖X‖op = σ1, and the maximum norm ‖X‖∞ = maxij |Xij |. Also let, Sd1d2−1 =

{X ∈ Rd1×d2 : ‖X‖F = 1} and Bd1d2 = {X ∈ Rd1×d2 : ‖X‖F ≤ 1}. Finally, given a norm ‖.‖
defined on a vectorspace V , its dual norm is given by ‖X‖∗ = sup‖Y ‖≤1〈X,Y 〉.
Definition 1 (Gaussian Width). Gaussian width of a set S ⊂ Rd1×d2 is a widely studied measure of
complexity of a subset in high dimensional ambient space and is given by:

wG(S) = EG sup
X∈S
〈X,G〉, (1)

where recall thatG is a matrix of independent standard Gaussian random variables. Some key results
on Gaussian width are discussed in Appendix D.2.
Definition 2 (Sub–Gaussian Random Variable [36]). The sub–Gaussian norm of a random variable
X is given by: ‖X‖Ψ2 = supp≥1 p

−1/2(E|X|p)1/p. X is said be b–sub–Gaussian if ‖X‖Ψ2 ≤ b.
Equivalently, X is sub–Gaussian if one of the following conditions are satisfied for some constants
k1, k2, and k3 [Lemma 5.5 of [36]].
(1) ∀p ≥ 1, (E|X|p)1/p ≤ b√p, (2) ∀t > 0, P(|X| > t) ≤ e1−t2/k21b

2

,
(3) E[ek2X

2/b2 ] ≤ e, or (4) if EX = 0, then ∀s > 0, E[esX ] ≤ ek3s2b2/2.
Definition 3 (Restricted Strong Convexity (RSC)). A function L is said to satisfy Restricted Strong
Convexity (RSC) at Θ with respect to a subset S, if for some RSC parameter κL > 0,

∀∆ ∈ S,L(Θ + ∆)− L(Θ)− 〈∇L(Θ),∆〉 ≥ κL‖∆‖2F . (2)
Definition 4 (Spikiness Ratio [26]). For X∈Rd1×d2 , a measure of the “spikiness” is given by:

αsp(X) =

√
d1d2‖X‖∞
‖X‖F

. (3)

Definition 5 (Norm Compatibility Constant [27]). The compatibility constant of a normR : V → R
under a closed convex cone C ⊂ V is defined as follows:

ΨR(C) = sup
X∈C\{0}

R(X)

‖X‖F
. (4)

2 Structured Matrix Completion

Denote the ground truth target matrix as Θ∗ ∈ Rd1×d2 ; let d=d1+ d2. In the noisy matrix comple-
tion, observations consists of individual entries of Θ∗ observed through an additive noise channel.
Sub–Gaussian Noise: Given, a list of independently sampled standard basis Ω = {Ek = eike

>
jk

:

ik ∈ [d1], jk ∈ [d2]} with potential duplicates, observations (yk) ∈ R|Ω| are given by:
yk = 〈Θ∗, Ek〉+ ξηk, for k = 1, 2, . . . , |Ω|, (5)

where η ∈ R|Ω| is the noise vector of independent sub–Gaussian random variables with E[ηk] = 0,
and ‖ηk‖Ψ2

= 1 (recall ‖.‖Ψ2
from Definition 2), and ξ2 is scaled variance of noise per observation,

(note Var(ηk) ≤ constant). Also, without loss of generality, assume normalization ‖Θ∗‖F = 1.
Uniform Sampling: Assume that the entries in Ω are drawn independently and uniformly:

Ek ∼ uniform{eie>j : i ∈ [d1], j ∈ [d2]}, for Ek ∈ Ω. (6)

Given Ω, define the linear operator PΩ : Rd1×d2 → RΩ as follows (ek ∈ R|Ω|):
PΩ(X) =

∑|Ω|
k=1〈X,Ek〉ek (7)

Structural Constraints For matrix completion with |Ω| < d1d2, low dimensional structural con-
straints on Θ∗ are necessary for well–posedness. We consider a generalized constraint setting
wherein for some low–dimensional model space M, Θ∗ ∈ M is enforced through a surrogate
norm regularizer R(.). We make no further assumptions onR other than it being a norm in Rd1×d2 .

Low Spikiness In matrix completion under uniform sampling model, further restrictions on Θ∗ (be-
yond low dimensional structure) are required to ensure that the most informative entries of the matrix
are observed with high probability [8]. Early work assumed stringent matrix incoherence conditions
for low–rank completion to preclude such matrices [7, 18, 19], while more recent work [11, 26], re-
lax these assumptions to a more intuitive restriction of the spikiness ratio, defined in (3). However,
under this relaxation only an approximate recovery is typically guaranteed in low–noise regime, as
opposed to near exact recovery under incoherence assumptions.
Assumption 1 (Spikiness Ratio). There exists α∗ > 0, such that

‖Θ∗‖∞ = αsp(Θ∗)‖Θ
∗‖F√
d1d2

≤ α∗√
d1d2

. �
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2.1 Special Cases and Applications

We briefly introduce some interesting examples of structural constraints with practical applications.
Example 1 (Low Rank and Decomposable Norms). Low–rankness is the most common structure
used in many matrix estimation problems including collaborative filtering, PCA, spectral clustering,
etc. Convex estimators using nuclear norm ‖Θ‖∗ regularization has been widely studied statistically
[8, 7, 28, 26, 18, 19, 22, 11, 20, 21]. A recent work [16] extends the analysis of low rank matrix
completion to general decomposable norms, i.e. R :∀X,Y ∈(M,M⊥),R(X+Y )=R(X)+R(Y ).
Example 2 (Spectral k–support Norm). A non–trivial and significant example of norm regular-
ization that is not decomposable is the spectral k–support norm recently introduced by McDon-
ald et al. [25]. Spectral k–support norm is essentially the vector k–support norm [2] applied on the
singular values σ(Θ) of a matrix Θ ∈ Rd1×d2 . Without loss of generality, let d̄ = d1 = d2.
Let Gk = {g ⊆ [d̄] : |g| ≤ k} be the set of all subsets [d̄] of cardinality at most k, and denote the set
V(Gk) = {(vg)g∈Gk : vg ∈ Rd̄, supp(vg) ⊆ g}. The spectral k–support norm is given by:

‖Θ‖k–sp = inf
v∈V(Gk)

{ ∑
g∈Gk

‖vg‖2 :
∑
g∈Gk

vg = σ(Θ)
}
, (8)

McDonald et al. [25] showed that spectral k–support norm is a special case of cluster norm [17]. It
was further shown that in multi–task learning, wherein the tasks (columns of Θ∗) are assumed to be
clustered into dense groups, the cluster norm provides a trade–off between intra–cluster variance,
(inverse) inter–cluster variance, and the norm of the task vectors. Both [17] and [25] demonstrate
superior empirical performance of cluster norms (and k–support norm) over traditional trace norm
and spectral elastic net minimization on bench marked matrix completion and multi–task learning
datasets. However, there are no known work on the statistical analysis of matrix completion with
spectral k–support norm regularization. In Section 3.2, we discuss the consequence of our main
theorem for this non–trivial special case.
Example 3 (Additive Decomposition). Elementwise sparsity is a common structure often assumed
in high–dimensional estimation problems. However, in matrix completion, elementwise sparsity
conflicts with Assumption 1 (and more traditional incoherence assumptions). Indeed, it is easy to
see that with high probability most of the |Ω| � d1d2 uniformly sampled observations will be zero,
and an informed prediction is infeasible. However, elementwise sparse structures are often used
within an additive decomposition framework, wherein Θ∗ =

∑
k Θ(k), such that each component

matrix Θ(k) is in turn structured (e.g. low rank+sparse used for robust PCA [6]). In such structures,
there is no scope for recovering sparse components outside the observed indices, and it is assumed
that: Θ(k) is sparse⇒ supp(Θ(k)) ⊆ Ω. Further, the sparsity assumption might still conflict with
the spikiness assumption. In such cases, consistent matrix completion is feasible under additional
regularity assumptions if the superposed matrix is non–spiky. A candidate norm regularizer for such
structures is the weighted infimum convolution of individual structure inducing norms [6, 39],

Rw(Θ) = inf
{∑

k

wkRk(Θ(k)) :
∑
k

Θ(k) = Θ
}
.

Example 4 (Other Applications). Other potential applications including cut matrices [30, 10], struc-
tures induced by compact convex sets, norms inducing structured sparsity assumptions on the spec-
trum of Θ∗, etc. can also be handled under the paradigm of this paper.

2.2 Structured Matrix Estimator

Let R be the norm surrogate for the structural constraints on Θ∗, and R∗ denote its dual norm. We
propose and analyze two convex estimators for the task of structured matrix completion:
Constrained Norm Minimizer

Θ̂cn = argmin
‖Θ‖∞≤ α∗√

d1d2

R(Θ) s.t. ‖PΩ(Θ)− y‖2 ≤ λcn. (9)

Generalized Matrix Dantzig Selector

Θ̂ds = argmin
‖Θ‖∞≤ α∗√

d1d2

R(Θ) s.t.
√
d1d2

|Ω|
R∗P ∗Ω(PΩ(Θ)− y) ≤ λds, (10)
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where P ∗Ω : RΩ → Rd1×d2 is the linear adjoint of PΩ, i.e. 〈PΩ(X), y〉 = 〈X,P ∗Ω(y)〉.
Note: Theorem 1a–1b gives consistency results for (9) and (10), respectively, under certain con-
ditions on the parameters λcn > 0, λds > 0, and α∗ > 1. In particular, these conditions assume
knowledge of the noise variance ξ2 and spikiness ratio αsp(Θ∗). In practice, both ξ and αsp(Θ∗) are
typically unknown and the parameters are tuned by validating on held out data.

3 Main Results

We define the following “restricted” error cone and its subset:
TR = TR(Θ∗) = cone{∆ : R(Θ∗ + ∆) ≤ R(Θ∗)}, and ER = TR ∩ Sd1d2−1. (11)

Let Θ̂cn and Θ̂ds be the estimates from (9) and (10), respectively. If λcn and λds are chosen such that
Θ∗ belongs to the feasible sets in (9) and (10), respectively, then the error matrices ∆̂cn = Θ̂cn−Θ∗

and ∆̂ds = Θ̂ds −Θ∗ are contained in TR.

Theorem 1a (Constrained Norm Minimizer). Under the problem setup in Section 2, let Θ̂cn =

Θ∗ + ∆̂cn be the estimate from (9) with λcn = 2ξ. For large enough c0, if |Ω| > c20w
2
G(ER) log d,

then there exists an RSC parameter κc0 > 0 and constants c1, c2, c3 such that with probability
greater than 1−exp(−c1w2

G(ER))−2 exp(−c2w2
G(ER) log d),

1

d1d2
‖∆̂cn‖2F ≤4 max

{
c3ξ

2

κc0
,
α∗2

d1d2

c20w
2
G(ER) log d

|Ω|

}
.

Theorem 1b (Matrix Dantzig Selector). Under the problem setup in Section 2, let Θ̂ds =

Θ∗ + ∆̂ds be the estimate from (10) with λds ≥ 2ξ
√
d1d2
|Ω| R

∗P ∗Ω(w). For large enough c0, if
|Ω| > c20w

2
G(ER) log d, then there exists an RSC parameter κc0 > 1, and constant c1 such that

with probability greater than 1−exp(−c1w2
G(ER)),

‖∆̂ds‖2F ≤4 max

{
λ2

dsΨ
2
R(TR)

κ2
c0

, α∗2
c20w

2
G(ER) log d

|Ω|

}
.

Recall Gaussian width wG and subspace compatibility constant ΨR from (1) and (4), respectively.
Remarks:
1. If R(Θ) = ‖Θ‖∗ and rank(Θ∗) = r, then w2

G(ER) ≤ 3dr, ΨR(TR) ≤ 2r and
√
d1d2
|Ω| ‖P

∗
Ω(η)‖2 ≤ 2

√
d log d
|Ω| w.h.p [10, 14, 26]. Using these bounds in Theorem 1b recovers

near–optimal results for low rank matrix completion under spikiness assumption [26].
2. For both estimators, upper bound on sample complexity is dominated by the square of Gaussian

width which is often considered the effective dimension of a subset in high dimensional space
and plays a key role in high dimensional estimation under Gaussian measurement ensembles.
The results show that, independent ofR(.), the upper bound on sample complexity for consistent
matrix completion with highly localized measurements is within a log d factor of the known
sample complexity of ∼ w2

G(ER) for estimation from Gaussian measurements [3, 10, 37, 5].
3. First term in estimation error bounds in Theorem 1a–1b scales with ξ2 which is the per observa-

tion noise variance (upto constant). The second term is an upper bound on error that arises due
to unidentifiability of Θ∗ within a certain radius under the spikiness constraints [26]; in contrast
[7] show exact recovery when ξ = 0 using more stringent matrix incoherence conditions.

4. Bound on ∆̂cn from Theorem 1a is comparable to the result by Candés et al. [7] for low rank
matrix completion under non–low–noise regime, where the first term dominates, and those of [10,
35] for high dimensional estimation under Gaussian measurements. With a bound on w2

G(ER), it
is easy to specialize this result for new structural constraints. However, this bound is potentially
loose and asymptotically converges to a constant error proportional to the noise variance ξ2.

5. The estimation error bound in Theorem 1b is typically sharper than that in Theorem 1a. How-
ever, for specific structures, using application of Theorem 1b requires additional bounds on
ER∗(PΩ(W )) and ΨR(TR) besides w2

G(ER).

3.1 Partial Complexity Measures

Recall that for wG(S) = E supX∈S〈X,G〉 and R|Ω| 3 g ∼ N (0, I|Ω|) is a standard normal vector.
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Definition 6 (Partial Complexity Measures). Given a randomly sampled collection Ω = {Ek ∈
Rd1×d2}, and a random vector η ∈ R|Ω|, the partial η–complexity measure of S is given by:

wΩ,η(S) = EΩ,η sup
X∈S−S

〈X,P ∗Ω(η)〉. (12)

The special cases where η is a vector of standard Gaussian g, or standard Rademacher ε (i.e. εk ∈
{−1, 1} w.p. 1/2) variables, are of particular interest. In the case of symmetric η, like g and
ε, wΩ,η(S) = 2EΩ,η supX∈S〈X,P ∗Ω(η)〉, and the later expression will be used interchangeably
ignoring the constant term.

Theorem 2 (Partial Gaussian Complexity). Let S ⊂ Bd1d2 , and let Ω be sampled according to (6).
∃ universal constants K1, K2, K3, and K4 such that:

wΩ,g(S) ≤ K1

√
|Ω|
d1d2

wG(S) + min
{
K2

√
EΩ sup

X,Y ∈S
‖PΩ(X − Y )‖22,K3 sup

X∈S

αsp(X)√
d1d2

}
(13)

Further, for a centered i.i.d. 1–sub–Gaussian vector η ∈ R|Ω|, wΩ,η(S) ≤ K4wΩ,g(S).

Note: For Ω ( [d1]× [d2], the second term in (13) is a consequence of the localized measurements.

3.2 Spectral k–Support Norm

We introduced spectral k–support norm in Section 2.1. The estimators from (9) and (10) for spectral
k–support norm can be efficiently solved through proximal methods using the proximal operators
derived in [25]. We are interested in the statistical guarantees for matrix completion using spectral
k–support norm regularization. We extend the analysis for upper bounding the Gaussian width of the
descent cone for the vector k–support norm by [29] to the case of spectral k–support norm. WLOG
let d1 = d2 = d̄. Let σ∗ ∈ Rd̄ be the vector of singular values of Θ∗ sorted in non–ascending order.
Let r ∈ {0, 1, 2, . . . , k − 1} be the unique integer satisfying: σ∗k−r−1 >

1
r+1

∑p
i=k−r σ

∗
i ≥ σ∗k−r.

Denote I2 = {1, 2, . . . , k− r− 1}, I1 = {k− r, k− r+ 1, . . . , s}, and I0 = {s+ 1, s+ 2, . . . , d̄}.
Finally, for I ⊆ [d̄], (σ∗I )i = 0 ∀i ∈ Ic, and (σ∗I )i = σ∗i ∀i ∈ I .

Lemma 3. If rank of Θ∗ is s and ER is the error set fromR(Θ) = ‖Θ‖k–sp, then

w2
G(ER) ≤ s(2d̄− s) +

( (r + 1)2‖σ∗I2‖
2
2

‖σ∗I1‖
2
1

+ |I1|
)

(2d̄− s).

Proof of the above lemma is provided in the appendix. Lemma 3 can be combined with Theorem 1a
to obtain recovery guarantees for matrix completion under spectral k–support norm.

4 Discussions and Related Work

Sample Complexity: For consistent recovery in high dimensional convex estimation, it is desirable
that the descent cone at the target parameter Θ∗ is “small” relative to the feasible set (enforced by
the observations) of the estimator. Thus, a measure of complexity/size of the error cone at Θ∗ is
crucial in establishing sample complexity and estimation error bounds. Results in this paper are
largely characterized in terms of a widely used complexity measure of Gaussian width wG(.), and
can be compared with the literature on estimation from Gaussian measurements.

Error Bounds: Theorem 1a provides estimation error bounds that depends only on the Gaussian
width of the descent cone. In non–low–noise regime, this result is comparable to analogous results
of constrained norm minimization [6, 10, 35]. However, this bound is potentially loose owing to
mismatched data–fit term using squared loss, and asymptotically converges to a constant error pro-
portional to the noise variance ξ2.
A tighter analysis on the estimation error can be obtained for the matrix Dantzig selector (10) from
Theorem 1b. However, application of Theorem 1b requires computing high probability upper bound
on R∗(PΩ(W )). The literature on norms of random matrices [13, 24, 36, 34] can be exploited in
deriving such bounds. Beside, in special cases: ifR(.) ≥ K‖.‖∗, then KR∗(.) ≤ ‖.‖op can be used
to obtain asymptotically consistent results.

Finally, under near zero–noise, the second term in the results of Theorem 1 dominates, and bounds
are weaker than that of [6, 19] owing to the relaxation of stronger incoherence assumption.
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Related Work and Future Directions: The closest related work is the result on consistency of
matrix completion under decomposable norm regularization by [16]. Results in this paper are a strict
generalization to general norm regularized (not necessarily decomposable) matrix completion. We
provide non–trivial examples of application where structures enforced by such non–decomposable
norms are of interest. Further, in contrast to our results that are based on Gaussian width, the RSC
parameter in [16] depends on a modified complexity measure κR(d, |Ω|) (see definition in [16]). An
advantage of results based on Gaussian width is that, application of Theorem 1 for special cases can
greatly benefit from the numerous tools in the literature for the computation of wG(.).
Another closely related line of work is the non–asymptotic analysis of high dimensional estimation
under random Gaussian or sub–Gaussian measurements [10, 1, 35, 3, 37, 5]. However, the analysis
from this literature rely on variants of RIP of the measurement ensemble [9], which is not satisfied by
the the extremely localized measurements encountered in matrix completion[8]. In an intermediate
result, we establish a form of RSC for matrix completion under general norm regularization: a result
that was previously known only for nuclear norm and decomposable norm regularization.

In future work, it is of interest to derive matching lower bounds on estimation error for matrix
completion under general low dimensional structures, along the lines of [22, 5] and explore special
case applications of the results in the paper. We also plan to derive explicit characterization of λds
in terms of Gaussian width of unit balls by exploiting generic chaining results for general Banach
spaces [33].

5 Proof Sketch

Proofs of the lemmas are provided in the Appendix.

5.1 Proof of Theorem 1

Define the following set of β–non–spiky matrices in Rd1×d2 for constant c0 from Theorem 1:

A(β)=

{
X : αsp(X) =

√
d1d2‖X‖∞
‖X‖F

≤ β

}
. (14)

Define, βc0 =
1

c0

√
|Ω|

w2
G(ER) log d

(15)

Case 1: Spiky Error Matrix When the error matrix from (9) or (10) has large spikiness ratio,
following bound on error is immediate using ‖∆̂‖∞≤‖Θ̂‖∞+‖Θ∗‖∞≤2α∗/

√
d1d2 in (3).

Proposition 4 (Spiky Error Matrix). For the constant c0 in Theorem 1a, if αsp(∆̂cn) /∈ A(βc0), then

‖∆̂cn‖F ≤ 2c0α
∗
√

w2
G(ER) log d

|Ω| . An analogous result also holds for ∆̂ds. �

Case 2: Non–Spiky Error Matrix Let ∆̂ds, ∆̂cn ∈ A(β).

5.1.1 Restricted Strong Convexity (RSC)

Recall TR and ER from (11). The most significant step in the proof of Theorem 1 involves showing
that over a useful subset of TR, a form of RSC (2) is satisfied by a squared loss penalty.

Theorem 5 (Restricted Strong Convexity). Let |Ω| > c20w
2
G(ER) log d, for large enough constant

c0; further, sub–sampling excess samples such that |Ω| ∼ Ω(w2
G(ER) log2 d). There exists a RSC

parameter κc0 = 1− δc0 > 0, such that the following holds w.p. greater that 1− exp(−c1w2
G(ER)),

∀X ∈ TR ∩ A(β),
d1d2

|Ω|
‖PΩ(X)‖22 ≥ κc0‖X‖2F .

Proof in Appendix A combines empirical process tools along with Theorem 2. �

Recall from (5), that y − PΩ(Θ∗) = ξw, where w ∈ R|Ω| consists of independent sub–Gaussian
random variables with E[wk] = 0 and ‖wk‖Ψ2

= 1 (recall ‖.‖Ψ2
from Definition 2).
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5.1.2 Constrained Norm Minimizer

Lemma 6. Under the conditions of Theorem 1, let c1 be a constant such that ∀k, Var(wk) ≤
c1. ∃ a universal constant c2 such that, if λcn ≥ 2c1ξ

√
|Ω|, then with probability greater than

1− 2 exp (−c2|Ω|), (a) ∆̂ds ∈ TR, and (b) ‖PΩ(∆̂cn)‖2≤2λcn. �

Using λcn =2c1ξ
√
|Ω| in (9), if ∆̂cn∈A(β), then using Theorem 5 and Lemma 6, w.h.p.

‖∆̂cn‖2F
d1d2

≤ 1

κc0

‖PΩ(∆̂cn)‖22
|Ω|

≤4c21ξ
2

κc0
. (16)

5.1.3 Matrix Dantzig Selector

Proposition 7. λds≥ξ
√
d1d2
|Ω| R

∗P ∗Ω(w)⇒ w.h.p. (a) ∆̂ds∈TR; (b)
√
d1d2
|Ω| R

∗P ∗Ω(PΩ(∆̂ds))≤2λds.

Above result follows from optimality of Θ̂ds and triangle inequality. Also,
√
d1d2

|Ω|
‖PΩ(∆̂ds)‖22 ≤

√
d1d2

|Ω|
R∗P ∗Ω(PΩ(∆̂ds))R(∆̂ds) ≤ 2λdsΨR(TR)‖∆̂ds‖F ,

where recall norm compatibility constant ΨR(TR) from (4). Finally, using Theorem 5, w.h.p.

‖∆̂ds‖2F
d1d2

≤ 1

|Ω|
‖PΩ(∆̂ds)‖22

κc0
≤4λdsΨR(TR)

κc0

‖∆̂ds‖F√
d1d2

. (17)

5.2 Proof of Theorem 2

Let the entries of Ω = {Ek = eike
>
jk

: k = 1, 2, . . . , |Ω|} be sampled as in (6). Recall that g ∈ R|Ω|

is a standard normal vector. For a compact S ⊆ Rd1×d2 , it suffices to prove Theorem 2 for a dense
countable subset of S. Overloading S to such a countable subset, define following random process:

(XΩ,g(X))X∈S ,where XΩ,g(X) = 〈X,P ∗Ω(g)〉 =
∑
k〈X,Ek〉gk. (18)

We start with a key lemma in the proof of Theorem 2. Proof of this lemma, provided in Appendix B,
uses tools from the broad topic of generic chaining developed in recent works [31, 33].
Lemma 8. ∃ constants k1, k2 such that for S ⊆ Sd1d2−1, then

wΩ,g(S) = E sup
X∈S
XΩ,g(X) ≤ k1

√
|Ω|
d1d2

wG(S) + k2

√
E sup
X,Y ∈S

‖PΩ(X − Y )‖22. �

Lemma 9. There exists constants k3, k4, such that for S ⊆ Sd1d2−1

E sup
X,Y ∈S

‖PΩ(X − Y )‖22 ≤ k3 sup
X∈S

αsp(X)√
d1d2

wΩ,g(S) + k4
|Ω|
d1d2

w2
G(S)

Theorem 2 follows by combining Lemma 8 and Lemma 9, and simplifying using
√
ab ≤ a/2 + b/2

and triangle inequality (See Appendix B). The statement in Theorem 2 about partial sub–Gaussian
complexity follows from a standard result in empirical process given in Lemma 12.
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