Tractable Bayesian Network Structure Learning with
Bounded Vertex Cover Number

Janne H. Korhonen
Helsinki Institute for Information Technology HIIT
Department of Computer Science
University of Helsinki
janne.h.korhonen@helsinki.fi

Pekka Parviainen
Helsinki Institute for Information Technology HIIT
Department of Computer Science
Aalto University
pekka.parviainen@aalto.fi

Abstract

Both learning and inference tasks on Bayesian networks are NP-hard in general.
Bounded tree-width Bayesian networks have recently received a lot of attention as
a way to circumvent this complexity issue; however, while inference on bounded
tree-width networks is tractable, the learning problem remains NP-hard even for
tree-width 2. In this paper, we propose bounded vertex cover number Bayesian
networks as an alternative to bounded tree-width networks. In particular, we show
that both inference and learning can be done in polynomial time for any fixed
vertex cover number bound &, in contrast to the general and bounded tree-width
cases; on the other hand, we also show that learning problem is W[1]-hard in
parameter k. Furthermore, we give an alternative way to learn bounded vertex
cover number Bayesian networks using integer linear programming (ILP), and
show this is feasible in practice.

1 Introduction

Bayesian networks are probabilistic graphical models representing joint probability distributions
of random variables. They can be used as a model in a variety of prediction tasks, as they enable
computing the conditional probabilities of a set of random variables given another set of random
variables; this is called the inference task. However, to use a Bayesian network as a model for
inference, one must first obtain the network. Typically, this is done by estimating the network based
on observed data; this is called the learning task.

Both the inference and learning tasks are NP-hard in general [3, 4, 6]. One approach to deal with
this issue has been to investigate special cases where these problems would be tractable. That is,
the basic idea is to select models from a restricted class of Bayesian networks that have structural
properties enabling fast learning or inference; this way, the computational complexity will not be
an issue, though possibly at the cost of accuracy if the true distribution is far from the model family.
Most notably, it is known that the inference task can be solved in polynomial time if the network
has bounded tree-width, or more precisely, the inference task is fixed-parameter tractable in the
tree-width of the network. Moreover, this is in a sense optimal, as bounded tree-width is necessary
for polynomial-time inference unless the exponential time hypothesis (ETH) fails [17].

The possibility of tractable inference has motivated several recent studies also on learning bounded
tree-width Bayesian networks [2, 12, 16, 19, 22]. However, unlike in the case of inference, learning a
Bayesian network of bounded tree-width is NP-hard for any fixed tree-width bound at least 2 [16].
Furthermore, it is known that learning many relatively simple classes such as paths [18] and polytrees
[9] is also NP-hard. Indeed, so far the only class of Bayesian networks for which a polynomial
time learning algorithm is known are trees, i.e., graphs with tree-width 1 [5] — it appears that our
knowledge about structure classes allowing tractable learning is quite limited.

1.1 Structure Learning with Bounded Vertex Cover Number

In this work, we propose bounded vertex cover number Bayesian networks as an alternative to
the tree-width paradigm. Roughly speaking, we consider Bayesian networks where all pairwise
dependencies —i.e., edges in the moralised graph — are covered by having at least one node from the
vertex cover incident to each of them; see Section 2 for technical details. Like bounded tree-width
Bayesian networks, this is a parameterised class, allowing a trade-off between the complexity of
models and the size of the space of possible models by varying the parameter &.

Results: complexity of learning bounded vertex cover networks. Crucially, we show that learn-
ing an optimal Bayesian network structure with vertex cover number at most k can be done in
polynomial time for any fixed k. Moreover, vertex cover number provides an upper bound for
tree-width, implying that inference is also tractable; thus, we identify a rare example of a class of
Bayesian networks where both learning and inference are tractable.

Specifically, our main theoretical result shows that an optimal Bayesian network structure with
vertex cover number at most & can be found in time 41259 (Theorem 5). However, while the
running time of our algorithm is polynomial with respect to the number of nodes, the degree of the
polynomial depends on k. We show that this is in a sense best we can hope for; that is, we show that
there is no fixed-parameter algorithm with running time f (k) poly(n) for any function f even when
the maximum allowed parent set size is restricted to 2, unless the commonly accepted complexity
assumption FPT # W[1] fails (Theorem 6).

Results: ILP formulation and learning in practice. While we prove that the learning bounded
vertex cover Bayesian network structures can be done in polynomial time, the unavoidable dependence
on k in the degree the polynomial makes the algorithm of our main theorem infeasible for practical
usage when the vertex cover number k increases. Therefore, we investigate using an integer linear
programming (ILP) formulation as an alternative way to find optimal bounded vertex cover Bayesian
networks in practice (Section 4). Although the running time of an ILP is exponential in the worst
case, the actual running time in many practical scenarios is significantly lower; indeed, most of the
state-of-the-art algorithms for exact learning of Bayesian networks in general [1, 8] and with bounded
tree-width [19, 22] are based on ILPs. Our experiments show that bounded vertex cover number
Bayesian networks can, indeed, be learned fast in practice using ILP (Section 5).

2 Preliminaries

Directed graphs. A directed graph D = (N, A) consists of a node set N and arc set A C N x N;
for a fixed node set, we usually identify a directed graph with its arc set A. A directed graph is called
a directed acyclic graph or DAG if it contains no directed cycles. We write n = | N| and uv for arc
(u,v) € A. Foru,v € N with uv € A, we say that u is a parent of v and v is a child of u. We write
A, for the parent set of v, that is, A, = {u € N: uwv € A}.

Bayesian network structure learning. We consider the Bayesian network structure learning using
the score-based approach [7, 14], where the input consists of the node set N and the local scores
fu(S) for each node v € N and S C N \ {v}. The task is to find a DAG A — the network structure —
that maximises the score f(A) = >,y fo(Ay).

We assume that the scores f, are computed beforehand, and that we can access each entry f,(.S) in
constant time. We generally consider a setting where only parent sets belonging to specified sets
F, C 2V are permitted. Typically, F, consists of parent sets of size at most k, in which case we
assume that the scores f,(S) are given only for |S| < k; that s, the size of the input is O (n(7})).

Moralised graphs. For a DAG A, the moralised graph of A is an undirected graph M4 = (N, E4),
where E 4 is obtained by adding (1) an undirected edge {u, v} to E4 for each arc uv € A, and (2) by
adding an undirected edge {u, v} to F 4 if u and v have a common child, that is, {uw,vw} C A in
A for some w € A. The edges added to E 4 due to rule (2) are called moral edges.

Tree-width and vertex cover number. A tree-decomposition of a graph G = (V, E) is a pair
(X,T), where T is a tree with node set {1,2,...,m} and X = {X;, Xo,..., X,,} is a collection of
subsets of V with [J;; X; = V such that

(a) for each {u,v} € E there is i with u,v € X, and
(b) for each v € V the graph T'[{i: v € X;}] is connected.

The width of a tree-decomposition (T, X) is max; | X;| — 1. The tree-width tw(G) of a graph G is
the minimum width of a tree-decomposition of G. For a DAG A, we define the tree-width tw(A) as
the tree-width of the moralised graph M 4 [12].

For a graph G = (V, E), aset C C V is a vertex cover if each edge is incident to at least one vertex
in C. The vertex cover number of a graph 7(G) is the size of the smallest vertex cover in G. As with
tree-width, we define the vertex cover number 7(A) of a DAG A as 7(M3,).

Lemma 1. For a DAG A, we have tw(A) < 7(A).

Proof. By definition, the moralised graph M4 has a vertex cover C' of size 7(A). We can construct
a star-shaped tree-decomposition for M4 with a central node ¢ with X; = C and a leaf j with
X; =CUvforevery v € N\ C. Clearly, this tree-decomposition has width 7(A); thus, we have
tw(A) = tw(Ma) < 7(A). O

Structure learning with parameters. Finally, we give a formal definition for the bounded tree-
width and bounded vertex cover number Bayesian network structure learning problems. That is, let
p € {7, tw}; in the bounded-p Bayesian network structure learning, we are given a node set IV, local
scores f,(.5) and an integer k, and the task is to find a DAG A maximising score) .y fu(4y)
subject to p(A) < k. For both tree-width and vertex cover number, the parameter k also bounds the
maximum parent set size, so we will assume that the local scores f,,(S) are given only if |S| < k.

3 Complexity Results

3.1 Polynomial-time Algorithm

We start by making a few simple observations about the structure of bounded vertex cover number
Bayesian networks. In the following, we slightly abuse the terminology and say that Ny C N isa
vertex cover for a DAG A if Ny is a vertex cover of M 4.

Lemma 2. Let Ny C N be a set of size k, and let A be a DAG on N. Set Ny is a vertex cover for A
if and only if

(@) for each node v ¢ Ny, we have A, C Ny, and

(b) each node v € N1 has at most one parent outside N.

Proof. (=) For (a), we have that if there were nodes u,v ¢ Nj such that u is the child of v, the
moralised graph M4 would have edge {u, v} that is not covered by N;. Likewise for (b), we have
that if a node v € N had parents v, w ¢ Ny, then M4 would have edge {v, w} not covered by Nj.
Thus, both (a) and (b) have to hold if A has vertex cover Nj.

(<=) Since (a) holds, all directed edges in A have one endpoint in [V, and thus the corresponding
undirected edges in M 4 are covered by N;. Moreover, by (a) and (b), no node has two parents
outside IVq, so all moral edges in M 4 also have at least one endpoint in Nj. O

Lemma 2 allows us to partition a DAG with vertex cover number k into a core that covers at most 2k
nodes that are either in a fixed vertex cover or are parents of those nodes (core nodes), and a periphery

Ny

N,y (I> o

Figure 1: (a) Example of a DAG with vertex cover number 4, with sets N7 and N as in Lemma 3.
(b) Reduction used in Theorem 6; each edge in the original graph is replaced by a possible v-structure.

(oNo R NoNe)
©)

containing arcs going into nodes that have no children and all parents in the vertex cover (peripheral
nodes). This is illustrated in Figure 1(a), and the following lemma formalises the observation.

Lemma 3. Let A be a DAG on N with vertex cover Ny of size k. Then there is a set No C N \ Ny
of size at most k and arc sets B and C such that A = B U C and

(a) B isa DAG on Ny U Ny with vertex cover N1, and
(b) C contains only arcs uv with u € Ny and v ¢ Ny U No.

Proof. First, let Ny = (UUGN1 Ay \ Nl). By Lemma 2, each v € N; can have at most one parent
outside Ny, so we have | Ny| < |[N| < k.

Now let B = {uv € A: u,v € Ny UNz} and C' = A\ B. To see that (a) holds for this choice of B,
we observe that the edge set of the moralised graph My is a subset of the edges in M 4, and thus Ny
covers all edges of Mp. For (b), the choice of N5 and Lemma 2 ensure that nodes in N \ (N7 U N»)
have no children, and again by Lemma 2 their parents are all in /V;. O

Dually, if we fix the core and peripheral node sets, we can construct a DAG with bounded vertex cover
number by the selecting the core independently from the parents of the peripheral nodes. Formally:

Lemmad4. Let N1, No C N be disjoint. Let B be a DAG on N1 U Ny with vertex cover N1, and let
C' be a DAG on N such that C only contains arcs uwv with w € Ny and v ¢ N1 U Na. Then

(a) A= BUC isaDAG on N with vertex cover N1, and
(b) the score OfA is f(A) = z:yeNluN2 fv(Bv) + ZU¢N1UN2 fv(Cv>

Proof. To see that (a) holds, we observe that B is acyclic by assumption, and addition of arcs from
C cannot create cycles as there are no outgoing arcs from nodes in N \ (N7 U Nz). Moreover, for
v € N1 U N, there are no arcs ending at v in C, and likewise for v ¢ N7 U N, there are no arcs
ending at v in B. Thus, we have A, = B, if v € N; U N5 and A, = C, otherwise. This implies that
since conditions of Lemma 2 hold for both B and C, they also hold for A, and thus V7 is a vertex
cover for A. Finally, the preceding observation implies also that f,,(A4,) = f,(B,) forv € N3 U N
and f,(A,) = f,(C,) otherwise, which implies (b). O

Lemmas 3 and 4 give the basis of our strategy for finding an optimal Bayesian network structure with
vertex cover number at most k. That is, we iterate over all possible (}) (" ") = O(n?*) choices for

sets N7 and Ny; for each choice, we construct the optimal core and periphery as follows, keeping
track of the best found DAG A*:

Step 1. To find the optimal core B, we construct a Bayesian network structure learning instance on
N; U N3 by removing nodes outside N7 U Ny and restricting the possible choices of parent
sets so that F,, = 2™V forall v € Ny, and F,, = {S C NJUN3: |SN Ny| <1} forv e Ny.
By Lemma 2, any solution for this instance is a DAG with vertex cover N;. Moreover, this
instance has 2k nodes, so it can be solved in time O(k222*) using the dynamic programming
algorithm of Silander and Myllymiki [23].

Step 2. To construct the periphery C, we compute the value f,(N;) = maxgcy, f»(S) and select
corresponding best parent set choice C,, for each v ¢ N1 U No; this can be done in time in
O(nk2%) time using the dynamic programming algorithm of Ott and Miyano [21].

Step 3. We check if f(BUC) > f(A*), and replace A* with B U C if this holds.

By Lemma 4(a), all DAGs considered by the algorithm are valid solutions for Bayesian network
structure learning with bounded vertex cover number, and by Lemma 4(b), we can find the optimal
solution for fixed Ny and N» by optimising the choice of the core and the periphery separately.
Moreover, by Lemma 3 each bounded vertex cover DAG is included in the search space, so we are
guaranteed to find the optimal one. Thus, we have proven our main theorem:

Theorem S. Bounded vertex cover number Bayesian network structure learning can be solved in
time 4Fn2k+01),

3.2 Lower Bound

Although the algorithm presented in the previous section runs in polynomial time in n, the degree of
the polynomial depends on the size of vertex cover k, which poses a serious barrier to practical use
when k grows. Moreover, the algorithm is essentially optimal in the general case, as the input has
size Q2 (n(Z)) when parent sets of size at most k are allowed. However, in practice one often assumes
that a node can have at most, say, 2 or 3 parents. Thus, it makes sense to consider settings where
the input is restricted, by e.g. considering instances where parent set size is bounded from above by
some constant w while allowing vertex cover number £ to be higher. In this case, we might hope to
do better, as the input size is not a restricting factor.

Unfortunately, we show that it is not possible to obtain a algorithm where the degree of the polynomial
does not depend on k£ even when the maximum parent set size is limited to 2, that is, there is no
algorithm with running time g (k) poly(n) for any function g, unless the widely believed complexity
assumption FPT # W[1] fails. Specifically, we show that Bayesian network structure learning
with bounded vertex cover number is W[1]-hard when restricted to instances with parent set size 2,
implying the above claim. For full technical details on complexity classes FPT and W[1] and the
related theory, we refer the reader to standard texts on the topic [11, 13, 20]; for our result, it suffices
to note that the assumption FPT # W[1] implies that finding a k-clique from a graph cannot be done
in time g(k) poly(n) for any function g.

Theorem 6. Bayesian network structure learning with bounded vertex cover number is W[1 J-hard in
parameter k, even when restricted to instances with maximum parent set size 2.

Proof. We prove the result by a parameter-preserving reduction from clique, which is known to
be W[1]-hard [10]. We use the same reduction strategy as Korhonen and Parviainen [16] use in
proving that the bounded tree-width version of the problem is NP-hard. That is, given an instance
(G = (V, E), k) of clique, we construct a new instance of bounded vertex cover number Bayesian
network structure learning as follows. The node set of the instance is N = V' U E. The parent scores
are defined by setting f.({u,v}) = 1 for each e = {u,v} € E, and f,(S) = 0 for all other v and S;
see Figure 1(b). Finally, the vertex cover size is required to be at most k. Clearly, the new instance
can be constructed in polynomial time.

It now suffices to show that the original graph G has a clique of size & if and only if the optimal DAG

N with vertex cover number at most k has score (’;)

(=) Assume G has a k-clique C C V. Let A be a DAG on N obtained by setting A, = {u, v} for
each e = {u,v} C C, and A, =) for all other nodes v € N. All edges in the moralised graph M 4

are now clearly covered by C. Furthermore, since C is a clique in G, there are (’2“) nodes with a

non-empty parent set, giving f (A) = ('5)

(<) Assume now that there is a DAG A on N with vertex cover number & and a score f(A) > (g)

There must be at least (g) nodes e = {u,v} € E such that A, = {u, v}, as these are the only nodes
that can contribute to a positive score. Each of these triangles T, = {e, u, v} for e = {u, v} must
contain at least two nodes from a minimum vertex cover C'; without loss of generality, we may
assume that these nodes are v and v, as e cannot cover any other edges. However, this means that

C C V and there are at least (g) edges e C C, implying that C' must be a k-clique in G. O

4 Integer Linear Programming

To complement the combinatorial algorithm of Section 3.1, we will formulate the bounded vertex
cover number Bayesian network structure learning problem as an integer linear program (ILP).
Without loss of generality, we may assume that nodes are labeled with integers [n].

As a basis for the formulation, let zg, be a binary variable that takes value 1 when S is the parent set
of v and 0 otherwise. The objective function for the ILP is

max Z Z fu(S)zse -
veEN SeF,

To ensure that the variables zg, encode a valid DAG, we use the standard constraints introduced by
Jaakkola et al. [15] and Cussens [8]:

> zgy =1 YveN (1)
SeF,

Y >t VW CN: |[W|>1 2)
veW SeF,
SNW=0

zsy €{0,1} Yv e N,S e F,. 3)

Now it remains to bound the vertex cover number of the moralised graph. We introduce two sets
of binary variables. The variable y,,, takes value 1 if there is an edge between nodes u and v in
the moralised graph and O otherwise. The variable c, takes value 1 if the node u is a part of the
vertex cover and 0 otherwise. By combining a construction of the moralised graph and a well-known
formulation for vertex cover, we get the following:

S zset > ey <0 Vu,v € N:iu < v)
S€F,: ues TeEFu: veET
250 — Yuw < 0 Yve N, SeFy:u,weS,u<w 4)
Yup — Cy — Cp <0 Yu,v € N:u<wv (6)
Zcugk @)
ueN
Yuv, Cu € {0,1} Yu,v € N. (8)

The constraints (4) and (5) guarantee that y-variables encode the moral graph. The constraint (6)
guarantees that if there is an edge between u and v in the moral graph then either « or v is included
in the vertex cover. Finally, the constraint (7) bounds the size of the vertex cover.

5 Experiments

We implemented both the combinatorial algorithm of Section 3.1 and the ILP formulation of Section 4
to benchmark the practical performance of the algorithms and test how good approximations bounded
vertex cover DAGs provide. The combinatorial algorithm was implemented in Matlab and is available
online'. The ILPs were implemented using CPLEX Python API and solved using CPLEX 12. The
implementation is available as a part of TWILP software?.

Combinatorial algorithm. As the worst- and best-case running time of the combinatorial algorithm
are the same, we tested it with synthetic data sets varying the number of nodes n and the vertex cover
bound k, limiting each run to at most 24 hours. The results are shown in Figure 2. With reasonable
vertex cover number bounds the polynomial-time algorithm scales only up to about 15 nodes; this is
mainly due to the fact that, while the running time is polynomial in 7, the degree of the polynomial
depends on k and when k grows, the algorithm becomes quickly infeasible.

"http://research.cs.aalto.fi/pml/software/VCDP/
“http://bitbucket.org/twilp/twilp

http://research.cs.aalto.fi/pml/software/VCDP/
http://bitbucket.org/twilp/twilp

time (s)

100 F-eee

Figure 2: Running times of the polynomial time algorithm. Number of nodes varies from 13 to 16
and the vertex cover number from 1 to 5. For n = 15 and n = 16 with k = 5, the algorithm did not
finish in 24 hours.

Integer linear program. We ran our experiments using a union of the data sets used by Berg et
al. [2] and those provided at GOBNILP homepage®. We benchmarked the results against other
ILP-based algorithms, namely GOBNILP [8] for learning Bayesian networks without any restrictions
to the structure and TWILP [22] for learning bounded tree-width Bayesian networks. In our tests,
each algorithm was given 4 hours of CPU time. Figure 3 shows results for selected data sets. Due to
space reasons, full results are reported in the supplement.

The results show that optimal DAGs with moderate vertex cover number (7 for flag, 6 for carpo10000)
tend to have higher scores than optimal trees. This suggests that often one can trade speed for
accuracy by moving from trees to bounded vertex cover number DAGs. We also note that bounded
vertex cover number DAGs are usually learned quickly, typically at least two orders-of-magnitude
faster than bounded tree-width DAGs. However, bounded tree-width DAGs are a less constrained
class, and thus in multiple cases the best found bounded tree-width DAG has better score than the
corresponding bounded vertex cover number DAG even when the bounded tree-width DAG is not
proven to be optimal. This seems to be the case also if we have mismatching bound, say, 5 for
tree-width and 10 for vertex cover number.

Finally, we notice that ILP solves easily problem instances with, say, 60 nodes and vertex cover bound
8; see the results for carpo10000 data set. Thus, in practice ILP scales up to significantly larger data
sets and vertex cover number bounds than the combinatorial algorithm of Section 3.1. Presumably,
this is due to the fact that ILP solvers tend to use heuristics that can quickly prune out provably
non-optimal parts of choices for the vertex cover, while the combinatorial algorithm considers them
all.

6 Discussion

We have shown that bounded vertex cover number Bayesian networks both allow tractable inference
and can be learned in polynomial time. The obvious point of comparison is the class of trees, which
has the same properties. Structurally these two classes are quite different. In particular, neither is a
subclass of the other — DAGs with vertex cover number & > 1 can contain dense substructures, while
a path of n nodes (which is also a tree) has a vertex cover number |n/2| = Q(n).

In contrast with trees, bounded vertex cover number Bayesian networks have a densely connected
“core” , and each node outside the core is either connected to the core or it has no connections. Thus,
we would expect them to perform better than trees when the “real” network has a few dense areas
and only few connections between nodes outside these areas. On the other hand, bounding the vertex
cover number bounds the total size of the core area, which can be problematic especially in large
networks when some parts of the network are not represented in the minimum vertex cover.

3http://www.cs.york.ac.uk/aig/sw/gobnilp/

http://www.cs.york.ac.uk/aig/sw/gobnilp/

15900 abalono (n = 9) scores abalone (n = 9), running times
- T L L B |

ot BRI E R s R R s e e e

15600 L f T i i
—15800 - L
—16000 —----
16200 oo/l
6400 = e em e

score
time (s)

ﬂag (n = 29) scores. . ﬂag (n = 29), running times

1 e T e pne————

—2700 ~
0750 == JEUS SEPSN SR v Sy -
—2800 - @7 -t
—2850 Foeeedee s
— 2900 [e T it ALLLLLs SLLERLE (LELLLE B
29950 = A
3000 ol -
Z3050 L]
~3100 b b T
1

score
I
time (s)

—150000 -

~160000 - -
~170000 -
—180000 —
—190000 -
—200000 -
—210000 - -
—9230000 =l Lo L (I (B SRR i [L

1 /

score
I
time (s)

- = No structure constraints ®—e Bounded tree-width 9—® Bounded vertex cover

Figure 3: Results for selected data sets. We report the score for the optimal DAG without structure
constraints, and for the optimal DAGs with bounded tree-width and bounded vertex cover when the
bound k changes, as well as the running time required for finding the optimal DAG in each case. If
the computations were not finished at the time limit of 4 hours, we show the score of the best DAG
found so far; the shaded area represents the unexplored part of the search space, that is, the upper
bound of the shaded area is the best score upper bound proven by the ILP solver.

We also note that bounded vertex cover Bayesian networks have a close connection to naive Bayes
classifiers. That is, variables outside a vertex cover are conditionally independent of each other
given the vertex cover. Thus, we can replace the vertex cover by a single variable whose states are a
Cartesian product of the states of the vertex cover variables; this star-shaped network can then be
viewed as a naive Bayes classifier.

Finally, we note some open question related to our current work. From a theoretical perspective,
we would like to classify different graph parameters in terms of complexity of learning. Ideally, we
would want to have a graph parameter that has a fixed-parameter learning algorithm when we bound
the maximum parent set size, circumventing the barrier of Theorem 6. From a practical perspective,
there is clearly room for improvement in efficiency of our ILP-based learning algorithm; for instance,
GOBNILP uses various optimisations beyond the basic ILP encoding to speed up the search.

Acknowledgments

We thank James Cussens for fruitful discussions. This research was partially funded by the Academy
of Finland (Finnish Centre of Excellence in Computational Inference Research COIN, 251170).
The experiments were performed using computing resources within the Aalto University School of
Science “Science-IT” project.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]
[12]

[13]
[14]

[15]

(16]

(17]

(18]

[19]

[20]
[21]

(22]

(23]

Mark Bartlett and James Cussens. Advances in Bayesian network learning using integer programming. In
29th Conference on Uncertainty in Artificial Intelligence (UAI), 2013.

Jeremias Berg, Matti Jarvisalo, and Brandon Malone. Learning Optimal Bounded Treewidth Bayesian
Networks via Maximum Satisfiability. In /7th International Conference on Artificial Intelligence and
Statistics (AISTATS), 2014.

David M. Chickering. Learning Bayesian networks is NP-Complete. In Learning from Data: Artificial
Intelligence and Statistics V, pages 121-130. Springer-Verlag, 1996.

David M. Chickering, David Heckerman, and Chris Meek. Large-sample learning of Bayesian networks is
NP-Hard. Journal of Machine Learning Research, 5:1287-1330, 2004.

C. K. Chow and C. N. Liu. Approximating discrete probability distributions with dependence trees. I[EEE
Transactions on Information Theory, 14(3):462-467, 1968.

Gregory. F. Cooper. The computational complexity of probabilistic inference using Bayesian belief
networks. Artificial Intelligence, 42:393—405, 1990.

Gregory F. Cooper and Edward Herskovits. A Bayesian method for the induction of probabilistic networks
from data. Machine Learning, 9:309-347, 1992.

James Cussens. Bayesian network learning with cutting planes. In 27th Conference on Uncertainty in
Artificial Intelligence (UAI), 2011.

Sanjoy Dasgupta. Learning polytrees. In /5th Conference on Uncertainty in Artificial Intelligence (UAI),
1999.

Rodney G. Downey and Michael R. Fellows. Parameterized computational feasibility. In Feasible
Mathematics 11, pages 219-244. Birkhauser, 1994.

Rodney G. Downey and Michael R. Fellows. Parameterized complexity. Springer-Verlag, 1999.

Gal Elidan and Stephen Gould. Learning bounded treewidth Bayesian networks. Journal of Machine
Learning Research, 9:2699-2731, 2008.

Jorg Flum and Martin Grohe. Parameterized complexity theory. Springer-Verlag, 2006.

David Heckerman, Dan Geiger, and David M. Chickering. Learning Bayesian networks: The combination
of knowledge and statistical data. Machine Learning, 20(3):197-243, 1995.

Tommi Jaakkola, David Sontag, Amir Globerson, and Marina Meila. Learning bayesian network structure
using LP relaxations. In /3th International Conference on Artificial Intelligence and Statistics (AISTATS),
2010.

Janne H. Korhonen and Pekka Parviainen. Learning bounded tree-width Bayesian networks. In /6th
International Conference on Artificial Intelligence and Statistics (AISTATS), 2013.

Johan H. P. Kwisthout, Hans L. Bodlaender, and L. C. van der Gaag. The necessity of bounded treewidth
for efficient inference in Bayesian networks. In 19th European Conference on Artificial Intelligence (ECAI),
2010.

Chris Meek. Finding a path is harder than finding a tree. Journal of Artificial Intelligence Research, 15:
383-389, 2001.

Sigi Nie, Denis Deratani Maua, Cassio Polpo de Campos, and Qiang Ji. Advances in Learning Bayesian
Networks of Bounded Treewidth. In Advances in Neural Information Processing Systems 27 (NIPS), 2014.

Rolf Niedermeier. Invitation to fixed-parameter algorithms. Oxford University Press, 2006.

Sascha Ott and Satoru Miyano. Finding optimal gene networks using biological constraints. Genome
Informatics, 14:124-133, 2003.

Pekka Parviainen, Hossein Shahrabi Farahani, and Jens Lagergren. Learning Bounded Tree-width Bayesian
Networks using Integer Linear Programming. In 17th International Conference on Artificial Intelligence
and Statistics (AISTATS), 2014.

Tomi Silander and Petri Myllymiki. A simple approach for finding the globally optimal Bayesian network
structure. In 22nd Conference on Uncertainty in Artificial Intelligence (UAI), 2006.

