The Consistency of Common Neighbors for
Link Prediction in Stochastic Blockmodels

Purnamrita Sarkar Deepayan Chakrabarti
Department of Statistics TROM, McCombs School of Business
University of Texas at Austin University of Texas at Austin
purnamritas@austin.utexas.edu deepay@utexas.edu

Peter Bickel
Department of Statistics
University of California, Berkeley
bickel@stat.berkeley.edu

Abstract

Link prediction and clustering are key problems for network-structured
data. While spectral clustering has strong theoretical guarantees under
the popular stochastic blockmodel formulation of networks, it can be ex-
pensive for large graphs. On the other hand, the heuristic of predicting
links to nodes that share the most common neighbors with the query node
is much fast, and works very well in practice. We show theoretically that
the common neighbors heuristic can extract clusters with high probabil-
ity when the graph is dense enough, and can do so even in sparser graphs
with the addition of a “cleaning” step. Empirical results on simulated and
real-world data support our conclusions.

1 Introduction

Networks are the simplest representation of relationships between entities, and as such have
attracted significant attention recently. Their applicability ranges from social networks such
as Facebook, to collaboration networks of researchers, citation networks of papers, trust
networks such as Epinions, and so on. Common applications on such data include ranking,
recommendation, and user segmentation, which have seen wide use in industry. Most of
these applications can be framed in terms of two problems: (a) link prediction, where the
goal is to find a few similar nodes to a given query node, and (b) clustering, where we want
to find groups of similar individuals, either around a given seed node or a full partitioning
of all nodes in the network.

An appealing model of networks is the stochastic blockmodel, which posits the existence of
a latent cluster for each node, with link probabilities between nodes being simply functions
of their clusters. Inference of the latent clusters allows one to solve both the link prediction
problem and the clustering problem (predict all nodes in the query node’s cluster). Strong
theoretical and empirical results have been achieved by spectral clustering, which uses the
singular value decomposition of the network followed by a clustering step on the eigenvectors
to determine the latent clusters.

However, singular value decomposition can be expensive, particularly for (a) large graphs,
when (b) many eigenvectors are desired. Unfortunately, both of these are common require-
ments. Instead, many fast heuristic methods are often used, and are empirically observed
to yield good results [§]. One particularly common and effective method is to predict links
to nodes that share many “common neighbors” with the query node ¢, i.e., rank nodes
by |CN(q,i)|, where CN(q,i) = {u | ¢ ~ u ~ i} (i ~ j represents an edge between 1%

and 7). The intuition is that ¢ probably has many links with others in its cluster, and
hence probably also shares many common friends with others in its cluster. Counting com-
mon neighbors is particularly fast (it is a JOIN operation supported by all databases and
Map-Reduce systems). In this paper, we study the theoretical properties of the common
neighbors heuristic.

Our contributions are the following:

(a) We present, to our knowledge the first, theoretical analysis of the common neighbors for
the stochastic blockmodel.

(b) We demarcate two regimes, which we call semi-dense and semi-sparse, under which
common neighbors can be successfully used for both link prediction and clustering.

(c¢) In particular, in the semi-dense regime, the number of common neighbors between the
query node ¢ and another node within its cluster is significantly higher than that with a
node outside its cluster. Hence, a simple threshold on the number of common neighbors
suffices for both link prediction and clustering.

(d) However, in the semi-sparse regime, there are too few common neighbors with any node,
and hence the heuristic does not work. However, we show that with a simple additional
“cleaning” step, we regain the theoretical properties shown for the semi-dense case.

(e) We empirically demonstrate the effectiveness of counting common neighbors followed by
the “cleaning” post-process on a variety of simulated and real-world datasets.

2 Related Work

Link prediction has recently attracted a lot of attention, because of its relevance to important
practical problems like recommendation systems, predicting future connections in friendship
networks, better understanding of evolution of complex networks, study of missing or partial
information in networks, etc [9,[8]. Algorithms for link prediction fall into two main groups:
similarity-based, and model-based.

Similarity-based methods: These methods use similarity measures based on network
topology for link prediction. Some methods look at nodes two hops away from the query
node: counting common neighbors, the Jaccard index, the Adamic-Adar score [1] etc. More
complex methods include nodes farther away, such as the Katz score [7], and methods based
on random walks [16] [2]. These are often intuitive, easily implemented, and fast, but they
typically lack theoretical guarantees.

Model-based methods: The second approach estimates parametric models for predict-
ing links. Many popular network models fall in the latent variable model category [12, B].
These models assign n latent random variables Z := (Z;, Za,...,Z,) to n nodes in a net-
work. These variables take values in a general space Z. The probability of linkage between
two nodes is specified via a symmetric map h : Z x Z — [0,1]. These Z;’s can be i.i.d
Uniform(0,1) [3], or positions in some d—dimensional latent space [12]. In [5] a mixture of
multivariate Gaussian distributions is used, each for a separate cluster. A Stochastic Block-
model [6] is a special class of these models, where Z; is a binary length k vector encoding
membership of a node in a cluster. In a well known special case (the planted partition
model), all nodes in the same cluster connect to each other with probability a, whereas
all pairs in different clusters connect with probability . In fact, under broad parameter
regimes, the blockmodel approximation of networks has recently been shown to be analogous
to the use of histograms as non-parametric summaries of an unknown probability distribu-
tion [II]. Varying the number of bins or the bandwidth corresponds to varying the number
or size of communities. Thus blockmodels can be used to approximate more complex models
(under broad smoothness conditions) if the number of blocks are allowed to increase with
n.

Empirical results: As the models become more complex, they also become computation-
ally demanding. It has been commonly observed that simple and easily computable measures
like common neighbors often have competitive performance with more complex methods.

This behavior has been empirically established across a variety of networks, starting from
co-authorship networks [8] to router level internet connections, protein protein interaction
networks and electrical power grid network [9].

Theoretical results: Spectral clustering has been shown to asymptotically recover cluster
memberships for variations of Stochastic Blockmodels [10, 4 [13]. However, apart from [15],
there is little understanding of why simple methods such as common neighbors perform so
well empirically.

Given their empirical success and computational tractability, the common neighbors heuris-
tic is widely applied for large networks. Understanding the reasons for the accuracy of
common neighbors under the popular stochastic blockmodel setting is the goal of our work.

3 Proposed Work

Many link prediction methods ultimately make two assumptions: (a) each node belongs to
a latent “cluster”, where nodes in the same cluster have similar behavior; and (b) each node
is very likely to connect to others in its cluster, so link prediction is equivalent to finding
other nodes in the cluster. These assumptions can be relaxed: instead of belonging to the
same cluster, nodes could have “topic distributions”, with links being more likely between
pairs of nodes with similar topical interests. However, we will focus on the assumptions
stated above, since they are clean and the relaxations appear to be fundamentally similar.

Model. Specifically, consider a stochastic blockmodel where each node i belongs to an
unknown cluster ¢; € {C1,...,Ck}. We assume that the number of clusters K is fixed as
the number of nodes n increases. We also assume that each cluster has 7 = n/K members,
though this can be relaxed easily. The probability P(i ~ j) of a link between nodes ¢ and j
(i # j) depends only on the clusters of i and j: P(i ~ j) = B, ¢, £ ofc; = ¢;} +v{c; # ¢;}
for some « > v > 0; in other words, the probability of a link is « between nodes in the same
cluster, and ~y otherwise. By definition, P(i ~ i) = 0. If the nodes were arranged so that all
nodes in a cluster are contiguous, then the corresponding matrix, when plotted, attains a
block-like structure, with the diagonal blocks (corresponding to links within a cluster) being
denser than off-diagonal blocks (since a: > 7).

Under these assumptions, we ask the following two questions:

Problem 1 (Link Prediction and Recommendation). Given node i, how can we identify at
least a constant number of nodes from c;?

Problem 2 (Local Cluster Detection). Given node i, how can we identify all nodes in c;?

Problem [I] can be considered as the problem of finding good recommendations for a given
node i. Here, the goal is to find a few good nodes that i could connect to (e.g., recommending
a few possible friends on Facebook, or a few movies to watch next on Netflix). Since within-
cluster links have higher probability than across-cluster links (a >), predicting nodes from
¢; gives the optimal answer. Crucially, it is unnecessary to find all good nodes. As against
that, Problem [2] requires us to find everyone in the given node’s cluster. This is the problem
of detecting the entire cluster corresponding to a given node. Note that Problem [2)is clearly
harder than Problem [

We next present a summary of our results and the underlying intuition before delving into
the details.

3.1 Intuition and Result Summary

Current approaches. Standard approaches to inference for the stochastic blockmodel
attempt to solve an even harder problem:

Problem 3 (Full Cluster Detection). How can we identify the latent clusters c; for all i?

A popular solution is via spectral clustering, involving two steps: (a) computing the top-K
eigenvectors of the graph Laplacian, and (b) clustering the projections of each node on the

corresponding eigenspace via an algorithm like k-means [I3]. A slight variation of this has
been shown to work as long as (o —v)/y/a = Q(logn/y/n) and the average degree grows
faster than poly-logarithmic powers of n [10].

However, (a) spectral clustering solves a harder problem than Problems [I| and 2| and (b)
eigen-decompositions can be expensive, particularly for very large graphs. Our claim is that
a simpler operation — counting common neighbors between nodes — can yield results that
are almost as good in a broad parameter regime.

Common neighbors. Given a node 4, link prediction via common neighbors follows a
simple prescription: predict a link to node j such that ¢ and j have the maximum number
|CN(i,7)| of shared friends CN(i,j) = {u | ¢ ~ u ~ j}. The usefulness of common
neighbors have been observed in practice [8] and justified theoretically for the latent distance
model [I5]. However, its properties under the stochastic blockmodel remained unknown.

Intuitively, we would expect a pair of nodes i and j from the same cluster to have many
common neighbors u from the same cluster, since both the links ¢ ~ « and u ~ j occur with
probability o, whereas for ¢; # c;, at least one of the edges ¢ ~ v and u ~ j must have the
lower probability ~.

P(u€ CN(i,j) | ci =¢;) = a*Plcy = ¢; | ¢i = ¢j) + ¥*Pcu # ci | ci = ¢j)
=ma’ 4 (1 —7)7?

P(u€ ON(i,j) | ¢; # ¢j) = ayP(cy = ¢; or ¢y, = ¢; | ¢; # ¢j) + 7V Pcy # ciyeu # ¢ | ci # ¢;)
=2may + (1 —27m)7y? = P(u € CN(i,5) | ci = ¢j) — m(a —7)?
< P(ue CN(i,j) | ¢; = ¢;)

Thus the expected number of common neighbors E [|CN (4, j)|] is higher when ¢; = ¢;. If
we can show that the random variable C'N(i,j) concentrates around its expectation, node
pairs with the most common neighbors would belong to the same cluster. Thus, common
neighbors would offer a good solution to Problem

We show conditions under which this is indeed the case. There are three key points regarding
our method: (a) handling dependencies between common neighbor counts, (b) defining the
graph density regime under which common neighbors is consistent, and (c¢) proposing a
variant of common neighbors which significantly broadens this region of consistency.

Dependence. CN(i,j) and CN(i,j') are dependent; hence, distinguishing between
within-group and outside-group nodes can be complicated even if each CN(i,j) concen-
trates around its expectation. We handle this via a careful conditioning step.

Dense versus sparse graphs. In general, the parameters o and v can be functions of
n, and we can try to characterize parameter settings when common neighbors consistently
returns nodes from the same cluster as the input node. We show that when the graph is
sufficiently “dense” (average degree is growing faster than v/nlogn), common neighbors is
powerful enough to answer Problem [2| Also, (o —)/« can go to zero at a suitable rate.

On the other hand, the expected number of common neighbors between nodes tends to
zero for sparser graphs, irrespective of whether the nodes are in the same cluster or not.
Further, the standard deviation is of a higher order than the expectation, so there is no
concentration. In this case, counting common neighbors fails, even for Problem

A variant with better consistency properties. However, we show that the addition
of an extra post-processing step (henceforth, the “cleaning” step) still enables common
neighbors to identify nodes from its own cluster, while reducing the number of off-cluster
nodes to zero with probability tending to one as n — co. This requires a stronger separation
condition between « and 7. However, such “strong consistency” is only possible when
the average degree grows faster than (nlog n)l/ 3. Thus, the cleaning step extends the
consistency of common neighbors beyond the O(1/+/n) range.

4 Main Results

We first split the edge set of the complete graph on n nodes into two sets: K; and its
complement K (independent of the given graph G). We compute common neighbors on
G1 = GN K7 and perform a “cleaning” process on G2 = G N Ky. The adjacency matrices
of G7 and G5 are denoted by A; and A;. We will fix a reference node g, which belongs to
class C; without loss of generality (recall that there are K clusters C ...Ck, each of size
nm).

Let X;(i # ¢) denote the number of common neighbors between ¢ and i. Algorithm
computes the set S = {i : X; > t,,} of nodes who have at least ¢,, common neighbors with
q on A1, whereas Algorithm [2| does a further degree thresholding on As to refine S into S7.

Algorithm 1 Common neighbors screening algorithm

1: procedure SCAN(A1,q,t,)

2 For 1 <i<mn, X; + A%(q,1)
3: X,4+0

4: S(—{i:XiZtn}

5 return S

Algorithm 2 Post Selection Cleaning algorithm

1: procedure CLEAN(S, As,q, $;,)
2 81 {05 %es Aa(id) 2 Su)
3: return S;

To analyze the algorithms, we must specify conditions on graph densities. Recall that «
and ~y represent within-cluster and across-cluster link probabilities. We assume that o/~
is constant while @« — 0,7 — 0; equivalently, assume that both « and ~ are both some
constant times p, where p — 0.

The analysis of graphs has typically been divided into two regimes. The dense regime
consists of graphs with np — oo, where the expected degree np is a fraction of n as n grows.
In the sparse regime, np = O(1), so degree is roughly constant. Our work explores a finer
gradation, which we call semi-dense and semi-sparse, defined next.

Definition 4.1 (Semi-dense graph). A sequence of graphs is called semi-dense if
np?/logn — 0o as n — oo.

Definition 4.2 (Semi-sparse graph). A sequence of graphs is called semi-sparse if np* — 0

but n*/3p/logn — 0o as n — oco.

Our first result is that common neighbors is enough to solve not only the link-prediction
problem (Problem [1) but also the local clustering problem (Problem [2]) in the semi-dense
case. This is because even though both nodes within and outside the query node’s cluster
have a growing number of common neighbors with ¢, there is a clear distinction in the
expected number of common neighbors between the two classes. Also, since the standard
deviation is of a smaller order than the expectation, the random variables concentrate.
Thus, we can pick a threshold ¢, such that SCAN(A4,q,t,) yields just the nodes in the
same cluster as ¢ with high probability. Note that the cleaning step (Algorithm [2) is not
necessary in this case.

Theorem 4.1 (Algorithm solves Problem in semi-dense graphs). Let t, =
n(m(a+7)2/24 (1 —2m)y?). Let S be the set of nodes returned by SCAN(Ay,q,ty). Let
Ny and n, denote the number of nodes in SN Cy and S\ Cy respectively. If the graph is

o\ /4
semi-dense, and if “* > % (fi?) , then P(ny, =nm) = 1 and P(n, =0) — 1.

Proof Sketch. We only sketch the proof here, deferring details to the supplementary mate-
rial. Let dgq = ZieCa A1(q, %) be the number of links from the query node ¢ to nodes in

cluster Cy. Let dg = {dg1,...qqr } and d =), dgq. We first show that

dg1 € nra(l +4y,) K
dZa enmy(ltv,) Va#1 21- n2’ (1)

b 2 \/(Blogm)/(n7) =/ Viogn/n - ©(/logn/(n7?) — 0. @

Conditioned on d,, X; is the sum of K Binomial(dy,, B1,) independent random variables
representing the number of common neighbors between ¢ and i via nodes in each of the K
clusters: E[X; | dg,i € Cy] = dgoa + (d — dgq)y. We have:

m = E[X; |d, € Goop,i € Cy] > n (ma® + (1 —m)7%) (1 —) £ £,(1 — by,)
Na 2 E[X; | dg € GOOD,i € Cq,a # 1] < n (2may + (1 — 2m)7%) (1 +) 2 up (1 +y,)

Note that tn = (€n+un)/2, Uy, S tn S en, and Zn*un = nﬂ—(ai,y)Q Z 410gn\/’rm N
00, where we applied condition on (a — 7)/a noted in the theorem statement. We show:
P(X; <t,|d, € Goop,i € C;) < n~4/3+W)
P(X;>t,|d, € Goop,i € Cy,a #1) < n~ 430

Conditioned on dg, both n, and n, are sums of conditionally independent and identically
distributed Bernoullis.

P(d, € Goop) £ P (

P(n, =nm) > P(dy € GooD)P(n, =nn | d, € GOOD) > (1 - KQ) (1=nm-n"¥3 51
n

P(n, =0) > P(dq € GooD) - P(n, =0 | d, € Goop) > 1 — @(nil/?’) 1
O

There are two major differences between the semi-sparse and semi-dense cases. First, in the
semi-sparse case, both expectations 1; and 7, are of the order O(np?) which tends to zero.
Second, standard deviations on the number of common neighbors are of a larger order than
expectations. Together, this means that the number of common neighbors to within-cluster
and outside-cluster nodes can no longer be separated; hence, Algorithm [I] by itself cannot
work. However, after cleaning, the entire cluster of the query node ¢ can still be recovered.

Theorem 4.2 (Algorithm (1| followed by Algorithm [2| solves Problem [2[in semi-sparse
graphs). Let t, = 1 and s, = n%(ra+ (1 —7)7)° (o +~)/2. Let S = SCAN(Ay,q,t,)
and S1 = CLEAN(S, As,q,8,). Let nif) (nﬁf)) denote the number of nodes in S; N Ci

(S1\ C1). If the graph is semi-sparse, and wa > 3(1 — m)~, then P (nq(f) = nﬂ') — 1 and
P(nf? =0) =1,

Proof Sketch. We only sketch the proof here, with details being deferred to the supplemen-
tary material. The degree bounds of Eq. |1/ and the equations for E[X;|d, € Goob] hold
even in the semi-sparse case. We can also bound the variances of X; (which are sums of
conditionally independent Bernoullis):

var[X; | d, € Goop,i € C1] < E[X; | dy € Goop,i € Cy] =
Since the expected number of common neighbors vanishes and the standard deviation is an
order larger than the expectation, there is no hope for concentration; however, there are
slight differences in the probability of having at least one common neighbor.
First, by an application of the Paley-Zygmund inequality, we find:
p1 = P(X; >1|d, € Goop,i € Cy)
- E[X;|d, € Goob,i € C1]?
~ var(X; |dy € Goop,i € C1) + E[X; | d, € Goob, i € C1)?
n?
> —1—
m+n

>l (1 —) (1 —m) since ;1 — 0

For a > 1, Markov’s inequality gives:
pa = P(X; >1]d, € Goop,i € Cy,a# 1) < E[X; | dy € GOOD,i € Cy,a # 1] =1,

Even though p, — 0, nmp, = ©(n?p?) — 0o, so we can use concentration inequalities like
the Chernoff bound again to bound n,, and n,.

P(ny > napi(1 —+/6logn/napy)) > 1 —n~4/3

P(n, < n(1 = m)pa(1+ \/6logn/n(l —m)py)) > 1—n"*/3

Unlike the denser regime, n,, and n, can be of the same order here. Hence, the candidate
set .S returned by thresholding the common neighbors has a non-vanishing fraction of nodes
from outside ¢’s community. However, this fraction is relatively small, which is what we
would exploit in the cleaning step.

Let 0, and 6, denote the expected number of edges in A, from a node to S. The separation
condition in the theorem statement gives 6,, — 0, > 41/6,, log n. Setting the degree threshold
Sn = (0w + 6,)/2, we bound the probability of mistakes in the cleaning step:

P(E"L S Cl s.t. ZAQ(Z,]) < sp | dq c GOOD) < n*1/3+o(1)
jES

P(3i ¢ Cy st Y As(i,j) > s, | dg € Goop) < p~ /3o
jES

Removing the conditioning on d, € GOoD (as in Theorem yields the desired result. [

5 Experiments

We present our experimental results in two parts. First, we use simulations to support our
theoretical claims. Next we present link prediction accuracies on real world collaborative
networks to show that common neighbors indeed perform close to gold standard algorithms
like spectral clustering and the Katz score.

Implementation details: Recall that our algorithms are based on thresholding. When
there is a large gap between common neighbors between node ¢ and nodes in its cluster (e.g.,
in the semi-dense regime), this is equivalent to using the k-means algorithm with k£ = 2 to
find S in Algorithm The same holds for finding S; in algorithm [28 When the number
of nodes with more than two common neighbors is less than ten, we define the set S by
finding all neighbors with at least one common neighbor (as in the semi-sparse regime).
On the other hand, since the cleaning step works only when S is sufficiently large (so that
degrees concentrate), we do not perform any cleaning when |S| < 30. While we used the
split sample graph As in the cleaning step for ease of analysis, we did the cleaning using
the same network in the experiments.

Experimental setup for simulations: We use a stochastic blockmodel of 2000 nodes split
into 4 equal-sized clusters. For each value of («a,) we pick 50 query nodes at random, and
calculate the precision and recall of the result against nodes from the query node’s cluster
(for any subset S and true cluster C, precision = |S N C|/|S| and recall = [SNC|/|C]|). We
report mean precision and recall over 50 random generated graph instances.

Accuracy on simulated data: Figure [1| shows the precision and recall as degree grows,
with the parameters («,y) satisfying the condition mav > 3(1 — m)y of Thm. We see
that cleaning helps both precision and recall, particularly in the medium-degree range (the
semi-sparse regime). As a reference, we also plot the precision of spectral clustering, when
it was given the correct number of clusters (K = 4). Above average degree of 10, spectral
clustering gives perfect precision, whereas common neighbors can identify a large fraction of
the true cluster once average degree is above 25. On the other hand, for average degree less
than seven, spectral clustering performs poorly, whereas the precision of common neighbors
is remarkably higher. Precision is relatively higher than recall for a broad degree regime,
and this explains why common neighbors are a popular choice for link prediction. On a side

Recall with v/a = 0.10 Precision with y/a = 0.10

-

T
——SCAN
0.8 |-+--SCAN+CLEAN 0.8
508 Sos
8 1]
o a 04 -+ -SCAN+CLEAN
- o ___Spec. Clust.
0.2 0.2 T T - on giant component
0 L 0 . .
10’ 102 e >
Average degree in log scale Average degree in log scale

(A) (B)

Figure 1: Recall and precision versus average degree: When degree is very small, none of the
methods work well. In the medium-degree range (semi-sparse regime), we see that common
neighbors gets increasingly better precision and recall, and cleaning helps. With high enough
degrees (semi-dense regime), just common neighbors is sufficient and gets excellent accuracy.

Table 1: AUC scores for co-authorship networks

Dataset n Mean degree | Time-steps AUC
CN CN-clean | SPEC Katz Random
HepTH | 5969 4 6 .70 .74 .82 .82 .49
Citeseer | 4520 5 11 .88 .89 .89 .95 .52
NIPS 1222 3.95 9 .63 .69 .68 .78 AT

note, it is not surprising that in a very sparse graph common neighbors cannot identify the
whole cluster, since not everyone can be reached in two hops.

Accuracy on real-world data: We used publicly available co-authorship datasets over
time where nodes represent authors and an edge represents a collaboration between two
authors. In particular, we used subgraphs of the High Energy Physics (HepTH) co-
authorship dataset (6 timesteps), the NIPS dataset (9 timesteps) and the Citeseer dataset
(11 timesteps). We obtain the training graph by merging the first T-2 networks, use the
T-1%" step for cross-validation and use the last timestep as the test graph. The number of
nodes and average degrees are reported in Table [l We merged 1-2 years of papers to create
one timestep (so that the median degree of the test graph is at least 1).

We compare our algorithm (CN and CN-clean) with the Katz score which is used widely
in link prediction [8] and spectral clustering of the network. Spectral clustering is carried
out on the giant component of the network. Furthermore, we cross-validate the number of
clusters using the held out graph. Our setup is very similar to link prediction experiments
in related literature [14].

Since these datasets are unlabeled, we cannot calculate precision or recall as before. Instead
for any score or affinity measure, we propose to perform link prediction experiments as
follows. For a randomly picked node we calculate the score from the node to everyone else.
We compute the AUC score of this vector against the edges in the test graph. We report
the average AUC for 100 randomly picked nodes. Table [I]shows that even in sparse regimes
common neighbors performs similar to benchmark algorithms.

6 Conclusions

Counting common neighbors is a particularly useful heuristic: it is fast and also works
well empirically. We prove the effectiveness of common neighbors for link prediction as
well as local clustering around a query node, under the stochastic blockmodel setting. In
particular, we show the existence of a semi-dense regime where common neighbors yields
the right cluster w.h.p, and a semi-sparse regime where an additional “cleaning” step is
required. Experiments with simulated as well as real-world datasets shows the efficacy of
our approach, including the importance of the cleaning step.

References

[1]
2]

12]
13]
14]
15]

[16]

L. Adamic and E. Adar. Friends and neighbors on the web. Social Networks, 25:211-230,
2003.

L. Backstrom and J. Leskovec. Supervised random walks: Predicting and recommend-
ing links in social networks. In Proceedings of the Fourth ACM International Conference
on Web Search and Data Mining, pages 635-644, New York, NY, USA, 2011. ACM.

P. J. Bickel and A. Chen. A nonparametric view of network models and newman girvan
and other modularities. Proceedings of the National Academy of Sciences of the Unites
States of America, 106(50):21068U21073, 2009.

K. Chaudhuri, F. C. Graham, and A. Tsiatas. Spectral clustering of graphs with general
degrees in the extended planted partition model. Journal of Machine Learning Research
- Proceedings Track, 23:35.1-35.23, 2012.

M. S. Handcock, A. E. Raftery, and J. M. Tantrum. Model-based clustering for social
networks. Journal of the Royal Statistical Society: Series A (Statistics in Society),
170(2):301-354, 2007.

P. W. Holland, K. Laskey, and S. Leinhardt. Stochastic blockmodels: First steps. Social
Networks, 5(2):109-137, 1983.

L. Katz. A new status index derived from sociometric analysis. In Psychometrika,
volume 18, pages 39-43, 1953.

D. Liben-Nowell and J. Kleinberg. The link prediction problem for social networks. In
Conference on Information and Knowledge Management. ACM, 2003.

L. Li and T. Zhou. Link prediction in complex networks: A survey. Physica A,
390(6):11501170, 2011.

F. McSherry. Spectral partitioning of random graphs. In FOCS, pages 529-537, 2001.

S. C. Olhede and P. J. Wolfe. Network histograms and universality of blockmodel
approximation. Proceedings of the National Academy of Sciences of the Unites States
of America, 111(41):14722-14727, 2014.

A. E. Raftery, M. S. Handcock, and P. D. Hoff. Latent space approaches to social
network analysis. Journal of the American Statistical Association, 15:460, 2002.

K. Rohe, S. Chatterjee, and B. Yu. Spectral clustering and the high-dimensional
stochastic blockmodel. Annals of Statistics, 39:1878-1915, 2011.

P. Sarkar and P. J. Bickel. Role of normalization in spectral clustering for stochastic
blockmodels. To appear in the Annals of Statistics., 2014.

P. Sarkar, D. Chakrabarti, and A. Moore. Theoretical justification of popular link
prediction heuristics. In Conference on Learning Theory. ACM, 2010.

P. Sarkar and A. Moore. A tractable approach to finding closest truncated-commute-
time neighbors in large graphs. In Proc. UAI 2007.

