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Abstract

Random walk kernels measure graph similarity by counting matching walks in
two graphs. In their most popular form of geometric random walk kernels, longer
walks of length k are downweighted by a factor of λk (λ < 1) to ensure con-
vergence of the corresponding geometric series. We know from the field of link
prediction that this downweighting often leads to a phenomenon referred to as
halting: Longer walks are downweighted so much that the similarity score is
completely dominated by the comparison of walks of length 1. This is a naı̈ve
kernel between edges and vertices. We theoretically show that halting may occur
in geometric random walk kernels. We also empirically quantify its impact in sim-
ulated datasets and popular graph classification benchmark datasets. Our findings
promise to be instrumental in future graph kernel development and applications of
random walk kernels.

1 Introduction

Over the last decade, graph kernels have become a popular approach to graph comparison [4, 5, 7, 9,
12, 13, 14], which is at the heart of many machine learning applications in bioinformatics, imaging,
and social-network analysis. The first and best-studied instance of this family of kernels are random
walk kernels, which count matching walks in two graphs [5, 7] to quantify their similarity. In par-
ticular, the geometric random walk kernel [5] is often used in applications as a baseline comparison
method on graph benchmark datasets when developing new graph kernels. These geometric random
walk kernels assign a weight λk to walks of length k, where λ < 1 is set to be small enough to
ensure convergence of the corresponding geometric series.

Related similarity measures have also been employed in link prediction [6, 10] as a similarity score
between vertices [8]. However, there is one caveat regarding these approaches. Walk-based simi-
larity scores with exponentially decaying weights tend to suffer from a problem referred to as halt-
ing [1]. They may downweight walks of lengths 2 and more, so much so that the similarity score is
ultimately completely dominated by walks of length 1. In other words, they are almost identical to
a simple comparison of edges and vertices, which ignores any topological information in the graph
beyond single edges. Such a simple similarity measure could be computed more efficiently outside
the random walk framework. Therefore, halting may affect both the expressivity and efficiency of
these similarity scores.

Halting has been conjectured to occur in random walk kernels [1], but its existence in graph kernels
has never been theoretically proven or empirically demonstrated. Our goal in this study is to answer
the open question if and when halting occurs in random walk graph kernels.

We theoretically show that halting may occur in graph kernels and that its extent depends on prop-
erties of the graphs being compared (Section 2). We empirically demonstrate in which simulated
datasets and popular graph classification benchmark datasets halting is a concern (Section 3). We
conclude by summarizing when halting occurs in practice and how it can be avoided (Section 4).

1



We believe that our findings will be instrumental in future applications of random walk kernels and
the development of novel graph kernels.

2 Theoretical Analysis of Halting

We theoretically analyze the phenomenon of halting in random walk graph kernels. First, we review
the definition of graph kernels in Section 2.1. We then present our key theoretical result regarding
halting in Section 2.2 and clarify the connection to linear kernels on vertex and edge label histograms
in Section 2.3.

2.1 Random Walk Kernels

Let G = (V,E, φ) be a labeled graph, where V is the vertex set, E is the edge set, and φ is a
mapping φ : V ∪ E → Σ with the range Σ of vertex and edge labels. For an edge (u, v) ∈ E, we
identify (u, v) and (v, u) if G is undirected. The degree of a vertex v ∈ V is denoted by d(v).

The direct (tensor) product G× = (V×, E×, φ×) of two graphs G = (V,E, φ) and G′ =
(V ′, E′, φ′) is defined as follows [1, 5, 14]:

V× = { (v, v′) ∈ V × V ′ | φ(v) = φ′(v′) },
E× = { ((u, u′), (v, v′)) ∈ V× × V× | (u, v) ∈ E, (u′, v′) ∈ E′, and φ(u, v) = φ′(u′, v′) },

and all labels are inherited, or φ×((v, v
′)) = φ(v) = φ′(v′) and φ×((u, u

′), (v, v′)) = φ(u, v) =
φ′(u′, v′). We denote by A× the adjacency matrix of G× and denote by δ× and ∆× the minimum
and maximum degrees of G×, respectively.

To measure the similarity between graphs G and G′, random walk kernels count all pairs of matching
walks on G and G′ [2, 5, 7, 11]. If we assume a uniform distribution for the starting and stopping
probabilities over the vertices of G and G′, the number of matching walks is obtained through the
adjacency matrix A× of the product graph G× [14]. For each k ∈ N, the k-step random walk kernel
between two graphs G and G′ is defined as:

Kk
×(G,G′) =

|V×|∑
i,j=1

[
k∑

l=0

λlA
l
×

]
ij

with a sequence of positive, real-valued weights λ0, λ1, λ2, . . . , λk assuming that A0
× = I, the

identity matrix. Its limit K∞
× (G,G′) is simply called the random walk kernel.

Interestingly, K∞
× can be directly computed if weights are the geometric series, or λl = λl, resulting

in the geometric random walk kernel:

KGR(G,G′) =

|V×|∑
i,j=1

[ ∞∑
l=0

λlAl
×

]
ij

=

|V×|∑
i,j=1

[
(I− λA×)

−1
]
ij
.

In the above equation, let (I−λA×)x = 0 for some value of x. Then, λA×x = x and (λA×)
lx =

x for any l ∈ N. If (λA×)
l converges to 0 as l → ∞, (I − λA×) is invertible since x becomes 0.

Therefore, (I− λA×)
−1 =

∑∞
l=0 λ

lAl
× from the equation (I− λA×)(I+ λA× + λ2A2

× + . . . ) =
I [5]. It is well-known that the geometric series of matrices, often called the Neumann series,
I+ λA× +(λA×)

2 + · · · converges only if the maximum eigenvalue of A×, denoted by µ×,max, is
strictly smaller than 1/λ. Therefore, the geometric random walk kernel KGR is well-defined only if
λ < 1/µ×,max.

There is a relationship for the minimum and maximum degrees δ× and ∆× of G× [3]: δ× ≤
d× ≤ µ×,max ≤ ∆×, where d× is the average of the vertex degrees of G×, or d× =
(1/|V×|)

∑
v∈V×

d(v). In practice, it is sufficient to set the parameter λ < 1/∆×.

In the inductive learning setting, since we do not know a priori target graphs that a learner will
receive in the future, λ should be small enough so λ < 1/µ×,max for any pair of unseen graphs.
Otherwise, we need to re-compute the full kernel matrix and re-train the learner. In the transductive
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setting, we are given a collection G of graphs beforehand. We can explicitly compute the upper
bound of λ, which is (maxG,G′∈G µ×,max)

−1 with the maximum of the maximum eigenvalues over
all pairs of graphs G,G′ ∈ G.

2.2 Halting

The geometric random walk kernel KGR is one of the most popular graph kernels, as it can take
walks of any length into account [5, 14]. However, the fact that it weights walks of length k by the
kth power of λ, together with the condition that λ < (µ×,max)

−1 < 1, immediately tells us that the
contribution of longer walks is significantly lowered in KGR. If the contribution of walks of length
2 and more to the kernel value is even completely dominated by the contribution of walks of length
1, we would speak of halting. It is as if the random walks halt after one step.

Here, we analyze under which conditions this halting phenomenon may occur in geometric random
walk kernels. We obtain the following key theoretical statement by comparing KGR to the one-step
random walk kernel K1

×.

Theorem 1 Let λ0 = 1 and λ1 = λ in the random walk kernel. For a pair of graphs G and G′,
K1

×(G,G′) ≤ KGR(G,G′) ≤ K1
×(G,G′) + ε,

where

ε = |V×|
(λ∆×)

2

1− λ∆×
,

and ε monotonically converges to 0 as λ → 0.

Proof. Let d(v) be the degree of a vertex v in G× and N(v) be the set of neighboring vertices of v,
that is, N(v) = {u ∈ V× | (u, v) ∈ E×}. Since A× is the adjacency matrix of G×, the following
relationships hold:

|V×|∑
i,j=1

[A×]ij =
∑
v∈V×

d(v) ≤ |V×|∆×,

|V×|∑
i,j=1

[A2
×]ij =

∑
v∈V×

∑
v′∈N(v)

d(v′) ≤ |V×|∆2
×,

|V×|∑
i,j=1

[A3
×]ij =

∑
v∈V×

∑
v′∈N(v)

∑
v′′∈N(v′)

d(v′′) ≤ |V×|∆3
× , . . . ,

|V×|∑
i,j=1

[An
×]ij ≤ |V×|∆n

×.

From the assumption that λ∆× < 1, we have

KGR(G,G′) =

|V×|∑
i,j=1

[I+ λA× + λ2A2
× + . . . ]ij = K1

×(G,G′) +

|V×|∑
i,j=1

[λ2A2
× + λ3A3

× + . . . ]ij

≤ K1
×(G,G′) + |V×|λ2∆2

×(1 + λ∆× + λ2∆2
× + . . . ) = K1

×(G,G′) + ε.

It is clear that ε monotonically goes to 0 when λ → 0. ■
Moreover, we can normalize ε by dividing KGR(G,G′) by K1

×(G,G′).

Corollary 1 Let λ0 = 1 and λ1 = λ in the random walk kernel. For a pair of graphs G and G′,

1 ≤ KGR(G,G′)

K1
×(G,G′)

≤ 1 + ε′,

where

ε′ =
(λ∆×)

2

(1− λ∆×)(1 + λd×)

and d× is the average of vertex degrees of G×.

Proof. Since we have

K1
×(G,G′) = |V×|+ λ

∑
v∈V×

d(v) = |V×|(1 + λd×),

it follows that ε/K1
×(G,G′) = ε′. ■

Theorem 1 can be easily generalized to any k-step random walk kernel Kk
×.
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Corollary 2 Let ε(k) = |V×|(λ∆×)
k/(1− λ∆×). For a pair of graphs G and G′, we have

Kk
×(G,G′) ≤ KGR(G,G′) ≤ Kk

×(G,G′) + ε(k + 1).

Our results imply that, in the geometric random walk kernel KGR, the contribution of walks of
length longer than 2 diminishes for very small choices of λ. This can easily happen in real-world
graph data, as λ is upper-bounded by the inverse of the maximum degree of the product graph.

2.3 Relationships to Linear Kernels on Label Histograms

Next, we clarify the relationship between KGR and basic linear kernels on vertex and edge label
histograms. We show that halting KGR leads to the convergence of it to such linear kernels.

Given a pair of graphs G and G′, let us introduce two linear kernels on vertex and edge histograms.
Assume that the range of labels Σ = {1, 2, . . . , s} without loss of generality. The vertex label
histogram of a graph G = (V,E, φ) is a vector f = (f1, f2, . . . , fs), such that fi = |{v ∈ V |
φ(v) = i}| for each i ∈ Σ. Let f and f ′ be the vertex label histograms of graphs G and G′,
respectively. The vertex label histogram kernel KVH(G,G′) is then defined as the linear kernel
between f and f ′:

KVH(G,G′) = ⟨f ,f ′⟩ =
∑s

i=1 fif
′
i .

Similarly, the edge label histogram is a vector g = (g1, g2, . . . , gs), such that gi = |{(u, v) ∈ E |
φ(u, v) = i}| for each i ∈ Σ. The edge label histogram kernel KEH(G,G′) is defined as the linear
kernel between g and g′, for respective histograms:

KEH(G,G′) = ⟨g, g′⟩ =
∑s

i=1 gig
′
i.

Finally, we introduce the vertex-edge label histogram. Let h = (h111, h211, . . . , hsss) be a his-
togram vector, such that hijk = |{(u, v) ∈ E | φ(u, v) = i, φ(u) = j, φ(v) = k}| for each
i, j, k ∈ Σ. The vertex-edge label histogram kernel KVEH(G,G′) is defined as the linear kernel
between h and h′ for the respective histograms of G and G′:

KVEH(G,G′) = ⟨h,h′⟩ =
∑s

i,j,k=1 hijkh
′
ijk.

Notice that KVEH(G,G′) = KEH(G,G′) if vertices are not labeled.

From the definition of the direct product of graphs, we can confirm the following relationships
between histogram kernels and the random walk kernel.

Lemma 1 For a pair of graphs G,G′ and their direct product G×, we have

KVH(G,G′) =
1

λ0
K0

×(G,G′) = |V×|.

KVEH(G,G′) =
1

λ1
K1

×(G,G′)− λ0

λ1
K0

×(G,G′) =

|V×|∑
i,j=1

[A×]ij .

Proof. The first equation KVH(G,G′) = |V×| can be proven from the following:

KVH(G,G′) =
∑
v∈V

|{ v′ ∈ V ′ | φ(v) = φ′(v′) }| = |{ (v, v′) ∈ V × V ′ | φ(v) = φ′(v′) }|

= |V×| =
1

λ0
K0

×(G,G′).

We can prove the second equation in a similar fashion:

KVEH(G,G′) = 2
∑

(u,v)∈E

|{ (u′, v′) ∈ E′ | φ(u, v) = φ′(u′, v′), φ(u) = φ′(u′), φ(v) = φ′(v′) }|

= 2

∣∣∣∣{ (
(u, v), (u′, v′)

)
∈ E × E′

∣∣∣∣ φ(u, v) = φ′(u′, v′),
φ(u) = φ′(u′), φ(v) = φ′(v′)

}∣∣∣∣
= 2|E×| =

|V×|∑
i,j=1

[A×]ij =
1

λ1
K1

×(G,G′)− λ0

λ1
K0

×(G,G′). ■
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Finally, let us define a new kernel

KH(G,G′) := KVH(G,G′) + λKVEH(G,G′) (1)

with a parameter λ. From Lemma 1, since KH(G,G′) = K1
×(G,G′) holds if λ0 = 1 and λ1 = λ

in the one-step random walk kernel K1
×, we have the following relationship from Theorem 1.

Corollary 3 For a pair of graphs G and G′, we have

KH(G,G′) ≤ KGR(G,G′) ≤ KH(G,G′) + ε,

where ε is given in Theorem 1.

To summarize, our results show that if the parameter λ of the geometric random walk kernel KGR is
small enough, random walks halt, and KGR reduces to KH, which finally converges to KVH. This
is based on vertex histograms only and completely ignores the topological structure of the graphs.

3 Experiments

We empirically examine the halting phenomenon of the geometric random walk kernel on popular
real-world graph benchmark datasets and semi-simulated graph data.

3.1 Experimental Setup

Environment. We used Amazon Linux AMI release 2015.03 and ran all experiments on a single
core of 2.5 GHz Intel Xeon CPU E5-2670 and 244 GB of memory. All kernels were implemented
in C++ with Eigen library and compiled with gcc 4.8.2.

Datasets. We collected five real-world graph classification benchmark datasets:1 ENZYMES, NCI1,
NCI109, MUTAG, and D&D, which are popular in the graph-classification literature [13, 14].
ENZYMES and D&D are proteins, and NCI1, NCI109, and MUTAG are chemical compounds.
Statistics of these datasets are summarized in Table 1, in which we also show the maximum of
maximum degrees of product graphs maxG,G′∈G ∆× for each dataset G. We consistently used
λmax = (maxG,G′∈G ∆×)

−1 as the upper bound of λ in geometric random walk kernels, in which
the gap was less than one order as the lower bound of λ. The average degree of the product graph,
the lower bound of λ, were 18.17, 7.93, 5.60, 6.21, and 13.31 for ENZYMES, NCI1, NCI109,
MUTAG, and DD, respectively.

Kernels. We employed the following graph kernels in our experiments: We used linear kernels on
vertex label histograms KVH, edge label histograms KEH, vertex-edge label histograms KVEH, and
the combination KH introduced in Equation (1). We also included a Gaussian RBF kernel between
vertex-edge label histograms, denoted as KVEH,G. From the family of random walk kernels, we
used the geometric random walk kernel KGR and the k-step random walk kernel Kk

×. Only the
number k of steps were treated as a parameter in Kk

× and λk was fixed to 1 for all k. We used
fix-point iterations [14, Section 4.3] for efficient computation of KGR. Moreover, we employed the
Weisfeiler-Lehman subtree kernel [13], denoted as KWL, as the state-of-the-art graph kernel, which
has a parameter h of the number of iterations.

3.2 Results on Real-World Datasets

We first compared the geometric random walk kernel KGR to other kernels in graph classification.
The classification accuracy of each graph kernel was examined by 10-fold cross validation with
multiclass C-support vector classification (libsvm2 was used), in which the parameter C for C-
SVC and a parameter (if one exists) of each kernel were chosen by internal 10-fold cross validation
(CV) on only the training dataset. We repeated the whole experiment 10 times and reported average

1The code and all datasets are available at:
http://www.bsse.ethz.ch/mlcb/research/machine-learning/graph-kernels.html

2http://www.csie.ntu.edu.tw/˜cjlin/libsvm/
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Table 1: Statistics of graph datasets, |ΣV | and |ΣE | denote the number of vertex and edge labels.

Dataset Size #classes avg.|V | avg.|E| max|V | max|E| |ΣV | |ΣE | max∆×

ENZYMES 600 6 32.63 62.14 126 149 3 1 65
NCI1 4110 2 29.87 32.3 111 119 37 3 16
NCI109 4127 2 29.68 32.13 111 119 38 3 17
MUTAG 188 2 17.93 19.79 28 33 7 11 10
D&D 1178 2 284.32 715.66 5748 14267 82 1 50
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Figure 1: Classification accuracy on real-world datasets (Means ± SD).

classification accuracies with their standard errors. The list of parameters optimized by the internal
CV is as follows: C ∈ {2−7, 2−5, . . . , 25, 27} for C-SVC, the width σ ∈ {10−2, . . . , 102} in
the RBF kernel KVEH,G, the number of steps k ∈ {1, . . . , 10} in Kk

×, the number of iterations
h ∈ {1, . . . , 10} in KWL, and λ ∈ {10−5, . . . , 10−2, λmax} in KH and KGR, where λmax =
(maxG,G′∈G ∆×)

−1.

Results are summarized in the left column of Figure 1 for ENZYMES, NCI1, and NCI109. We
present results on MUTAG and D&D in the Supplementary Notes, as different graph kernels do
not give significantly different results (e.g., [13]). Overall, we could observe two trends. First,
the Weisfeiler-Lehman subtree kernel KWL was the most accurate, which confirms results in [13],
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Figure 2: Distribution of log10 ε
′, where ε′ is defined in Corollary 1, in real-world datasets.
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Figure 3: Classification accuracy on semi-simulated datasets (Means ± SD).

Second, the two random walk kernels KGR and Kk
× show greater accuracy than naı̈ve linear kernels

on edge and vertex histograms, which indicates that halting is not occurring in these datasets. It is
also noteworthy that employing a Gaussian RBF kernel on vertex-edge histograms leads to a clear
improvement over linear kernels on all three datasets. On ENZYMES, the Gaussian kernel is even
on par with the random walks in terms of accuracy.

To investigate the effect of halting in more detail, we show the accuracy of KGR and KH in the
center column of Figure 1 for various choices of λ, from 10−5 to its upper bound. We can clearly
see that halting occurs for small λ, which greatly affects the performance of KGR. More specifically,
if it is chosen to be very small (smaller than 10−3 in our datasets), the accuracies are close to the
naı̈ve baseline KH that ignores the topological structure of graphs. However, accuracies are much
closer to that reached by the Weisfeiler-Lehman kernel if λ is close to its theoretical maximum. Of
course, the theoretical maximum of λ depends on unseen test data in reality. Therefore, we often
have to set λ conservatively so that we can apply the trained model to any unseen graph data.

Moreover, we also investigated the accuracy of the random walk kernel as a function of the number
of steps k of the random walk kernel Kk

×. Results are shown in the right column of Figure 1. In
all datasets, accuracy improves with each step, up to four to five steps. The optimal number of
steps in Kk

× and the maximum λ give similar accuracy levels. We also confirmed Theorem 1 that
conservative choices of λ (10−3 or less) give the same accuracy as a one-step random walk.

In addition, Figure 2 shows histograms of log10 ε
′, where ε′ is given in Corollary 1 for λ =

(max∆×)
−1 for all pairs of graphs in the respective datasets. The value ε′ can be viewed as the

deviation of KGR from KH in percentages. Although ε′ is small on average (about 0.1 percent in
ENZYMES and NCI datasets), we confirmed the existence of relatively large ε′ in the plot (more
than 1 percent), which might cause the difference between KGR and KH.

3.3 Results on Semi-Simulated Datasets

To empirically study halting, we generated semi-simulated graphs from our three benchmark
datasets (ENZYMES, NCI1, and NCI109) and compared the three kernels KGR, KH, and KVH.
In each dataset, we artificially generated denser graphs by randomly adding edges, in which
the number of new edges per graph was determined from a normal distribution with the mean
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m ∈ {10, 20, 50, 100} and the distribution of edge labels was unchanged. Note that the accuracy of
the vertex histogram kernel KVH stays always the same, as we only added edges.

Results are plotted in Figure 3. There are two key observations. First, by adding new false edges
to the graphs, the accuracy levels drop for both the random walk kernel and the histogram kernel.
However, even after adding 100 new false edges per graph, they are both still better than a naı̈ve
classifier that assigns all graphs to the same class (accuracy of 16.6 percent on ENZYMES and
approximately 50 percent on NCI1 and NCI109). Second, the geometric random walk kernel quickly
approaches the accuracy level of KH when new edges are added. This is a strong indicator that
halting occurs. As graphs become denser, the upper bound for λ gets smaller, and the accuracy of
the geometric random walk kernel KGR rapidly drops and converges to KH. This result confirms
Corollary 3, which says that both KGR and KH converge to KVH as λ goes to 0.

4 Discussion

In this work, we show when and where the phenomenon of halting occurs in random walk kernels.
Halting refers to the fact that similarity measures based on counting walks (of potentially infinite
length) often downweight longer walks so much that the similarity score is completely dominated
by walks of length 1, degenerating the random walk kernel to a simple kernel between edges and
vertices. While it had been conjectured that this problem may arise in graph kernels [1], we provide
the first theoretical proof and empirical demonstration of the occurrence and extent of halting in
geometric random walk kernels.

We show that the difference between geometric random walk kernels and simple edge kernels de-
pends on the maximum degree of the graphs being compared. With increasing maximum degree,
the difference converges to zero. We empirically demonstrate on simulated graphs that the compar-
ison of graphs with high maximum degrees suffers from halting. On real graph data from popular
graph classification benchmark datasets, the maximum degree is so low that halting can be avoided
if the decaying weight λ is set close to its theoretical maximum. Still, if λ is set conservatively to a
low value to ensure convergence, halting can clearly be observed, even on unseen test graphs with
unknown maximum degrees.

There is an interesting connection between halting and tottering [1, Section 2.1.5], a weakness of
random walk kernels described more than a decade ago [11]. Tottering is the phenomenon that a
walk of infinite length may go back and forth along the same edge, thereby creating an artificially
inflated similarity score if two graphs share a common edge. Halting and tottering seem to be oppos-
ing effects. If halting occurs, the effect of tottering is reduced and vice versa. Halting downweights
these tottering walks and counteracts the inflation of the similarity scores. An interesting point is that
the strategies proposed to remove tottering from walk kernels did not lead to a clear improvement
in classification accuracy [11], while we observed a strong negative effect of halting on the classi-
fication accuracy in our experiments (Section 3). This finding stresses the importance of studying
halting.

Our theoretical and empirical results have important implications for future applications of random
walk kernels. First, if the geometric random walk kernel is used on a graph dataset with known
maximum degree, λ should be close to the theoretical maximum. Second, simple baseline kernels
based on vertex and edge label histograms should be employed to check empirically if the random
walk kernel gives better accuracy results than these baselines. Third, particularly in datasets with
high maximum degree, we advise using a fixed-length-k random walk kernel rather than a geomet-
ric random walk kernel. Optimizing the length k by cross validation on the training dataset led to
competitive or superior results compared to the geometric random walk kernel in all of our experi-
ments. Based on these results and the fact that by definition the fixed-length kernel does not suffer
from halting, we recommend using the fixed-length random walk kernel as a comparison method in
future studies on novel graph kernels.

Acknowledgments. This work was supported by JSPS KAKENHI Grant Number 26880013 (MS),
the Alfried Krupp von Bohlen und Halbach-Stiftung (KB), the SNSF Starting Grant ‘Significant
Pattern Mining’ (KB), and the Marie Curie Initial Training Network MLPM2012, Grant No. 316861
(KB).

8



References

[1] Borgwardt, K. M. Graph Kernels. PhD thesis, Ludwig-Maximilians-University Munich, 2007.
[2] Borgwardt, K. M., Ong, C. S., Schönauer, S., Vishwanathan, S. V. N., Smola, A. J., and Kriegel,

H.-P. Protein function prediction via graph kernels. Bioinformatics, 21(suppl 1):i47–i56, 2005.
[3] Brualdi, R. A. The Mutually Beneficial Relationship of Graphs and Matrices. AMS, 2011.
[4] Costa, F. and Grave, K. D. Fast neighborhood subgraph pairwise distance kernel. In Proceed-

ings of the 27th International Conference on Machine Learning (ICML), 255–262, 2010.
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