
Generative Image Modeling Using Spatial LSTMs

Lucas Theis
University of Tübingen

72076 Tübingen, Germany
lucas@bethgelab.org

Matthias Bethge
University of Tübingen

72076 Tübingen, Germany
matthias@bethgelab.org

Abstract

Modeling the distribution of natural images is challenging, partly because of
strong statistical dependencies which can extend over hundreds of pixels. Re-
current neural networks have been successful in capturing long-range dependen-
cies in a number of problems but only recently have found their way into gener-
ative image models. We here introduce a recurrent image model based on multi-
dimensional long short-term memory units which are particularly suited for image
modeling due to their spatial structure. Our model scales to images of arbitrary
size and its likelihood is computationally tractable. We find that it outperforms the
state of the art in quantitative comparisons on several image datasets and produces
promising results when used for texture synthesis and inpainting.

1 Introduction

The last few years have seen tremendous progress in learning useful image representations [6].
While early successes were often achieved through the use of generative models [e.g., 13, 23, 30],
recent breakthroughs were mainly driven by improvements in supervised techniques [e.g., 20, 34].
Yet unsupervised learning has the potential to tap into the much larger source of unlabeled data,
which may be important for training bigger systems capable of a more general scene understand-
ing. For example, multimodal data is abundant but often unlabeled, yet can still greatly benefit
unsupervised approaches [36].

Generative models provide a principled approach to unsupervised learning. A perfect model of
natural images would be able to optimally predict parts of an image given other parts of an image and
thereby clearly demonstrate a form of scene understanding. When extended by labels, the Bayesian
framework can be used to perform semi-supervised learning in the generative model [19, 28] while it
is less clear how to combine other unsupervised approaches with discriminative learning. Generative
image models are also useful in more traditional applications such as image reconstruction [33, 35,
49] or compression [47].

Recently there has been a renewed strong interest in the development of generative image models
[e.g., 4, 8, 10, 11, 18, 24, 31, 35, 45, 47]. Most of this work has tried to bring to bear the flexibility of
deep neural networks on the problem of modeling the distribution of natural images. One challenge
in this endeavor is to find the right balance between tractability and flexibility. The present article
contributes to this line of research by introducing a fully tractable yet highly flexible image model.

Our model combines multi-dimensional recurrent neural networks [9] with mixtures of experts.
More specifically, the backbone of our model is formed by a spatial variant of long short-term
memory (LSTM) [14]. One-dimensional LSTMs have been particularly successful in modeling text
and speech [e.g., 38, 39], but have also been used to model the progression of frames in video [36]
and very recently to model single images [11]. In contrast to earlier work on modeling images,
here we use multi-dimensional LSTMs [9] which naturally lend themselves to the task of generative
image modeling due to their spatial structure and ability to capture long-range correlations.

1

Pixels

SLSTM units

SLSTM units

Pixels

RIDE

xij

x<ij

MCGSMA B

C

xij

x<ij

Figure 1: (A) We factorize the distribution of images such that the prediction of a pixel (black)
may depend on any pixel in the upper-left green region. (B) A graphical model representation of an
MCGSM with a causal neighborhood limited to a small region. (C) A visualization of our recurrent
image model with two layers of spatial LSTMs. The pixels of the image are represented twice and
some arrows are omitted for clarity. Through feedforward connections, the prediction of a pixel
depends directly on its neighborhood (green), but through recurrent connections it has access to the
information in a much larger region (red).

To model the distribution of pixels conditioned on the hidden states of the neural network, we use
mixtures of conditional Gaussian scale mixtures (MCGSMs) [41]. This class of models can be
viewed as a generalization of Gaussian mixture models, but their parametrization makes them much
more suitable for natural images. By treating images as instances of a stationary stochastic process,
this model allows us to sample and capture the correlations of arbitrarily large images.

2 A recurrent model of natural images

In the following, we first review and extend the MCGSM [41] and multi-dimensional LSTMs [9]
before explaining how to combine them into a recurrent image model. Section 3 will demonstrate
the validity of our approach by evaluating and comparing the model on a number of image datasets.

2.1 Factorized mixtures of conditional Gaussian scale mixtures

One successful approach to building flexible yet tractable generative models has been to use fully-
visible belief networks [21, 27]. To apply such a model to images, we have to give the pixels
an ordering and specify the distribution of each pixel conditioned on its parent pixels. Several
parametrizations have been suggested for the conditional distributions in the context of natural im-
ages [5, 15, 41, 44, 45]. We here review and extend the work of Theis et al. [41] who proposed to
use mixtures of conditional Gaussian scale mixtures (MCGSMs).

Let x be a grayscale image patch and xij be the intensity of the pixel at location ij. Further, let x<ij
designate the set of pixels xmn such that m < i or m = i and n < j (Figure 1A). Then

p(x;θ) =
∏
i,j p(xij | x<ij ;θ) (1)

for the distribution of any parametric model with parameters θ. Note that this factorization does
not make any independence assumptions but is simply an application of the probability chain rule.
Further note that the conditional distributions all share the same set of parameters. One way to
improve the representational power of a model is thus to endow each conditional distribution with
its own set of parameters,

p(x; {θij}) =
∏
i,j p(xij | x<ij ;θij). (2)

Applying this trick to mixtures of Gaussian scale mixtures (MoGSMs) yields the MCGSM [40].
Untying shared parameters can drastically increase the number of parameters. For images, it can
easily be reduced again by adding assumptions. For example, we can limit x<ij to a smaller neigh-
borhood surrounding the pixel by making a Markov assumption. We will refer to the resulting set of
parents as the pixel’s causal neighborhood (Figure 1B). Another reasonable assumption is stationar-
ity or shift invariance, in which case we only have to learn one set of parameters θij which can then

2

be used at every pixel location. Similar to convolutions in neural networks, this allows the model
to easily scale to images of arbitrary size. While this assumption reintroduces parameter sharing
constraints into the model, the constraints are different from the ones induced by the joint mixture
model.

The conditional distribution in an MCGSM takes the form of a mixture of experts,

p(xij | x<ij ,θij) =
∑
c,s

p(c, s | x<ij ,θij)︸ ︷︷ ︸
gate

p(xij | x<ij , c, s,θij)︸ ︷︷ ︸
expert

, (3)

where the sum is over mixture component indices c corresponding to different covariances and scales
s corresponding to different variances. The gates and experts in an MCGSM are given by

p(c, s | x<ij) ∝ exp
(
ηcs − 1

2e
αcsx><ijKcx<ij

)
, (4)

p(xij | x<ij , c, s) = N (xij ;a
>
c x<ij , e

−αcs), (5)

where Kc is positive definite. The number of parameters of an MCGSM still grows quadratically
with the dimensionality of the causal neighborhood. To further reduce the number of parameters, we
introduce a factorized form of the MCGSM with additional parameter sharing by replacing Kc with∑
n β

2
cnbnb

>
n . This factorized MCGSM allows us to use larger neighborhoods and more mixture

components. A detailed derivation of a more general version which also allows for multivariate
pixels is given in Supplementary Section 1.

2.2 Spatial long short-term memory

In the following we briefly describe the spatial LSTM (SLSTM), a special case of the multi-
dimensional LSTM first described by Graves & Schmidhuber [9]. At the core of the model are
memory units cij and hidden units hij . For each location ij on a two-dimensional grid, the
operations performed by the spatial LSTM are given by

cij = gij � iij + ci,j−1 � f cij + ci−1,j � frij ,

hij = tanh (cij � oij) ,

gij
oij
iij
frij
f cij

 =

tanh
σ
σ
σ
σ

TA,b

(
x<ij
hi,j−1
hi−1,j

)
, (6)

where σ is the logistic sigmoid function, � indicates a pointwise product, and TA,b is an affine
transformation which depends on the only parameters of the network A and b. The gating units iij
and oij determine which memory units are affected by the inputs through gij , and which memory
states are written to the hidden units hij . In contrast to a regular LSTM defined over time, each
memory unit of a spatial LSTM has two preceding states ci,j−1 and ci−1,j and two corresponding
forget gates f cij and frij .

2.3 Recurrent image density estimator

We use a grid of SLSTM units to sequentially read relatively small neighborhoods of pixels from
the image, producing a hidden vector at every pixel. The hidden states are then fed into a factorized
MCGSM to predict the state of the corresponding pixel, that is, p(xij | x<ij) = p(xij | hij). Impor-
tantly, the state of the hidden vector only depends on pixels in x<ij and does not violate the factor-
ization given in Equation 1. Nevertheless, the recurrent network allows this recurrent image density
estimator (RIDE) to use pixels of a much larger region for prediction, and to nonlinearly transform
the pixels before applying the MCGSM. We can further increase the representational power of the
model by stacking spatial LSTMs to obtain a deep yet still completely tractable recurrent image
model (Figure 1C).

2.4 Related work

Larochelle & Murray [21] derived a tractable density estimator (NADE) in a manner similar to how
the MCGSM was derived [41], but using restricted Boltzmann machines (RBM) instead of mixture
models as a starting point. In contrast to the MCGSM, NADE tries to keep the weight sharing

3

constraints induced by the RBM (Equation 1). Uria et al. extended NADE to real values [44] and
introduced hidden layers to the model [45]. Gregor et al. [10] describe a related autoregressive
network for binary data which additionally allows for stochastic hidden units.

Gregor et al. [11] used one-dimensional LSTMs to generate images in a sequential manner (DRAW).
Because the model was defined over Bernoulli variables, normalized RGB values had to be treated
as probabilities, making a direct comparison with other image models difficult. In contrast to our
model, the presence of stochastic latent variables in DRAW means that its likelihood cannot be
evaluated but has to be approximated.

Ranzato et al. [31] and Srivastava et al. [37] use one-dimensional recurrent neural networks to model
videos, but recurrency is not used to describe the distribution over individual frames. Srivastava et
al. [37] optimize a squared error corresponding to a Gaussian assumption, while Ranzato et al. [31]
try to side-step having to model pixel intensities by quantizing image patches. In contrast, here we
also try to solve the problem of modeling pixel intensities by using an MCGSM, which is equipped
to model heavy-tailed as well as multi-modal distributions.

3 Experiments

RIDE was trained using stochastic gradient descent with a batch size of 50, momentum of 0.9, and
a decreasing learning rate varying between 1 and 10−4. After each pass through the training set,
the MCGSM of RIDE was finetuned using L-BFGS for up to 500 iterations before decreasing the
learning rate. No regularization was used except for early stopping based on a validation set. Except
where indicated otherwise, the recurrent model used a 5 pixel wide neighborhood and an MCGSM
with 32 components and 32 quadratic features (bn in Section 2.1). Spatial LSTMs were imple-
mented using the Caffe framework [17]. Where appropriate, we augmented the data by horizontal
or vertical flipping of images.

We found that conditionally whitening the data greatly sped up the training process of both models.
Letting y represent a pixel and x its causal neighborhood, conditional whitening replaces these with

x̂ = C
− 1

2
xx (x−mx) , ŷ = W(y −CyxC

− 1
2

xx x̂−my), W = (Cyy −CyxC
−1
xxC

>
yx)
− 1

2 , (7)

where Cyx is the covariance of y and x, and mx is the mean of x. In addition to speeding up train-
ing, this variance normalization step helps to make the learning rates less dependent on the training
data. When evaluating the conditional log-likelihood, we compensate for the change in variance by
adding the log-Jacobian log |detW|. Note that this preconditioning introduces a shortcut connec-
tion from the pixel neighborhood to the predicted pixel which is not shown in Figure 1C.

3.1 Ensembles

Uria et al. [45] found that forming ensembles of their autoregressive model over different pixel
orderings significantly improved performance. We here consider a simple trick to produce an en-
semble without the need for training different models or to change training procedures. If Tk are
linear transformations leaving the targeted image distribution invariant (or approximately invariant)
and if p is the distribution of a pretrained model, then we form the ensemble 1

K

∑
k p(Tkx)|detTk|.

Note that this is simply a mixture model over images x. We considered rotating as well as flipping
images along the horizontal and vertical axes (yielding an ensemble over 8 transformations). While
it could be argued that most of these transformations do not leave the distribution over natural images
invariant, we nevertheless observed a noticeable boost in performance.

3.2 Natural images

Several recent image models have been evaluated on small image patches sampled from the Berkeley
segmentation dataset (BSDS300) [25]. Although our model’s strength lies in its ability to scale to
large images and to capture long-range correlations, we include results on BSDS300 to make a
connection to this part of the literature. We followed the protocol of Uria et al. [44]. The RGB
images were turned to grayscale, uniform noise was added to account for the integer discretization,
and the resulting values were divided by 256. The training set of 200 images was split into 180
images for training and 20 images for validation, while the test set contained 100 images. We

4

Model 63 dim.
[nat]

64 dim.
[bit/px]

∞ dim.
[bit/px]

RNADE [44] 152.1 3.346 -
RNADE, 1 hl [45] 143.2 3.146 -
RNADE, 6 hl [45] 155.2 3.416 -
EoRNADE, 6 layers [45] 157.0 3.457 -
GMM, 200 comp. [47, 50] 153.7 3.360 -
STM, 200 comp. [46] 155.3 3.418 -
Deep GMM, 3 layers [47] 156.2 3.439 -
MCGSM, 16 comp. 155.1 3.413 3.688
MCGSM, 32 comp. 155.8 3.430 3.706
MCGSM, 64 comp. 156.2 3.439 3.716
MCGSM, 128 comp. 156.4 3.443 3.717
EoMCGSM, 128 comp. 158.1 3.481 3.748
RIDE, 1 layer 150.7 3.293 3.802
RIDE, 2 layers 152.1 3.346 3.869
EoRIDE, 2 layers 154.5 3.400 3.899

Table 1: Average log-likelihoods and log-likelihood
rates for image patches (without/with DC comp.) and
large images extracted from BSDS300 [25].

Model 256 dim.
[bit/px]

∞ dim.
[bit/px]

GRBM [13] 0.992 -
ICA [1, 48] 1.072 -
GSM 1.349 -
ISA [7, 16] 1.441 -
MoGSM, 32 comp. [40] 1.526 -
MCGSM, 32 comp. 1.615 1.759
RIDE, 1 layer, 64 hid. 1.650 1.816
RIDE, 1 layer, 128 hid. - 1.830
RIDE, 2 layers, 64 hid. - 1.829
RIDE, 2 layers, 128 hid. - 1.839
EoRIDE, 2 layers, 128 hid. - 1.859

Table 2: Average log-likelihood rates for im-
age patches and large images extracted from
van Hateren’s dataset [48].

extracted 8 by 8 image patches from each set and subtracted the average pixel intensity such that
each patch’s DC component was zero. Because the resulting image patches live on a 63 dimensional
subspace, the bottom-right pixel was discarded. We used 1.6 · 106 patches for training, 1.8 · 105
patches for validation, and 106 test patches for evaluation.

MCGSMs have not been evaluated on this dataset and so we first tested MCGSMs by training a
single factorized MCGSM for each pixel conditioned on all previous pixels in a fixed ordering.
We find that already an MCGSM (with 128 components and 48 quadratic features) outperforms all
single models including a deep Gaussian mixture model [46] (Table 1). Our ensemble of MCGSMs1

outperforms an ensemble of RNADEs with 6 hidden layers, which to our knowledge is currently the
best result reported on this dataset.

Training the recurrent image density estimator (RIDE) on the 63 dimensional dataset is more cum-
bersome. We tried padding image patches with zeros, which was necessary to be able to compute a
hidden state at every pixel. The bottom-right pixel was ignored during training and evaluation. This
simple approach led to a reduction in performance relative to the MCGSM (Table 1). A possible
explanation is that the model cannot distinguish between pixel intensities which are zero and zeros
in the padded region. Supplying the model with additional binary indicators as inputs (one for each
neighborhood pixel) did not solve the problem.

However, we found that RIDE outperforms the MCGSM by a large margin when images were
treated as instances of a stochastic process (that is, using infinitely large images). MCGSMs were
trained for up to 3000 iterations of L-BFGS on 106 pixels and corresponding causal neighborhoods
extracted from the training images. Causal neighborhoods were 9 pixels wide and 5 pixels high.
RIDE was trained for 8 epochs on image patches of increasing size ranging from 8 by 8 to 22 by
22 pixels (that is, gradients were approximated as in backpropagation through time [32]). The right
column in Table 1 shows average log-likelihood rates for both models. Analogously to the entropy
rate [3], we have for the expected log-likelihood rate:

lim
N→∞

E
[
log p(x)/N2

]
= E[log p(xij | x<ij)], (8)

where x is an N by N image patch. An average log-likelihood rate can be directly computed for the
MCGSM, while for RIDE and ensembles we approximated it by splitting the test images into 64 by
64 patches and evaluating on those.

To make the two sets of numbers more comparable, we transformed nats as commonly reported on
the 63 dimensional data, `1:63, into a bit per pixel log-likelihood rate using the formula (`1:63+`DC+
ln |detA|)/64/ ln(2). This takes into account a log-likelihood for the missing DC component,

1Details on how the ensemble of transformations can be applied despite the missing bottom-right pixel are
given in Supplementary Section 2.1.

5

Model [bit/px]
MCGSM, 12 comp. [41] 1.244
MCGSM, 32 comp. 1.294
Diffusion [35] 1.489
RIDE, 64 hid., 1 layer 1.402
RIDE, 64 hid., 1 layer, ext. 1.416
RIDE, 64 hid., 2 layers 1.438
RIDE, 64 hid., 3 layers 1.454
RIDE, 128 hid., 3 layers 1.489
EoRIDE, 128 hid., 3 layers 1.501

Table 3: Average log-likelihood rates on dead
leaf images. A deep recurrent image model is
on a par with a deep diffusion model [35]. Us-
ing ensembles we are able to further improve the
likelihood.

3 5 7 9 11 13
1

1.1

1.2

1.3

1.4

1.5

Neighborhood size

Lo
g-

lik
el

ih
oo

d
[b

it/
px

]

MCGSM
RIDE

Figure 2: Model performance on dead leaves
as a function of the causal neighborhood width.
Simply increasing the neighborhood size of the
MCGSM is not sufficient to improve perfor-
mance.

`DC = 0.5020, and the Jacobian of the transformations applied during preprocessing, ln |detA| =
−4.1589 (see Supplementary Section 2.2 for details). The two rates in Table 1 are comparable in the
sense that their differences express how much better one model would be at losslessly compressing
BSDS300 test images than another, where patch-based models would compress patches of an image
independently. We highlighted the best result achieved with each model in gray. Note that most
models in this list do not scale as well to large images as the MCGSM or RIDE (GMMs in particular)
and are therefore unlikely to benefit as much from increasing the patch size.

A comparison of the log-likelihood rates reveals that an MCGSM with 16 components applied to
large images already captures more correlations than any model applied to small image patches.
The difference is particularly striking given that the factorized MCGSM has approximately 3,000
parameters while a GMM with 200 components has approximately 400,000 parameters. Using an
ensemble of RIDEs, we are able to further improve this number significantly (Table 1).

Another dataset frequently used to test generative image models is the dataset published by van
Hateren and van der Schaaf [48]. Details of the preprocessing used in this paper are given in Sup-
plementary Section 3. We reevaluated several models for which the likelihood has been reported
on this dataset [7, 40, 41, 42]. Likelihood rates as well as results on 16 by 16 patches are given in
Table 2. Because of the larger patch size, RIDE here already outperforms the MCGSM on patches.

3.3 Dead leaves

Dead leaf images are generated by superimposing disks of random intensity and size on top of each
other [22, 26]. This simple procedure leads to images which already share many of the statistical
properties and challenges of natural images, such as occlusions and long-range correlations, while
leaving out others such as non-stationary statistics. They therefore provide an interesting test case
for natural image models.

We used a set of 1,000 images, where each image is 256 by 256 pixels in size. We compare the
performance of RIDE to the MCGSM and a very recently introduced deep multiscale model based
on a diffusion process [35]. The same 100 images as in previous literature [35, 41] were used
for evaluation and we used the remaining images for training. We find that the introduction of an
SLSTM with 64 hidden units greatly improves the performance of the MCGSM. We also tried an
extended version of the SLSTM which included memory units as additional inputs (right-hand side
of Equation 6). This yielded a small improvement in performance (5th row in Table 3) while adding
layers or using more hidden units led to more drastic improvements. Using 3 layers with 128 hidden
units in each layer, we find that our recurrent image model is on a par with the deep diffusion model.
By using ensembles, we are able to beat all previously published results for this dataset (Table 3).

Figure 2 shows that the improved performance of RIDE is not simply due to an effectively larger
causal neighborhood but that the nonlinear transformations performed by the SLSTM units matter.
Simply increasing the neighborhood size of an MCGSM does not yield the same improvement.
Instead, the performance quickly saturates. We also find that the performance of RIDE slightly
deteriorates with larger neighborhoods, which is likely caused by optimization difficulties.

6

D106 D93 D12 D104 D34 D110

Figure 3: From top to bottom: A 256 by 256 pixel crop of a texture [2], a sample generated by
an MCGSM trained on the full texture [7], and a sample generated by RIDE. This illustrates that
our model can capture a variety of different statistical patterns. The addition of the recurrent neural
network seems particularly helpful where there are strong long-range correlations (D104, D34).

3.4 Texture synthesis and inpainting

To get an intuition for the kinds of correlations which RIDE can capture or fails to capture, we tried
to use it to synthesize textures. We used several 640 by 640 pixel textures published by Brodatz [2].
The textures were split into sixteen 160 by 160 pixel regions of which 15 were used for training and
one randomly selected region was kept for testing purposes. RIDE was trained for up to 6 epochs
on patches of increasing size ranging from 20 by 20 to 40 by 40 pixels.

Samples generated by an MCGSM and RIDE are shown in Figure 3. Both models are able to
capture a wide range of correlation structures. However, the MCGSM seems to struggle with tex-
tures having bimodal marginal distributions and periodic patterns (D104, D34, and D110). RIDE
clearly improves on these textures, although it also struggles to faithfully reproduce periodic struc-
ture. Possible explanations include that LSTMs are not well suited to capture periodicities, or that
these failures are not penalized strong enough by the likelihood. For some textures, RIDE produces
samples which are nearly indistinguishable from the real textures (D106 and D110).

One application of generative image models is inpainting [e.g., 12, 33, 35]. As a proof of concept,
we used our model to inpaint a large (here, 71 by 71 pixels) region in textures (Figure 4). Missing
pixels were replaced by sampling from the posterior of RIDE. Unlike the joint distribution, the
posterior distribution cannot be sampled directly and we had to resort to Markov chain Monte Carlo
methods. We found the following Metropolis within Gibbs [43] procedure to be efficient enough.
The missing pixels were initialized via ancestral sampling. Since ancestral sampling is cheap, we
generated 5 candidates and used the one with the largest posterior density. Following initialization,
we sequentially updated overlapping 5 by 5 pixel regions via Metropolis sampling. Proposals were
generated via ancestral sampling and accepted using the acceptance probability

α = min
{
1, p(x

0)
p(x)

p(xij |x<ij)
p(x0

ij |x<ij)

}
, (9)

where here xij represents a 5 by 5 pixel patch and x′ij its proposed replacement. Since evaluating the
joint and conditional densities on the entire image is costly, we approximated p using RIDE applied
to a 19 by 19 pixel patch surrounding ij. Randomly flipping images vertically or horizontally in
between the sampling further helped. Figure 4 shows results after 100 Gibbs sampling sweeps.

4 Conclusion

We have introduced RIDE, a deep but tractable recurrent image model based on spatial LSTMs.
The model exemplifies how recent insights in deep learning can be exploited for generative image

7

