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Abstract
Neural population activity often exhibits rich variability. This variability can arise
from single-neuron stochasticity, neural dynamics on short time-scales, as well as
from modulations of neural firing properties on long time-scales, often referred
to as neural non-stationarity. To better understand the nature of co-variability in
neural circuits and their impact on cortical information processing, we introduce
a hierarchical dynamics model that is able to capture both slow inter-trial modula-
tions in firing rates as well as neural population dynamics. We derive a Bayesian
Laplace propagation algorithm for joint inference of parameters and population
states. On neural population recordings from primary visual cortex, we demon-
strate that our model provides a better account of the structure of neural firing than
stationary dynamics models.

1 Introduction

Neural spiking activity recorded from populations of cortical neurons can exhibit substantial vari-
ability in response to repeated presentations of a sensory stimulus [1]. This variability is thought to
arise both from dynamics generated endogenously within the circuit [2] as well as from variations in
internal and behavioural states [3, 4, 5, 6, 7]. An understanding of how the interplay between sensory
inputs and endogenous dynamics shapes neural activity patterns is essential for our understanding
of how information is processed by neuronal populations. Multiple statistical [8, 9, 10, 11, 12, 13]
and mechanistic [14] models for characterising neuronal population dynamics have been developed.

In addition to these dynamics which take place on fast time-scales (milliseconds up to few seconds),
there are also processes modulating neural firing activity which take place on much slower time-
scales (seconds to hours). Slow drifts in rates across an experiment can be caused by fluctuations in
arousal, anaesthesia level or other physiological properties of the experimental preparation [15, 16,
17]. Furthermore, processes such as learning and short-term plasticity can lead to slow changes in
neural firing properties [18]. The statistical structure of these slow fluctuations has been modelled
using state-space models and related techniques [19, 20, 21, 22, 23]. Recent experimental findings
have shown that slow, multiplicative fluctuations in neural excitability are a dominant source of
neural covariability in extracellular multi-cell recordings from cortical circuits [5, 17, 24].

To accurately capture the the structure of neural dynamics and to disentangle the contributions of
slow and fast modulatory processes to neural variability and co-variability, it is therefore important
to develop models that can capture neural dynamics both on fast (i.e., within experimental trials) and
slow (i.e., across trials) time-scales. Few such models exist: Czanner et al. [25] presented a statistical
model of single-neuron firing in which within-trial dynamics are modelled by (generalised) linear
coupling from the recent spiking history of each neuron onto its instantaneous firing rate, and across-
trial dynamics were modelled by defining a random walk model over parameters. More recently,
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Mangion et al [26] presented a latent linear dynamical system model with Poisson observations
(PLDS, [8, 11, 13]) with a one-dimensional latent space, and used a heuristic filtering approach
for tracking parameters, again based on a random-walk model. Rabinowitz et al [27] presented
a technique for identifying slow modulatory inputs from the recordings of single neurons using a
Gaussian Process model and an efficient inference technique using evidence optimisation.

Here, we present a hierarchical model that consists of a latent dynamical system with Poisson ob-
servations (PLDS) to model neural population dynamics, combined with a Gaussian process (GP)
[28] to model modulations in firing rates or model-parameters across experimental trials. The use
of an exponential nonlinearity implies that latent modulations have a multiplicative effect on neural
firing rates. Compared to previous models using random walks over parameters, using a GP is a
more flexible and powerful way of modelling the statistical structure of non-stationarity, and makes
it possible to use hyper-parameters that model the variability and smoothness of parameter-changes
across time.

In this paper, we focus on a concrete variant of this general model: We introduce a new set of
variables which control neural firing rate on each trial to capture non-stationarity in firing rates.
We derive a Bayesian Laplace propagation method for inferring the posterior distributions over the
latent variables and the parameters from population recordings of spiking activity. Our approach
generalises the 1-dimensional latent states in [26] to models with multi-dimensional states, as well
as to a Bayesian treatment of non-stationarity based on Gaussian Process priors. The paper is or-
ganised as follows: In Sec. 2, we introduce our framework for constructing non-stationary neural
population models, as well as the concrete model we will use for analyses. In Sec. 3, we derive
the Bayesian Laplace propagation algorithm. In Sec. 4, we show applications to simulated data and
neural population recordings from visual cortex.

2 Hierarchical non-stationary models of neural population dynamics

We start by introducing a hierarchical model for capturing short time-scale population dynamics as
well as long time-scale non-stationarities in firing rates. Although we use the term “non-stationary”
to mean that the system is best described by parameters that change over time (which is how the term
is often used in the context of neural data analysis), we note that the distribution over parameters
can be described by a stochastic process which might be strictly stationary in the statistical sense1.

Modelling framework We assume that the neural population activity of p neurons yt ∈ Rp de-
pends on a k-dimensional latent state xt ∈ Rk and a modulatory factor h(i) ∈ Rk which is different
for each trial i = {1, . . . , r}. The latent state x models short-term co-variability of spiking activity
and the modulatory factor h models slowly varying mean firing rates across experimental trials.

We model neural spiking activity as conditionally Poisson given the latent state xt and a modulator
h(i), with a log firing rate which is linear in parameters and latent factors,

yt|xt, C,h(i),d ∼ Poiss(yt| exp(C(xt + h(i)) + d)),

where the loading matrix C ∈ Rp×k specifies how each neuron is related to the latent state and the
modulator, d ∈ Rp is an offset term that controls the mean firing rate of each cell, and Poiss(yt|w)
means that the ith entry of yt is drawn independently from Poisson distribution with mean wi (the
ith entry of w). Because of the use of an exponential firing-rate nonlinearity, latent factors have a
multiplicative effect on neural firing rates, as has been observed experimentally [17, 5].

Following [11, 13, 26], we assume that the latent dynamics evolve according to a first-order autore-
gressive process with Gaussian innovations,

xt|xt−1, A,B,Q ∼ N (xt|Axt−1 +But, Q).

Here, we allow for sensory stimuli (or experimental covariates), ut ∈ Rd to influence the latent
states linearly. The dynamics matrix A ∈ Rk×k determines the state evolution, B ∈ Rk×d models
the dependence of latent states on external inputs, and Q ∈ Rk×k is the covariance of the innovation
noise. We set Q to be the identity matrix, Q = Ik as in [29], and we assume x

(i)
0 ∼ N (0, Ik).

1A stochastic process is strict-sense stationary if its joint distribution over any two time-points t and s only
depends on the elapsed time t− s.
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Figure 1: Schematic of hierarchical non-
stationary Poisson observation Latent Dynam-
ical System (N-PLDS) for capturing non-
stationarity in mean firing rates. The parameter
h slowly varies across trials and leads to fluc-
tuations in mean firing rates.

The parameters in this model are θ = {A,B,C,d,h(1:r)}. We refer to this general model as non-
stationary PLDS (N-PLDS). Different variants of N-PLDS can be constructed by placing priors on
individual parameters which allow them to vary across trials (in which case they would then depend
on the trial index i) or by omitting different components of the model2.

For the modulator h, we assume that it varies across trials according to a GP with mean mh and
(modified) squared exponential kernel, h(i) ∼ GP(mh,K(i, j)),where the (i, j)th block ofK (size
k× k) is given by K(i, j) = (σ2 + εδi,j) exp

(
− 1

2τ2 (i− j)2
)
Ik. Here, we assume the independent

noise-variance on the diagonal (ε) to be constant and small as in [30]. When σ2 = ε = 0, the
modulator vanishes, which corresponds to the conventional PLDS model with fixed parameters [11,
13]. When σ2 > 0, the mean firing rates vary across trials, and the parameter τ determines the time-
scale (in units of ‘trials’) of these fluctuations. We impose ridge priors on the model parameters (see
Appendix for details), so that the total set of hyperparameters of the model is Φ = {mh, σ

2, τ2,φ},
where φ is the set of ridge parameters.

3 Bayesian Laplace propagation

Our goal is to infer parameters and latent variables in the model. The exact posterior distribution
is analytically intractable due to the use of a Poisson likelihood, and we therefore assume the joint
posterior over the latent variables and parameters to be factorising,

p(θ,x
(1:r)
1:T |y

(1:r)
1:T ,Φ) ∝ p(y

(1:r)
1:T |x

(1:r)
1:T ,θ)p(x

(1:r)
1:T |θ,Φ)p(θ|Φ) ≈ q(θ,x

(1:r)
1:T ) = qθ(θ)

r∏
i=1

qx(x
(i)
0:T ).

This factorisation simplifies computing the integrals involved in calculating a bound on the marginal
likelihood of the observations,

log p(y
(1:r)
1:T |Φ) = log

∫
dθ dx

(1:r)
1:T p(θ,x

(1:r)
1:T ,y

(1:r)
1:T |Φ),

≥
∫

dθ dx
(1:r)
1:T q(θ,x

(1:r)
1:T ) log

p(θ,x
(1:r)
1:T ,y

(1:r)
1:T |Φ)

q(θ,x
(1:r)
1:T )

. (1)

Similar to variational Bayesian expectation maximization (VBEM) algorithm [29], our inference
procedure consists of the following three steps: (1) we compute the approximate posterior over
latent variables qx(x

(1:r)
0:T ) by integrating out the parameters

qx(x
(1:r)
0:T ) ∝ exp

[∫
dθqθ(θ) log p(x

(1:r)
1:T ,y

(1:r)
1:T |θ)

]
, (2)

which is performed by forward-backward message passing relying on the order-1 dependency in
latent states. Then, (2) we compute the approximate posterior over parameters qθ(θ) by integrating
out the latent variables,

qθ(θ) ∝ p(θ) exp

[∫
dx

(1:r)
0:T qx(x

(1:r)
0:T ) log p(x

(1:r)
0:T ,y

(1:r)
1:T |θ)

]
, (3)

and (3) we update the hyperparameters by computing the gradients of the bound on the eq. 1 after
integrating out both latent variables and parameters. We iterate the three steps until convergence.

Unfortunately, the integrals in both eq. 2 and eq. 3 are not analytically tractable, even with the Gaus-
sian distributions for qx(x

(1:r)
0:T ) and qθ(θ). For tractability and fast computation of messages in

2A second variant of the model, in which the dynamics matrix determining the spatio-temporal correlations
in the population varies across trials, is described in the Appendix.
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the forward-backward algorithm for eq. 2, we utilise the so-called Laplace propagation or Laplace
expectation propagation (Laplace-EP) [31, 32, 33], which makes a Gaussian approximation to each
message based on Laplace approximation, then propagates the messages forward and backward.
While Laplace propagation in the prior work is commonly coupled with point estimates of parame-
ters, we consider the posterior distribution over parameters. For this reason, we refer to our inference
method as Bayesian Laplace propagation. The use of approximate message passing in the Laplace
propagation implies that there is no longer a guarantee that the lower bound will increase monoton-
ically in each iteration, which is the main difference between our method and the VBEM algorithm.
We therefore monitored the convergence of our algorithm by computing one-step ahead prediction
scores [13]. The algorithm proceeds by iterating the following three steps:

(1) Approximating the posterior over latent states: Using the first-order dependency in latent
states, we derive a sequential forward/backward algorithm to obtain qx(x

(1:r)
0:T ), generalising the

approach of [26] to multi-dimensional latent states. Since this step decouples across trials, it is easy
to parallelize, and we omit the trial-indices for clarity. We note that computation of the approximate
posterior in this step is not more expensive than Bayesian inference of the latent state in a ‘fixed
parameter’ PLDS. The forward message α(xt) at time t is given by

α(xt) ∝
∫
dxt−1α(xt−1) exp

[
〈log(p(xt|xt−1)p(yt|xt))〉qθ(θ)

]
. (4)

Assuming that the forward message at time t− 1 denoted by α(xt−1) is Gaussian, the Poisson
likelihood term will render the forward message at time t non-Gaussian, but we will approximate
α(xt) as a Gaussian using the first and second derivatives of the right-hand side of eq. 4 with respect
to xt.

Similarly, the backward message at time t− 1 is given by

β(xt−1) ∝
∫
dxtβ(xt) exp

(
〈log(p(xt|xt−1)p(yt|xt))〉qθ(θ)

)
, (5)

which we also approximate to a Gaussian for tractability in computing backward messages.

Using the forward/backward messages, we compute the posterior marginal distribution over latent
variables (See Appendix). We need to compute the cross-covariance between neighbouring latent
variables to obtain the sufficient statistics of latent variables (which we will need for updating the
posterior over parameters). The pairwise marginals of latent variables are given by

p(xt,xt+1|y1:T ) ∝ β(xt+1) exp
(
〈log(p(yt+1|xt+1)p(xt+1|xt))〉qθ(θ)

)
α(xt), (6)

which we approximate as a joint Gaussian distribution by using the first/second derivatives of eq. 6
and extracting the cross-covariance term from the joint covariance matrix.

(2) Approximating the posterior over parameters: After inferring the posterior over latent
states, we update the posterior distribution over the parameters. The posterior over parameters fac-
torizes as

qθ(θ) = qa,b(a,b) qc,d,h(c,d,h(1:r)), (7)

where used the vectorized notations b = vec(B>) and c = vec(C>). We set c,d to the maximum
likelihood estimates ĉ, d̂ for simplicity in inference. The computational cost of this algorithm is
dominated by the cost of calculating the posterior distribution over h(1:r), which involves manipula-
tion of a rk-dimensional Gaussian. While this was still tractable without further approximations for
the data-set sizes used in our analyses below (hundreds of trials), a variety of approximate methods
for GP-inference exist which could be used to improve efficiency of this computation. In particular,
we will typically be dealing with systems in which τ � 1, which means that the kernel-matrix is
smooth and could be approximated using low-rank representations [28].

(3) Estimating hyperparameters: Finally, after obtaining the the approximate posterior
q(θ,x

(1:r)
0:T ), we update the hyperparameters of the prior by maximizing the lower bound with re-

spect to the hyperparameters. The variational lower bound simplifies to (see Ch.5 in [29] for details,
note that the usage of Gaussian approximate posteriors ensures that this step is analogous to hyper
parameter updating in a fully Gaussian LDS)

log p(y
(1:r)
1:T |Φ) ≥ −KL(Φ) + c, (8)
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Figure 2: Illustration of non-stationarity in firing rates (simulated data). A, B Spike rates of 40
neurons are influenced by two slowly varying firing rate modulators. The log mean firing rates of the
two groups of neurons are z1(red, group 1) and z2(blue, group 2) across 100 trials. C, D Raster plots
show the extreme cases, i.e. trials 25 and 75. The traces show the posterior mean of z estimated
by N-PLDS (light blue for z2, light red for z1), independent PLDSs (fit a PLDS to each trial data
individually, dark gray), and PLDS (light gray). E Total and conditional (on each trial) covariance of
recovered neural responses from each model (averaged across all neuron pairs, and then normalised
for visualisation). The covariances recovered by our model (red) well match the true ones (black),
while those by independent PLDSs (gray) and a single PLDS (light gray) do not.

where c is a constant. Here, the KL divergence between the prior and posterior over parameters,
denoted by N (µΦ,ΣΦ) and N (µ,Σ), respectively, is given by

KL(Φ) = − 1
2 log |Σ−1

Φ Σ|+ 1
2 Tr

[
Σ−1

Φ Σ
]

+ 1
2 (µ− µΦ)>Σ−1

Φ (µ− µΦ) + c, (9)

where the prior mean and covariance depend on the hyperparameters. We update the hyperparame-
ters by taking the derivative of KL w.r.t. each hyper parameter. For the prior mean, the first derivative
expression provides a closed-form update. For τ (time scale of inter-trial fluctuations in firing rates)
and σ2 (variance of inter-trial fluctuations), their derivative expressions do not provide a closed form
update, in which case we compute the KL divergence on the grid defined in each hyperparameter
space and choose the value that minimises KL.

Predictive distributions for test data. In our model, different trials are no longer considered to
be independent, so we can predict parameters for held-out trials. Using the GP model on h and our
approximations, we have Gaussian predictive distributions on h∗ for test dataD∗ given training data
D:

p(h∗|D,D∗) = N (mh +K∗K−1(µh −mh), K∗∗ −K∗(K +H−1
h )−1K∗>), (10)

where K is the prior covariance matrix on D and K∗∗ is on D∗, and K∗ is their prior cross-
covariance as introduced in Ch.2 of [28], and the negative Hessian Hh is defined as

Hh = − ∂2

∂2h(1:h)

r∑
i=1

[

∫
dx

(i)
0:T q(x

(i)
0:T )

T∑
t=1

log p(y
(i)
t |x

(i)
t , ĉ, d̂,h(i))]. (11)

In the applications to simulated and neurophysiological data described in the following, we used this
approach to predict the properties of neural dynamics on held-out trials.

4 Applications

Simulated data: We first illustrate the performance of N-PLDS on a simulated population record-
ing from 40 neurons consisting of 100 trials of length T = 200 time steps each. We used a
4-dimensional latent state and assumed that the population consisted of two homogeneous sub-
populations of size 20 each, with one modulatory input controlling rate fluctuations in each group
(See Fig. 2 A). In addition, we assumed that for half of each trial, there was a time-varying stimulus
(‘drifting grating’), represented by a 3-dimensional vector which consisted of the sine and cosine
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Figure 3: Non-stationary firing rates in a population of V1 neurons. A: Mean firing rates of
neurons (black trace) across trials. Left: The 5 most non-stationary neurons. Right: The 5 most
stationary neurons. The fitted (solid line) and the predicted (circles) mean firing rates are also shown
for N-PLDS (in red) and PLDS (in gray). B Left: The RMSE in predicting single neuron firing rates
across 5 most non-stationary neurons for varying latent dimensionalities k , where N-PLDS achieves
significantly lower RMSE. Middle: RMSE for the 5 most stationary neurons, where there is no
difference between two methods (apart from an outlier at k=8). Right: RMSE for the all 64 neurons.

of the time-varying phase of the stimulus (frequency 0.4 Hz) as well as an additional binary term
which indicated whether the stimulus was active.

We fit N-PLDS to the data, and found that it successfully captures the non-stationarity in (log) mean
firing rates, defined by z = C(x + h) + d, as shown in Fig. 2, and recovers the total and trial-
conditioned covariances (the across-trial mean of the single-trial covariances of z). For comparison,
we also fit 100 separate PLDSs to the data from each trial, as well as a single PLDS to the entire
data. The naive approach of fitting an individual PLDS to each trial can, in principle, follow the
modulation. However, as each model is only fit to one trial, the parameter-estimates are very noisy
since they are not sufficiently constrained by the data from each trial.

We note that a single PLDS with fixed parameters (as is conventionally used in neural data analysis)
is able to track the modulations in firing rates in the posterior mean here– however, a single PLDS
would not be able to extrapolate firing rates for unseen trials (as we will demonstrate in our analyses
on neural data below). In addition, it will also fail to separate ‘slow’ and ‘fast’ modulations into
different parameters. By comparing the total covariance of the data (averaged across neuron pairs) to
the ‘trial-conditioned’ covariance (calculated by estimating the covariance on each trial individually,
and averaging covariances) one can calculate how much of the cross-neuron co-variability can be
explained by across-trials fluctuations in firing rates (see e.g., [17]). In this simulation shown in
Fig. 2 (which illustrates an extreme case dominated by strong across-trial effects), the conditional
covariance is much smaller than the full covariance.
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Neurophysiological data: How big are non-stationarities in neural population recordings, and
can our model successfully capture them? To address these questions, we analyzed a population
recording from anaesthetized macaque primary visual cortex consisting of 64 neurons stimulated by
sine grating stimuli. The details of data collection are described in [5], but our data-set also included
units not used in the original study. We binned the spikes recorded during 100 trials of length 4s
(stimulus was on for 2s) of the same orientation using 50ms bins, resulting in trials of length T = 80
bins. Analogously to the simulated dataset above, we parameterised the stimulus as a 3-dimensional
vector of the sine and cosine with the same temporal frequency of the drifting grating, as well as an
indicator that specifies whether there is a stimulus or not.

We used 10-fold cross validation to evaluate performance of the model, i.e. repeatedly divided the
data into test data (10 trials) and training data (the remaining 90 trials). We fit the model on each
training set, and using the estimated parameters from the training data, we made predictions on the
modulator h on test data by using the mean of the predictive distribution over h. We note that, in
contrast to conventional applications of cross-validation which assume i.i.d. trials, our model here
also takes into correlations in firing rates across trials– therefore, we had to keep the trial-indices
in order to compute predictive distributions for test data using formulas in eq. 10. Using these
parameters, we drew samples for spikes for the entire trials to compute the mean firing rates of each
neuron at each trial. For comparison, we also fit a single PLDS to the data. As this model does not
allow for across-trial modulations of firing rates, we simply kept the parameters estimated from the
training data. For visualisation of results, we quantified the ‘non-stationarity’ of each neuron by first
smoothing its firing rate across trials (using a kernel of size 10 trials), calculating the variance of the
smoothed firing rate estimate, and displaying firing rates for the 5 most non-stationary neurons in
the population (Fig. 3A, left) as well as 5 most stationary neurons (Fig. 3A, right). Importantly, the
firing-rates were also correctly interpolated for held out trials (circles in Fig. 3A).

To evaluate whether the additional parameters in N-PLDS result in a superior model compared to
conventional PLDS [13], we tested the model with different latent dimensionalities ranging from
k = 1 to k = 8, and compared each model against a ‘fixed’ PLDS of matched dimensionality
(Fig. 3B). We estimated predicted firing rates on held out trials by sampling 1000 replicate trials
from the predictive distribution for both models and compared the median (across samples) of the
mean firing rates of each neuron to those of the data. The shown RMSE values are the errors of
predicted firing rate (in Hz) per neuron per held out trial (population mean across all neurons and
trials is 4.54 Hz). We found that N-PLDS outperformed PLDS provided that we had sufficiently
many latent states, at least k > 3. For large latent dimensionalities (k > 8) performance degraded
again, which could be a consequence of overfitting. Furthermore, we show that for non-stationary
neurons there is a large gain in predictive power (Fig. 3B, left), whereas for stationary neurons PLDS
and N-PLDS have similar prediction accuracy (Fig. 3B, middle). The RMSE on firing rates for all
neurons (Fig. 3B, right) suggests that our model correctly identified the fluctuation in firing rates.

We also wanted to gain insights into the temporal scale of the underlying non-stationarities. We first
looked at the recovered time-scales τ of the latent modulators, and found them to be highly preserved
across multiple training folds, and, importantly, across different values of the latent dimensionalities,
consistently peaked near 10 trials (Fig. 4 A). We made sure that the peak near 10 trials is not merely
a consequence of parameter initialization– parameters were initialised by fitting a Gaussian Process
with a exponentiated quadratic one-dimensional kernel to each neuron’s mean firing rate over trials
individually, then taking the mean time-scale over neurons as the initial global time-scale for our
kernel. The initial values were 8.12 ± 0.01, differing slightly between training sets. Similarly, we
checked that the parameters of the final model (after 30 iterations of Bayesian Laplace propagation),
were indeed superior to the initial values, by monitoring the prediction error on held-out trials.
Furthermore, due to introducing a smooth change with the correct time scale in the latent space
(e.g., the posterior mean of h across trials shown in Fig. 4B), we find that N-PLDS recovers more
of the time-lagged covariance of neurons compared to the fixed PLDS model (Fig. 4C).

5 Discussion

Non-stationarities are ubiquitous in neural data: Slow modulations in firing properties can result
from diverse processes such as plasticity and learning, fluctuations in arousal, cortical reorganisation
after injury as well as development and aging. In addition, non-stationarities in neural data can also
be a consequence of experimental artifacts, and can be caused by fluctuations in anaesthesia level,
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stability of the physiological preparation or electrode drift. Whatever the origins of non-stationarities
are, it is important to have statistical models which can identify them and disentangle their effects
from correlations and dynamics on faster time-scales [16].

We here presented a hierarchical model for neural population dynamics in the presence of non-
stationarity. Specifically, we concentrated on a variant of this model which focuses on non-
stationarity in firing rates. Recent experimental studies have shown that slow fluctuations in neural
excitability which have a multiplicative effect on neural firing rates are a dominant source of noise
correlations in anaesthetized visual cortex [17, 5, 24]. Because of the exponential spiking nonlin-
earity employed in our model, the latent additive fluctuations in the modulator-variables also have
a multiplicative effect on firing rates. Applied to a data-set of neurophysiological recordings, we
demonstrated that this modelling approach can successfully capture non-stationarities in neurophys-
iological recordings from primary visual cortex.

In our model, both neural dynamics and latent modulators are mediated by the same low-dimensional
subspace (parameterised by C). We note, however, that this assumption does not imply that neurons
with strong short-term correlations will also have strong long-term correlations, as different dimen-
sions of this subspace (as long as it is chosen big enough) could be occupied by short and long term
correlations, respectively. In our applications to neural data, we found that the latent state had to be
at least three-dimensional for the non-stationary model to outperform a stationary dynamics model,
and it might be the case that at least three dimensions are necessary to capture both fast and slow
correlations. It is an open question of how correlations on fast and slow timescales are related [17],
and the techniques presented have the potential to be of use for mapping out their relationships.

There are limitations to the current study: (1) We did not address the question of how to select
amongst multiple different models which could be used to model neural non-stationarity for a given
dataset; (2) we did not present numerical techniques for how to scale up the current algorithm for
larger trial numbers (e.g., using low-rank approximations to the covariance matrix) or large neural
populations; and (3) we did not address the question of how to overcome the slow convergence
properties of GP kernel parameter estimation [34]. (4) While Laplace propagation is flexible, it is
an approximate inference technique, and the quality of its approximations might vary for different
models of tasks. We believe that extending our method to address these questions provides an
exciting direction for future research, and will result in a powerful set of statistical methods for
investigating how neural systems operate in the presence of non-stationarity.
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