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Abstract

Learning of low dimensional structure in multidimensional data is a canonical
problem in machine learning. One common approach is to suppose that the ob-
served data are close to a lower-dimensional smooth manifold. There are a rich
variety of manifold learning methods available, which allow mapping of data
points to the manifold. However, there is a clear lack of probabilistic methods
that allow learning of the manifold along with the generative distribution of the
observed data. The best attempt is the Gaussian process latent variable model
(GP-LVM), but identifiability issues lead to poor performance. We solve these
issues by proposing a novel Coulomb repulsive process (Corp) for locations of
points on the manifold, inspired by physical models of electrostatic interactions
among particles. Combining this process with a GP prior for the mapping function
yields a novel electrostatic GP (electroGP) process. Focusing on the simple case
of a one-dimensional manifold, we develop efficient inference algorithms, and il-
lustrate substantially improved performance in a variety of experiments including
filling in missing frames in video.

1 Introduction

There is broad interest in learning and exploiting lower-dimensional structure in high-dimensional
data. A canonical case is when the low dimensional structure corresponds to a p-dimensional smooth
Riemannian manifold M embedded in the d-dimensional ambient space Y of the observed data yyy.
Assuming that the observed data are close to M, it becomes of substantial interest to learn M along
with the mapping µ from M Ñ Y . This allows better data visualization and for one to exploit the
lower-dimensional structure to combat the curse of dimensionality in developing efficient machine
learning algorithms for a variety of tasks.

The current literature on manifold learning focuses on estimating the coordinates xxx P M corre-
sponding to yyy by optimization, finding xxx’s on the manifold M that preserve distances between the
corresponding yyy’s in Y . There are many such methods, including Isomap [1], locally-linear em-
bedding [2] and Laplacian eigenmaps [3]. Such methods have seen broad use, but have some clear
limitations relative to probabilistic manifold learning approaches, which allow explicit learning of
M, the mapping µ and the distribution of yyy.

There has been some considerable focus on probabilistic models, which would seem to allow learn-
ing of M and µ. Two notable examples are mixtures of factor analyzers (MFA) [4, 5] and Gaussian
process latent variable models (GP-LVM) [6]. Bayesian GP-LVM [7] is a Bayesian formulation
of GP-LVM which automatically learns the intrinsic dimension p and handles missing data. Such
approaches are useful in exploiting lower-dimensional structure in estimating the distribution of yyy,
but unfortunately have critical problems in terms of reliable estimation of the manifold and mapping
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function. MFA is not smooth in approximating the manifold with a collage of lower dimensional
hyper-planes, and hence we focus further discussion on Bayesian GP-LVM. Similar problems occur
for MFA and other probabilistic manifold learning methods.

In general form for the ith data vector, Bayesian GP-LVM lets yyyi “ µpxxxiq ` εεεi, with µ assigned
a Gaussian process prior, xxxi generated from a pre-specified Gaussian or uniform distribution over
a p-dimensional space, and the residual εεεi drawn from a d-dimensional Gaussian centered on zero
with diagonal or spherical covariance. While this model seems appropriate to manifold learning,
identifiability problems lead to extremely poor performance in estimating M and µ. To give an
intuition for the root cause of the problem, consider the case in which xxxi are drawn independently
from a uniform distribution over r0, 1sp. The model is so flexible that we could fit the training data
yyyi, for i “ 1, . . . , n, just as well if we did not use the entire hypercube but just placed all thexxxi values
in a small subset of r0, 1sp. The uniform prior will not discourage this tendency to not spread out the
latent coordinates, which unfortunately has disasterous consequences illustrated in our experiments.
The structure of the model is just too flexible, and further constraints are needed. Replacing the
uniform with a standard Gaussian does not solve the problem. Constrained likelihood methods [8, 9]
mitigate the issue to some extent, but do not correspond to a proper Bayesian generative model.

To make the problem more tractable, we focus on the case in which M is a one-dimensional smooth
compact manifold. Assume yyyi “ µµµpxiq ` εεεi, with εεεi Gaussian noise, and µµµ : p0, 1q ÞÑM a smooth
mapping such that µjp¨q P C8 for j “ 1, . . . , d, where µµµpxq “ pµ1pxq, . . . , µdpxqq. We focus on
finding a good estimate of µµµ, and hence the manifold, via a probabilistic learning framework. We
refer to this problem as probabilistic curve learning (PCL) motivated by the principal curve literature
[10]. PCL differs substantially from the principal curve learning problem, which seeks to estimate a
non-linear curve through the data, which may be very different from the true manifold.

Our proposed approach builds on GP-LVM; in particular, our primary innovation is to generate the
latent coordinates xxxi from a novel repulsive process. There is an interesting literature on repulsive
point process modeling ranging from various Matern processes [11] to the determinantal point pro-
cess (DPP) [12]. In our very different context, these processes lead to unnecessary complexity —
computationally and otherwise — and we propose a new Coulomb repulsive process (Corp) moti-
vated by Coulomb’s law of electrostatic interaction between electrically charged particles. Using
Corp for the latent positions has the effect of strongly favoring spread out locations on the manifold,
effectively solving the identifiability problem mentioned above for the GP-LVM. We refer to the GP
with Corp on the latent positions as an electrostatic GP (electroGP).

The remainder of the paper is organized as follows. The Coulomb repulsive process is proposed
in § 2 and the electroGP is presented in § 3 with a comparison between electroGP and GP-LVM
demonstrated via simulations. The performance is further evaluated via real world datasets in § 4.
A discussion is reported in § 5.

2 Coulomb repulsive process

2.1 Formulation

Definition 1. A univariate process is a Coulomb repulsive process (Corp) if and only if for every
finite set of indices t1, . . . , tk in the index set N`,

Xt1 „ unifp0, 1q,

ppXti |Xt1 , . . . , Xti´1
q9Πi´1

j“1 sin2r
`

πXti ´ πXtj

˘

1XtiPr0,1s, i ą 1,
(1)

where r ą 0 is the repulsive parameter. The process is denoted as Xt „ Corpprq.

The process is named by its analogy in electrostatic physics where by Coulomb law, two electro-
static positive charges will repel each other by a force proportional to the reciprocal of their square
distance. Letting dpx, yq “ sin |πx ´ πy|, the above conditional probability of Xti given Xtj is
proportional to d2rpXti , Xtj q, shrinking the probability exponentially fast as two states get closer to
each other. Note that the periodicity of the sine function eliminates the edges of r0, 1s, making the
electrostatic energy field homogeneous everywhere on r0, 1s.

Several observations related to Kolmogorov extension theorem can be made immediately, ensuring
Corp to be well defined. Firstly, the conditional density defined in (1) is positive and integrable,
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Figure 1: Each facet consists of 5 rows, with each row representing an 1-dimensional scatterplot of
a random realization of Corp under certain n and r.

since Xt’s are constrained in a compact interval, and sin2r
p¨q is positive and bounded. Hence, the

finite distributions are well defined.

Secondly, the joint finite p.d.f. for Xt1 , . . . , Xtk can be derived as

ppXt1 , . . . , Xtkq9Πiąj sin2r
`

πXti ´ πXtj

˘

. (2)
As can be easily seen, any permutation of t1, . . . , tk will result in the same joint finite distribution,
hence this finite distribution is exchangeable.

Thirdly, it can be easily checked that for any finite set of indices t1, . . . , tk`m,

ppXt1 , . . . , Xtkq “

ż 1

0

. . .

ż 1

0

ppXt1 , . . . , Xtk , Xtk`1
, . . . , Xtk`m

qdXtk`1
. . . dXtk`m

,

by observing that
ppXt1 , . . . , Xtk , Xtk`1

, . . . , Xtk`m
q “ ppXt1 , . . . , XtkqΠ

m
j“1ppXtk`j

|Xt1 , . . . , Xtk`j´1
q.

2.2 Properties

Assuming Xt, t P N` is a realization from Corp, then the following lemmas hold.
Lemma 1. For any n P N`, any 1 ď i ă n and any ε ą 0, we have

ppXn P BpXi, εq|X1, . . . , Xn´1q ă
2π2ε2r`1

2r ` 1
where BpXi, εq “ tX P p0, 1q : dpX,Xiq ă εu.
Lemma 2. For any n P N`, the p.d.f. (2) ofX1, . . . , Xn (due to the exchangeability, we can assume
X1 ă X2 ă ¨ ¨ ¨ ă Xn without loss of generality) is maximized when and only when

dpXi, Xi´1q “ sin
` 1

n` 1

˘

for all 2 ď i ď n.

According to Lemma 1 and Lemma 2, Corp will nudge the x’s to be spread out within r0, 1s, and
penalizes the case when two x’s get too close. Figure 1 presents some simulations from Corp.
This nudge becomes stronger as the sample size n grows, or as the repulsive parameter r grows.
The properties of Corp makes it ideal for strongly favoring spread out latent positions across the
manifold, avoiding the gaps and clustering in small regions that plague GP-LVM-type methods. The
proofs for the lemmas and a simulation algorithm based on rejection sampling can be found in the
supplement.

2.3 Multivariate Corp

Definition 2. A p-dimensional multivariate process is a Coulomb repulsive process if and only if for
every finite set of indices t1, . . . , tk in the index set N`,

Xm,t1 „ unifp0, 1q, for m “ 1, . . . , p

ppXXXti |XXXt1 , . . . ,XXXti´1
q9Πi´1

j“1

„ p`1
ÿ

m“1

pYm,ti ´ Ym,tj q
2

r

1XtiPp0,1q, i ą 1
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where the p-dimensional spherical coordinates XXXt’s have been converted into the pp ` 1q-
dimensional Cartesian coordinates YYY t:

Y1,t “ cosp2πX1,tq

Y2,t “ sinp2πX1,tq cosp2πX2,tq

...
Yp,t “ sinp2πX1,tq sinp2πX2,tq . . . sinp2πXp´1,tq cosp2πXp,tq

Yp`1,t “ sinp2πX1,tq sinp2πX2,tq . . . sinp2πXp´1,tq sinp2πXp,tq.

The multivariate Corp maps the hyper-cubic p0, 1qp through a spherical coordinate system to a unit
hyper-ball in <p`1. The repulsion is then defined as the reciprocal of the square Euclidean distances
between these mapped points in <p`1. Based on this construction of multivariate Corp, a straight-
foward generalization of the electroGP model to a p-dimensional manifold could be made, where
p ą 1.

3 Electrostatic Gaussian Process

3.1 Formulation and Model Fitting

In this section, we propose the electrostatic Gaussian process (electroGP) model. Assuming n d-
dimensional data vectors yyy1, . . . , yyyn are observed, the model is given by

yi,j “ µjpxiq ` εi,j , εi,j „ N p0, σ2
j q,

xi „ Corpprq, i “ 1, . . . , n,

µj „ GPp0,Kjq, j “ 1, . . . , d,

(3)

where yyyi “ pyi,1, . . . , yi,dq for i “ 1, . . . , n and GPp0,Kjq denotes a Gaussian process prior with
covariance function Kjpx, yq “ φj exp

 

´ αjpx´ yq
2
(

.

Letting Θ “ pσ2
1 , α1, φ1, . . . , σ

2
d, αd, φdq denote the model hyperparameters, model (3) could be

fitted by maximizing the joint posterior distribution of xxx “ px1, . . . .xnq and Θ,

px̂xx, Θ̂q “ arg max
xxx.Θ

ppxxx|yyy1:n,Θ, rq, (4)

where the repulsive parameter r is fixed and can be tuned using cross validation. Based on our
experience, setting r “ 1 always yields good results, and hence is used as a default across this
paper. For the simplicity of notations, r is excluded in the remainder. The above optimization
problem can be rewritten as

px̂xx, Θ̂q “ arg max
xxx.Θ

`pyyy1:n|xxx,Θq ` log
“

πpxxxq
‰

,

where `p¨q denotes the log likelihood function and πp¨q denotes the finite dimensional pdf of Corp.
Hence the Corp prior can also be viewed as a repulsive constraint in the optimization problem.

It can be easily checked that log
“

πpxi “ xjq
‰

“ ´8, for any i and j. Starting at initial values
x0, the optimizer will converge to a local solution that maintains the same order as the initial x0’s.
We refer to this as the self-truncation property. We find that conditionally on the starting order,
the optimization algorithm converges rapidly and yields stable results. Although the x’s are not
identifiable, since the target function (4) is invariant under rotation, a unique solution does exist
conditionally on the specified order.

Self-truncation raises the necessity of finding good initial values, or at least a good initial ordering
for x’s. Fortunately, in our experience, simply applying any standard manifold learning algorithm
to estimate x0 in a manner that preserves distances in Y yields good performance. We find very
similar results using LLE, Isomap and eigenmap, but focus on LLE in all our implementations. Our
algorithm can be summarized as follows.

1. Learn the one dimensional coordinate xxx0 by your favorite distance-preserving manifold
learning algorithm and rescale xxx0 into p0, 1q;
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Figure 2: Visualization of three simulation experiments where the data (triangles) are simulated
from a bivariate Gaussian (left), a rotated parabola with Gaussian noises (middle) and a spiral with
Gaussian noises (right). The dotted shading denotes the 95% posterior predictive uncertainty band
of py1, y2q under electroGP. The black curve denotes the posterior mean curve under electroGP and
the red curve denotes the P-curve. The three dashed curves denote three realizations from GP-LVM.
The middle panel shows a zoom-in region and the full figure is shown in the embedded box.

2. Solve Θ0 “ arg maxΘ ppyyy1:n|xxx0,Θ, rq using scaled conjugate gradient descent (SCG);

3. Using SCG, setting xxx0 and Θ0 to be the initial values, solve x̂xx and Θ̂ w.r.t. (4).

3.2 Posterior Mean Curve and Uncertainty Bands

In this subsection, we describe how to obtain a point estimate of the curve µµµ and how to charac-
terize its uncertainty under electroGP. Such point and interval estimation is as of yet unsolved in
the literature, and is of critical importance. In particular, it is difficult to interpret a single point
estimate without some quantification of how uncertain that estimate is. We use the posterior mean
curve µ̂µµ “ Epµµµ|x̂xx,yyy1:n, Θ̂q as the Bayes optimal estimator under squared error loss. As a curve, µ̂µµ
has infinite dimensions. Hence, in order to store and visualize it, we discretize r0, 1s to obtain nµ
equally-spaced grid points xµi “

i´1
nµ´1 for i “ 1, . . . , nµ. Using basic multivariate Gaussian theory,

the following expectation is easy to compute.
`

µ̂µµpxµ1 q, . . . , µ̂µµpx
µ
nµq

˘

“ E
`

µµµpxµ1 q, . . . ,µµµpx
µ
nµq|x̂xx,yyy1:n, Θ̂

˘

.

Then µ̂µµ is approximated by linear interpolation using
 

xµi , µ̂µµpx
µ
i q
(nµ

i“1
. For ease of notation, we use

µ̂µµ to denote this interpolated piecewise linear curve later on. Examples can be found in Figure 2
where all the mean curves (black solid) were obtained using the above method.

Estimating an uncertainty region including data points with η probability is much more challenging.
We addressed this problem by the following heuristic algorithm.

Step 1. Draw x˚i ’s from Unif(0,1) independently for i “ 1, . . . , n1;

Step 2. Sample the corresponding yyy˚i from the posterior predictive distribution conditional on these
latent coordinates ppyyy˚1 , . . . , yyy

˚
n1
|x˚1:n1

, x̂xx,yyy1:n, Θ̂q;

Step 3. Repeat steps 1-2 n2 times, collecting all n1 ˆ n2 samples yyy˚’s;

Step 4. Find the shortest distances from these yyy˚’s to the posterior mean curve µ̂µµ, and find the
η-quantile of these distances denoted by ρ;

Step 5. Moving a radius-ρ ball through the entire curve µ̂µµpr0, 1sq, the envelope of the moving trace
defines the η% uncertainty band.

Note that step 4 can be easily solved since µ̂µµ is a piecewise linear curve. Examples can be found in
Figure 2, where the 95% uncertainty bands (dotted shading) were found using the above algorithm.
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Figure 3: The zoom-in of the spiral case 3 (left) and the corresponding coordinate function, µ2pxq,
of electroGP (middle) and GP-LVM (right). The gray shading denotes the heatmap of the posterior
distribution of px, y2q and the black curve denotes the posterior mean.

3.3 Simulation

In this subsection, we compare the performance of electroGP with GP-LVM and principal curves (P-
curve) in simple simulation experiments. 100 data points were sampled from each of the following
three 2-dimensional distributions: a Gaussian distribution, a rotated parabola with Gaussian noises
and a spiral with Gaussian noises. ElectroGP and GP-LVM were fitted using the same initial values
obtained from LLE, and the P-Curve was fitted using the princurve package in R.

The performance of the three methods is compared in Figure 2. The dotted shading represents a
95% posterior predictive uncertainty band for a new data point yyyn`1 under the electroGP model.
This illustrates that electroGP obtains an excellent fit to the data, provides a good characterization of
uncertainty, and accurately captures the concentration near a 1d manifold embedded in two dimen-
sions. The P-curve is plotted in red. The extremely poor representation of P-curve is as expected
based on our experience in fitting principal curve in a wide variety of cases; the behavior is highly
unstable. In the first two cases, the P-Curve corresponds to a smooth curve through the center of
the data, but for the more complex manifold in the third case, the P-Curve is an extremely poor
representation. This tendency to cut across large regions of near zero data density for highly curved
manifolds is common for P-Curve.

For GP-LVM, we show three random realizations (dashed) from the posterior in each case. It is
clear the results are completely unreliable, with the tendency being to place part of the curve through
where the data have high density, while also erratically adding extra outside the range of the data.
The GP-LVM model does not appropriately penalize such extra parts, and the very poor performance
shown in the top right of Figure 2 is not unusual. We find that electroGP in general performs
dramatically better than competitors. More simulation results can be found in the supplement. To
better illustrate the results for the spiral case 3, we zoom in and present some further comparisons
of GP-LVM and electroGP in Figure 3.

As can be seen the right panel, optimizing x’s without any constraint results in “holes” on r0, 1s.
The trajectories of the Gaussian process over these holes will become arbitrary, as illustrated by the
three realizations. This arbitrariness will be further projected into the input space Y , resulting in
the erratic curve observed in the left panel. Failing to have well spread out x’s over r0, 1s not only
causes trouble in learning the curve, but also makes the posterior predictive distribution of yyyn`1

overly diffuse near these holes, e.g., the large gray shading area in the right panel. The middle panel
shows that electroGP fills in these holes by softly constraining the latent coordinates x’s to spread
out while still allowing the flexibility of moving them around to find a smooth curve snaking through
them.

3.4 Prediction

Broad prediction problems can be formulated as the following missing data problem. Assumem new
data zzzi, for i “ 1, . . . ,m, are partially observed and the missing entries are to be filled in. Letting
zzzOi denote the observed data vector and zzzMi denote the missing part, the conditional distribution of
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Original Observed electroGP GP-LVM

Figure 4: Left Panel: Three randomly selected reconstructions using electroGP compared with
those using Bayesian GP-LVM; Right Panel: Another three reconstructions from electroGP, with
the first row presenting the original images, the second row presenting the observed images and the
third row presenting the reconstructions.

the missing data is given by

ppzzzM1:m|zzz
O
1:m, x̂xx,yyy1:n, Θ̂q

“

ż

xz1

¨ ¨ ¨

ż

xzm

ppzzzM1:m|x
z
1:m, x̂xx,yyy1:n, Θ̂q ˆ ppx

z
1:m|zzz

O
1:m, x̂xx,yyy1:n, Θ̂qdxz1 ¨ ¨ ¨ dx

z
m,

where xzi is the corresponding latent coordinate of zzzi, for i “ 1, . . . , n. However, dealing with
pxz1, . . . , x

z
mq jointly is intractable due to the high non-linearity of the Gaussian process, which

motivates the following approximation,

ppxz1:m|zzz
O
1:m, x̂xx,yyy1:n, Θ̂q « Πm

i“1ppx
z
i |zzz

O
i , x̂xx,yyy1:n, Θ̂q.

The approximation assumes pxz1, . . . , x
z
mq to be conditionally independent. This assumption is more

accurate if x̂xx is well spread out on p0, 1q, as is favored by Corp.

The univariate distribution ppxzi |xxx
O
i , yyy1:n, ûuu, Θ̂q, though still intractable, is much easier to deal with.

Depending on the purpose of the application, either a Metropolis Hasting algorithm could be adopted
to sample from the predictive distribution, or a optimization method could be used to find the MAP
of xz’s. The details of both algorithms can be found in the supplement.

4 Experiments

Video-inpainting 200 consecutive frames (of size 76ˆ 101 with RGB color) [13] were collected
from a video of a teapot rotating 1800. Clearly these images roughly lie on a curve. 190 of the frames
were assumed to be fully observed in the natural time order of the video, while the other 10 frames
were given without any ordering information. Moreover, half of the pixels of these 10 frames were
missing. The electroGP was fitted based on the other 190 frames and was used to reconstruct the
broken frames and impute the reconstructed frames into the whole frame series with the correct
order. The reconstruction results are presented in Figure 4. As can be seen, the reconstructed
images are almost indistinguishable from the original ones. Note that these 10 frames were also
correctly imputed into the video with respect to their latent position x’s. ElectroGP was compared
with Bayesian GP-LVM [7] with the latent dimension set to 1. The reconstruction mean square
error (MSE) using electroGP is 70.62, compared to 450.75 using GP-LVM. The comparison is
also presented in Figure 4. It can be seen that electroGP outperforms Bayesian GP-LVM in high-
resolution precision (e.g., how well they reconstructed the handle of the teapot) since it obtains a
much tighter and more precise estimate of the manifold.

Super-resolution & Denoising 100 consecutive frames (of size 100ˆ 100 with gray color) were
collected from a video of a shrinking shockwave. Frame 51 to 55 were assumed completely missing
and the other 95 frames were observed with the original time order with strong white noises. The
shockwave is homogeneous in all directions from the center; hence, the frames roughly lie on a
curve. The electroGP was applied for two tasks: 1. Frame denoising; 2. Improving resolution by
interpolating frames in between the existing frames. Note that the second task is hard since there are
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Original Noisy electroGP NLM IsD

electroGP LI

Figure 5: Row 1: From left to right are the original 95th frame, its noisy observation, its denoised
result by electroGP, NLM and IsD; Row 2: From left to right are the original 53th frame, its regen-
eration by electroGP, the residual image (10 times of the absolute error between the imputation and
the original) of electroGP and LI. The blank area denotes its missing observation.

5 consecutive frames missing and they can be interpolated only if the electroGP correctly learns the
underlying manifold.

The denoising performance was compared with non-local mean filter (NLM) [14] and isotropic
diffusion (IsD) [15]. The interpolation performance was compared with linear interpolation (LI).
The comparison is presented in Figure 5. As can be clearly seen, electroGP greatly outperforms
other methods since it correctly learned this one-dimensional manifold. To be specific, the denoising
MSE using electroGP is only 1.8ˆ 10´3, comparing to 63.37 using NLM and 61.79 using IsD. The
MSE of reconstructing the entirely missing frame 53 using electroGP is 2 ˆ 10´5 compared to 13
using LI. An online video of the super-resolution result using electroGP can be found in this link1.
The frame per second (fps) of the generated video under electroGP was tripled compared to the
original one. Though over two thirds of the frames are pure generations from electroGP, this new
video flows quite smoothly. Another noticeable thing is that the 5 missing frames were perfectly
regenerated by electroGP.

5 Discussion

Manifold learning has dramatic importance in many applications where high-dimensional data are
collected with unknown low dimensional manifold structure. While most of the methods focus on
finding lower dimensional summaries or characterizing the joint distribution of the data, there is (to
our knowledge) no reliable method for probabilistic learning of the manifold. This turns out to be
a daunting problem due to major issues with identifiability leading to unstable and generally poor
performance for current probabilistic non-linear dimensionality reduction methods. It is not obvious
how to incorporate appropriate geometric constraints to ensure identifiability of the manifold without
also enforcing overly-restrictive assumptions about its form.

We tackled this problem in the one-dimensional manifold (curve) case and built a novel electro-
static Gaussian process model based on the general framework of GP-LVM by introducing a novel
Coulomb repulsive process. Both simulations and real world data experiments showed excellent
performance of the proposed model in accurately estimating the manifold while characterizing un-
certainty. Indeed, performance gains relative to competitors were dramatic. The proposed electroGP
is shown to be applicable to many learning problems including video-inpainting, super-resolution
and video-denoising. There are many interesting areas for future study including the development
of efficient algorithms for applying the model for multidimensional manifolds, while learning the
dimension.

1https://youtu.be/N1BG220J5Js This online video contains no information regarding the authors.
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