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Abstract

Since being analyzed by Rokhlin, Szlam, and Tygert [1] and popularized by
Halko, Martinsson, and Tropp [2], randomized Simultaneous Power Iteration has
become the method of choice for approximate singular value decomposition. It is
more accurate than simpler sketching algorithms, yet still converges quickly for
any matrix, independently of singular value gaps. After Õ(1/ε) iterations, it gives
a low-rank approximation within (1 + ε) of optimal for spectral norm error.
We give the first provable runtime improvement on Simultaneous Iteration: a ran-
domized block Krylov method, closely related to the classic Block Lanczos algo-
rithm, gives the same guarantees in just Õ(1/

√
ε) iterations and performs substan-

tially better experimentally. Our analysis is the first of a Krylov subspace method
that does not depend on singular value gaps, which are unreliable in practice.
Furthermore, while it is a simple accuracy benchmark, even (1 + ε) error for
spectral norm low-rank approximation does not imply that an algorithm returns
high quality principal components, a major issue for data applications. We address
this problem for the first time by showing that both Block Krylov Iteration and
Simultaneous Iteration give nearly optimal PCA for any matrix. This result further
justifies their strength over non-iterative sketching methods.

1 Introduction
Any matrix A ∈ Rn×d with rank r can be written using a singular value decomposition (SVD) as
A = UΣVT . U ∈ Rn×r and V ∈ Rd×r have orthonormal columns (A’s left and right singular
vectors) and Σ ∈ Rr×r is a positive diagonal matrix containing A’s singular values: σ1 ≥ . . . ≥ σr.
A rank k partial SVD algorithm returns just the top k left or right singular vectors of A. These are
the first k columns of U or V, denoted Uk and Vk respectively.

Among countless applications, the SVD is used for optimal low-rank approximation and principal
component analysis (PCA). Specifically, for k < r, a partial SVD can be used to construct a rank k
approximation Ak such that both ‖A−Ak‖F and ‖A−Ak‖2 are as small as possible. We simply
set Ak = UkU

T
kA. That is, Ak is A projected onto the space spanned by its top k singular vectors.

For principal component analysis, A’s top singular vector u1 provides a top principal component,
which describes the direction of greatest variance within A. The ith singular vector ui provides the
ith principal component, which is the direction of greatest variance orthogonal to all higher principal
components. Formally, denoting A’s ith singular value as σi,

uTi AATui = σ2
i = max

x:‖x‖2=1, x⊥uj∀j<i
xTAATx.

Traditional SVD algorithms are expensive, typically running in O(nd2) time, so there has been sub-
stantial research on randomized techniques that seek nearly optimal low-rank approximation and
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PCA [3, 4, 1, 2, 5]. These methods are quickly becoming standard tools in practice and implemen-
tations are widely available [6, 7, 8, 9], including in popular learning libraries [10].

Recent work focuses on algorithms whose runtimes do not depend on properties of A. In contrast,
classical literature typically gives runtime bounds that depend on the gaps between A’s singular
values and become useless when these gaps are small (which is often the case in practice – see
Section 6). This limitation is due to a focus on how quickly approximate singular vectors converge
to the actual singular vectors of A. When two singular vectors have nearly identical values they are
difficult to distinguish, so convergence inherently depends on singular value gaps.

Only recently has a shift in approximation goal, along with an improved understanding of random-
ization, allowed for algorithms that avoid gap dependence and thus run provably fast for any matrix.
For low-rank approximation and PCA, we only need to find a subspace that captures nearly as much
variance as A’s top singular vectors – distinguishing between two close singular values is overkill.

1.1 Prior Work
The fastest randomized SVD algorithms [3, 5] run in O(nnz(A)) time1, are based on non-iterative
sketching methods, and return a rank k matrix Z with orthonormal columns z1, . . . , zk satisfying

Frobenius Norm Error: ‖A− ZZTA‖F ≤ (1 + ε)‖A−Ak‖F . (1)

Unfortunately, as emphasized in prior work [1, 2, 11, 12], Frobenius norm error is often hopelessly
insufficient, especially for data analysis and learning applications. When A has a “heavy-tail” of
singular values, which is common for noisy data, ‖A−Ak‖2F =

∑
i>k σ

2
i can be huge, potentially

much larger than A’s top singular value. This renders (1) meaningless since Z does not need to
align with any large singular vectors to obtain good multiplicative error.

To address this shortcoming, a number of papers target spectral norm low-rank approximation error,

Spectral Norm Error: ‖A− ZZTA‖2 ≤ (1 + ε)‖A−Ak‖2, (2)

which is intuitively stronger. When looking for a rank k approximation, A’s top k singular vectors
are often considered data and the remaining tail is considered noise. A spectral norm guarantee
roughly ensures that ZZTA recovers A up to this noise threshold.

A series of work [1, 2, 13, 14, 15] shows that the decades old Simultaneous Power Iteration (also
called subspace iteration or orthogonal iteration) implemented with random start vectors, achieves
(2) after Õ(1/ε) iterations. Hence, this method, which was popularized by Halko, Martinsson, and
Tropp in [2], has become the randomized SVD algorithm of choice for practitioners [10, 16].

2 Our Results

Algorithm 1 SIMULTANEOUS ITERATION

input: A ∈ Rn×d, error ε ∈ (0, 1), rank k ≤ n, d
output: Z ∈ Rn×k

1: q := Θ( log d
ε ), Π ∼ N (0, 1)d×k

2: K :=
(
AAT

)q
AΠ

3: Orthonormalize the columns of K to obtain
Q ∈ Rn×k.

4: Compute M := QTAATQ ∈ Rk×k.
5: Set Ūk to the top k singular vectors of M.
6: return Z = QŪk.

Algorithm 2 BLOCK KRYLOV ITERATION

input: A ∈ Rn×d, error ε ∈ (0, 1), rank k ≤ n, d
output: Z ∈ Rn×k

1: q := Θ( log d√
ε

), Π ∼ N (0, 1)d×k

2: K :=
[
AΠ, (AAT )AΠ, ..., (AAT )qAΠ

]
3: Orthonormalize the columns of K to obtain

Q ∈ Rn×qk.
4: Compute M := QTAATQ ∈ Rqk×qk.
5: Set Ūk to the top k singular vectors of M.
6: return Z = QŪk.

2.1 Faster Algorithm
We show that Algorithm 2, a randomized relative of the Block Lanczos algorithm [17, 18], which
we call Block Krylov Iteration, gives the same guarantees as Simultaneous Iteration (Algorithm 1)
in just Õ(1/

√
ε) iterations. This not only gives the fastest known theoretical runtime for achieving

(2), but also yields substantially better performance in practice (see Section 6).
1Here nnz(A) is the number of non-zero entries in A and this runtime hides lower order terms.
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Even though the algorithm has been discussed and tested for potential improvement over Simulta-
neous Iteration [1, 19, 20], theoretical bounds for Krylov subspace and Lanczos methods are much
more limited. As highlighted in [11],

“Despite decades of research on Lanczos methods, the theory for [randomized
power iteration] is more complete and provides strong guarantees of excellent
accuracy, whether or not there exist any gaps between the singular values.”

Our work addresses this issue, giving the first gap independent bound for a Krylov subspace method.

2.2 Stronger Guarantees

In addition to runtime improvements, we target a much stronger notion of approximate SVD that is
needed for many applications, but for which no gap-independent analysis was known.

Specifically, as noted in [21], while intuitively stronger than Frobenius norm error, (1 + ε) spec-
tral norm low-rank approximation error does not guarantee any accuracy in Z for many matrices2.
Consider A with its top k + 1 squared singular values all equal to 10 followed by a tail of smaller
singular values (e.g. 1000k at 1). ‖A −Ak‖22 = 10 but in fact ‖A − ZZTA‖22 = 10 for any rank
k Z, leaving the spectral norm bound useless. At the same time, ‖A−Ak‖2F is large, so Frobenius
error is meaningless as well. For example, any Z obtains ‖A− ZZTA‖2F ≤ (1.01)‖A−Ak‖2F .

With this scenario in mind, it is unsurprising that low-rank approximation guarantees fail as an
accuracy measure in practice. We ran a standard sketch-and-solve approximate SVD algorithm
(see Section 3) on SNAP/AMAZON0302, an Amazon product co-purchasing dataset [22, 23], and
achieved very good low-rank approximation error in both norms for k = 30:

‖A− ZZTA‖F < 1.001‖A−Ak‖F and ‖A− ZZTA‖2 < 1.038‖A−Ak‖2.
However, the approximate principal components given by Z are of significantly lower quality than
A’s true singular vectors (see Figure 1). We saw similar results for a number of other datasets.
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Figure 1: Poor per vector error (3) for SNAP/AMAZON0302 returned by a sketch-and-solve ap-
proximate SVD that gives very good low-rank approximation in both spectral and Frobenius norm.

We address this issue by introducing a per vector guarantee that requires each approximate singular
vector z1, . . . , zk to capture nearly as much variance as the corresponding true singular vector:

Per Vector Error: ∀i,
∣∣uTi AATui − zTi AAT zi

∣∣ ≤ εσ2
k+1. (3)

The error bound (3) is very strong in that it depends on εσ2
k+1, which is better then relative error

for A’s large singular values. While it is reminiscent of the bounds sought in classical numerical
analysis [24], we stress that (3) does not require each zi to converge to ui in the presence of small
singular value gaps. In fact, we show that both randomized Block Krylov Iteration and our slightly
modified Simultaneous Iteration algorithm achieve (3) in gap-independent runtimes.

2.3 Main Result

Our contributions are summarized in Theorem 1. Its detailed proof is relegated to the full version of
this paper [25]. The runtimes are given in Theorems 6 and 7, and the three error bounds shown in
Theorems 10, 11, and 12. In Section 4 we provide a sketch of the main ideas behind the result.

2In fact, it does not even imply (1 + ε) Frobenius norm error.
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Theorem 1 (Main Theorem). With high probability, Algorithms 1 and 2 find approximate singular
vectors Z = [z1, . . . , zk] satisfying guarantees (1) and (2) for low-rank approximation and (3) for
PCA. For error ε, Algorithm 1 requires q = O(log d/ε) iterations while Algorithm 2 requires q =
O(log d/

√
ε) iterations. Excluding lower order terms, both algorithms run in time O(nnz(A)kq).

In the full version of this paper we also use our results to give an alternative analysis that does
depend on singular value gaps and can offer significantly faster convergence when A has decaying
singular values. It is possible to take further advantage of this result by running Algorithms 1 and 2
with a Π that has > k columns, a simple modification for accelerating either method.

In Section 6 we test both algorithms on a number of large datasets. We justify the importance of gap
independent bounds for predicting algorithm convergence and we show that Block Krylov Iteration
in fact significantly outperforms the more popular Simultaneous Iteration.

2.4 Comparison to Classical Bounds
Decades of work has produced a variety of gap dependent bounds for Krylov methods [26]. Most
relevant to our work are bounds for block Krylov methods with block size equal to k [27]. Roughly
speaking, with randomized initialization, these results offer guarantees equivalent to our strong equa-
tion (3) for the top k singular directions after O(log(d/ε)/

√
σk/σk+1 − 1) iterations.

This bound is recovered in Section 7 of this paper’s full version [25]. When the target accuracy ε
is smaller than the relative singular value gap (σk/σk+1 − 1), it is tighter than our gap independent
results. However, as discussed in Section 6, for high dimensional data problems where ε is set far
above machine precision, gap independent bounds more accurately predict required iteration count.

Prior work also attempts to analyze algorithms with block size smaller than k [24]. While “small
block” algorithms offer runtime advantages, it is well understood that with b duplicate singular
values, it is impossible to recover the top k singular directions with a block of size < b [28]. More
generally, large singular value clusters slow convergence, so any small block algorithm must have
runtime dependence on the gaps between each adjacent pair of top singular values [29].

3 Analyzing Simultaneous Iteration
Before discussing our proof of Theorem 1, we review prior work on Simultaneous Iteration to
demonstrate how it can achieve the spectral norm guarantee (2).

Algorithms for Frobenius norm error (1) typically work by sketching A into very few dimensions
using a Johnson-Lindenstrauss random projection matrix Π with poly(k/ε) columns.

An×d ×Πd×poly(k/ε) = (AΠ)n×poly(k/ε)

Π is usually a random Gaussian or (possibly sparse) random sign matrix and Z is computed using
the SVD of AΠ or of A projected onto AΠ [3, 5, 30]. This “sketch-and-solve” approach is very
efficient – the computation of AΠ is easily parallelized and, regardless, pass-efficient in a single
processor setting. Furthermore, once a small compression of A is obtained, it can be manipulated
in fast memory for the final computation of Z.

However, Frobenius norm error seems an inherent limitation of sketch-and-solve methods. The
noise from A’s lower r − k singular values corrupts AΠ, making it impossible to extract a good
partial SVD if the sum of these singular values (equal to ‖A−Ak‖2F ) is too large.

In order to achieve spectral norm error (2), Simultaneous Iteration must reduce this noise down to
the scale of σk+1 = ‖A−Ak‖2. It does this by working with the powered matrix Aq [31].3 By the
spectral theorem, Aq has exactly the same singular vectors as A, but its singular values are equal to
those of A raised to the qth power. Powering spreads the values apart and accordingly, Aq’s lower
singular values are relatively much smaller than its top singular values (see example in Figure 2a).

Specifically, q = O( log d
ε ) is sufficient to increase any singular value ≥ (1 + ε)σk+1 to be signifi-

cantly (i.e. poly(d) times) larger than any value ≤ σk+1. This effectively denoises our problem –
if we use a sketching method to find a good Z for approximating Aq up to Frobenius norm error, Z
will have to align very well with every singular vector with value ≥ (1 + ε)σk+1. It thus provides
an accurate basis for approximating A up to small spectral norm error.

3For nonsymmetric matrices we work with (AAT )qA, but present the symmetric case here for simplicity.
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Figure 2: Replacing A with a matrix polynomial facilitates higher accuracy approximation.

Computing Aq directly is costly, so AqΠ is computed iteratively – start with a random Π and
repeatedly multiply by A on the left. Since even a rough Frobenius norm approximation for Aq

suffices, Π can be chosen to have just k columns. Each iteration thus takes O(nnz(A)k) time.

When analyzing Simultaneous Iteration, [15] uses the following randomized sketch-and-solve result
to find a Z that gives a coarse Frobenius norm approximation to B = Aq and therefore a good
spectral norm approximation to A. The lemma is numbered for consistency with our full paper.
Lemma 4 (Frobenius Norm Low-Rank Approximation). For any B ∈ Rn×d and Π ∈ Rd×k where
the entries of Π are independent Gaussians drawn from N (0, 1). If we let Z be an orthonormal
basis for span (BΠ), then with probability at least 99/100, for some fixed constant c,

‖B− ZZTB‖2F ≤ c · dk‖B−Bk‖2F .

For analyzing block methods, results like Lemma 4 can effectively serve as a replacement for earlier
random initialization analysis that applies to single vector power and Krylov methods [32].

σk+1(Aq) ≤ 1
poly(d)σm(Aq) for any m with σm(A) ≥ (1 + ε)σk+1(A). Plugging into Lemma 4:

‖Aq − ZZTAq‖2F ≤ cdk ·
r∑

i=k+1

σ2
i (Aq) ≤ cdk · d · σ2

k+1(Aq) ≤ σ2
m(Aq)/ poly(d).

Rearranging using Pythagorean theorem, we have ‖ZZTAq‖2F ≥ ‖Aq‖2F −
σ2
m(Aq)
poly(d) . That is, Aq’s

projection onto Z captures nearly all of its Frobenius norm. This is only possible if Z aligns very
well with the top singular vectors of Aq and hence gives a good spectral norm approximation for A.

4 Proof Sketch for Theorem 1
The intuition for beating Simultaneous Iteration with Block Krylov Iteration matches that of many
accelerated iterative methods. Simply put, there are better polynomials than Aq for denoising tail
singular values. In particular, we can use a lower degree polynomial, allowing us to compute fewer
powers of A and thus leading to an algorithm with fewer iterations. For example, an appropriately
shifted q = O(log(d)/

√
ε) degree Chebyshev polynomial can push the tail of A nearly as close to

zero as AO(log d/ε), even if the long run growth of the polynomial is much lower (see Figure 2b).

Specifically, we prove the following scalar polynomial lemma in the full version of our paper [25],
which can then be applied to effectively denoising A’s singular value tail.
Lemma 5 (Chebyshev Minimizing Polynomial). For ε ∈ (0, 1] and q = O(log d/

√
ε), there exists

a degree q polynomial p(x) such that p((1 + ε)σk+1) = (1 + ε)σk+1 and,

1) p(x) ≥ x for x ≥ (1 + ε)σk+1 2) |p(x)| ≤ σk+1

poly(d) for x ≤ σk+1.

Furthermore, we can choose the polynomial to only contain monomials with odd powers.
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Block Krylov Iteration takes advantage of such polynomials by working with the Krylov subspace,
K =

[
Π AΠ A2Π A3Π . . . AqΠ

]
,

from which we can construct pq(A)Π for any polynomial pq(·) of degree q.4 Since the polynomial
from Lemma 5 must be scaled and shifted based on the value of σk+1, we cannot easily compute it
directly. Instead, we argue that the very best k rank approximation to A lying in the span of K at
least matches the approximation achieved by projecting onto the span of pq(A)Π. Finding this best
approximation will therefore give a nearly optimal low-rank approximation to A.

Unfortunately, there’s a catch. Surprisingly, it is not clear how to efficiently compute the best spectral
norm error low-rank approximation to A lying in a given subspace (e.g. K’s span) [14, 33]. This
challenge precludes an analysis of Krylov methods parallel to recent work on Simultaneous Iteration.

Nevertheless, since our analysis shows that projecting to Z captures nearly all the Frobenius norm
of pq(A), we can show that the best Frobenius norm low-rank approximation to A in the span of K
gives good enough spectral norm approximation. By the following lemma, this optimal Frobenius
norm low-rank approximation is given by ZZTA, where Z is exactly the output of Algorithm 2.
Lemma 6 (Lemma 4.1 of [15]). Given A ∈ Rn×d and Q ∈ Rm×n with orthonormal columns,

‖A− (QQTA)k‖F = ‖A−Q
(
QTA

)
k
‖F = min

C|rank(C)=k
‖A−QC‖F .

Q
(
QTA

)
k

can be obtained using an SVD of the m ×m matrix M = QT (AAT )Q. Specifically,
letting M = ŪΣ̄2ŪT be the SVD of M, and Z = QŪk then Q

(
QTA

)
k

= ZZTA.

4.1 Stronger Per Vector Error Guarantees
Achieving the per vector guarantee of (3) requires a more nuanced understanding of how Simultane-
ous Iteration and Block Krylov Iteration denoise the spectrum of A. The analysis for spectral norm
low-rank approximation relies on the fact that Aq (or pq(A) for Block Krylov Iteration) blows up
any singular value ≥ (1 + ε)σk+1 to much larger than any singular value ≤ σk+1. This ensures that
our output Z aligns very well with the singular vectors corresponding to these large singular values.

If σk ≥ (1 + ε)σk+1, then Z aligns well with all top k singular vectors of A and we get good
Frobenius norm error and the per vector guarantee (3). Unfortunately, when there is a small gap
between σk and σk+1, Z could miss intermediate singular vectors whose values lie between σk+1

and (1 + ε)σk+1. This is the case where gap dependent guarantees of classical analysis break down.

However, Aq or, for Block Krylov Iteration, some q-degree polynomial in our Krylov subspace, also
significantly separates singular values > σk+1 from those < (1− ε)σk+1. Thus, each column of Z
at least aligns with A nearly as well as uk+1. So, even if we miss singular values between σk+1 and
(1 + ε)σk+1, they will be replaced with approximate singular values > (1− ε)σk+1, enough for (3).

For Frobenius norm low-rank approximation (1), we prove that the degree to which Z falls outside of
the span of A’s top k singular vectors depends on the number of singular values between σk+1 and
(1−ε)σk+1. These are the values that could be ‘swapped in’ for the true top k singular values. Since
their weight counts towards A’s tail, our total loss compared to optimal is at worst ε‖A−Ak‖2F .

5 Implementation and Runtimes
For both Algorithm 1 and 2, Π can be replaced by a random sign matrix, or any matrix achieving
the guarantee of Lemma 4. Π may also be chosen with p > k columns. In our full paper [25], we
discuss in detail how this approach can give improved accuracy.

5.1 Simultaneous Iteration
In our implementation we set Z = QŪk, which is necessary for achieving per vector guarantees for
approximate PCA. However, for near optimal low-rank approximation, we can simply set Z = Q.
Projecting A to QŪk is equivalent to projecting to Q as these matrices have the same column spans.

Since powering A spreads its singular values, K = (AAT )qAΠ could be poorly conditioned. To
improve stability we orthonormalize K after every iteration (or every few iterations). This does not
change K’s column span, so it gives an equivalent algorithm in exact arithmetic.

4Algorithm 2 in fact only constructs odd powered terms in K, which is sufficient for our choice of pq(x).
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Theorem 7 (Simultaneous Iteration Runtime). Algorithm 1 runs in time

O
(
nnz(A)k log(d)/ε+ nk2 log(d)/ε

)
.

Proof. Computing K requires first multiplying A by Π, which takesO(nnz(A)k) time. Computing(
AAT

)i
AΠ given

(
AAT

)i−1
AΠ then takes O(nnz(A)k) time to first multiply our (n × k)

matrix by AT and then by A. Reorthogonalizing after each iteration takes O(nk2) time via Gram-
Schmidt. This gives a total runtime of O(nnz(A)kq + nk2q) for computing K. Finding Q takes
O(nk2) time. Computing M by multiplying from left to right requires O(nnz(A)k + nk2) time.
M’s SVD then requires O(k3) time using classical techniques. Finally, multiplying Ūk by Q takes
time O(nk2). Setting q = Θ(log d/ε) gives the claimed runtime.

5.2 Block Krylov Iteration
In the traditional Block Lanczos algorithm, one starts by computing an orthonormal basis for AΠ,
the first block in K. Bases for subsequent blocks are computed from previous blocks using a three
term recurrence that ensures QTAATQ is block tridiagonal, with k × k sized blocks [18]. This
technique can be useful if qk is large, since it is faster to compute the top singular vectors of a block
tridiagonal matrix. However, computing Q using a recurrence can introduce a number of stability
issues, and additional steps may be required to ensure that the matrix remains orthogonal [28].

An alternative, uesd in [1], [19], and our Algorithm 2, is to compute K explicitly and then find Q
using a QR decomposition. This method does not guarantee that QTAATQ is block tridiagonal,
but avoids stability issues. Furthermore, if qk is small, taking the SVD of QTAATQ will still be
fast and typically dominated by the cost of computing K.

As with Simultaneous Iteration, we orthonormalize each block of K after it is computed, avoiding
poorly conditioned blocks and giving an equivalent algorithm in exact arithmetic.
Theorem 8 (Block Krylov Iteration Runtime). Algorithm 2 runs in time

O
(

nnz(A)k log(d)/
√
ε+ nk2 log2(d)/ε+ k3 log3(d)/ε3/2

)
.

Proof. Computing K, including reorthogonalization, requires O(nnz(A)kq + nk2q) time. The re-
maining steps are analogous to those in Simultaneous Iteration except somewhat more costly as we
work with a k · q rather than k dimensional subspace. Finding Q takes O(n(kq)2) time. Computing
M take O(nnz(A)(kq) + n(kq)2) time and its SVD then requires O((kq)3) time. Finally, multi-
plying Ūk by Q takes time O(nk(kq)). Setting q = Θ(log d/

√
ε) gives the claimed runtime.

6 Experiments
We close with several experimental results. A variety of empirical papers, not to mention widespread
adoption, already justify the use of randomized SVD algorithms. Prior work focuses in particular on
benchmarking Simultaneous Iteration [19, 11] and, due to its improved accuracy over sketch-and-
solve approaches, this algorithm is popular in practice [10, 16]. As such, we focus on demonstrating
that for many data problems Block Krylov Iteration can offer significantly better convergence.

We implement both algorithms in MATLAB using Gaussian random starting matrices with exactly
k columns. We explicitly compute K for both algorithms, as described in Section 5, and use re-
orthonormalization at each iteration to improve stability [34]. We test the algorithms with varying
iteration count q on three common datasets, SNAP/AMAZON0302 [22, 23], SNAP/EMAIL-ENRON
[22, 35], and 20 NEWSGROUPS [36], computing column principal components in all cases. We plot
error vs. iteration count for metrics (1), (2), and (3) in Figure 3. For per vector error (3), we plot the
maximum deviation amongst all top k approximate principal components (relative to σk+1).

Unsurprisingly, both algorithms obtain very accurate Frobenius norm error, ‖A−ZZTA‖F /‖A−
Ak‖F , with very few iterations. This is our intuitively weakest guarantee and, in the presence of a
heavy singular value tail, both iterative algorithms will outperform the worst case analysis.

On the other hand, for spectral norm low-rank approximation and per vector error, we confirm that
Block Krylov Iteration converges much more rapidly than Simultaneous Iteration, as predicted by
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(a) SNAP/AMAZON0302, k = 30
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Figure 3: Low-rank approximation and per vector error convergence rates for Algorithms 1 and 2.

our theoretical analysis. It it often possible to achieve nearly optimal error with< 8 iterations where
as getting to within say 1% error with Simultaneous Iteration can take much longer.

The final plot in Figure 3 shows error verses runtime for the 11269× 15088 dimensional 20 NEWS-
GROUPS dataset. We averaged over 7 trials and ran the experiments on a commodity laptop with
16GB of memory. As predicted, because its additional memory overhead and post-processing costs
are small compared to the cost of the large matrix multiplication required for each iteration, Block
Krylov Iteration outperforms Simultaneous Iteration for small ε.

More generally, these results justify the importance of convergence bounds that are independent of
singular value gaps. Our analysis in Section 6 of the full paper predicts that, once ε is small in
comparison to the gap σk

σk+1
− 1, we should see much more rapid convergence since q will depend

on log(1/ε) instead of 1/ε. However, for Simultaneous Iteration, we do not see this behavior with
SNAP/AMAZON0302 and it only just begins to emerge for 20 NEWSGROUPS.

While all three datasets have rapid singular value decay, a careful look confirms that their singular
value gaps are actually quite small! For example, σk/σk+1 − 1 is .004 for SNAP/AMAZON0302
and .011 for 20 NEWSGROUPS, in comparison to .042 for SNAP/EMAIL-ENRON. Accordingly, the
frequent claim that singular value gaps can be taken as constant is insufficient, even for small ε.
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