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Abstract

This paper presents a Bayesian optimization method with exponential conver-
gencewithout the need of auxiliary optimization anaithout the §-cover sam-
pling. Most Bayesian optimization methods require auxiliary optimization: an ad-
ditional non-convex global optimization problem, which can be time-consuming
and hard to implement in practice. Also, the existing Bayesian optimization
method with exponential convergendg fequires access to tldecover sampling,
which was considered to be impractic#) £]. Our approach eliminates both re-
quirements and achieves an exponential convergence rate.

1 Introduction

We consider a general global optimization problem: maxinfize) subject tar € Q ¢ R? where

/: 2 — Ris a non-convex black-box deterministic function. Such a problem arises in many real-
world applications, such as parameter tuning in machine learajngtigineering design problems

[4], and model parameter fitting in biolog¥][ For this problem, one performance measure of an
algorithm is thesimple regretr,,, which is given byr, = sup,q, f(z) — f(z") wherez™ is the

best input vector found by the algorithm. For brevity, we use the term “regret” to mean simple regret.

The general global optimization problem is known to be intractable if we make no further assump-
tions [B]. The simplest additional assumption to restore tractability is to assume the existence of a
bound on the slope of. A well-known variant of this assumption is Lipschitz continuity with a
known Lipschitz constant, and many algorithms have been proposed in this séti#§][ These
algorithms successfully guaranteed certain bounds on the regret. However appealing from a theoret-
ical point of view, a practical concern was soon raised regarding the assumption that a tight Lipschitz
constant is known. Some researchers relaxed this somewhat strong assumption by proposing proce-
dures to estimate a Lipschitz constant during the optimization pro€8ss1, 17].

Bayesian optimization is an efficient way to relax this assumption of complete knowledge of the Lip-
schitz constant, and has become a well-recognized method for solving global optimization problems
with non-convex black-box functions. In the machine learning community, Bayesian optimization—
especially by means of a Gaussian process (GP)—is an active researdhifieaT5]. With the
requirement of the access to theover sampling procedure (it samples the function uniformly such

that the density of samples doubles in the feasible regions at each iteration), de Freite®| eeal. [
cently proposed a theoretical procedure that maintains an exponential convergence rate (exponential
regret). However, as pointed out by Wang et 2], fne remaining problem is to derive a GP-based
optimization method with an exponential convergencewétieoutthe 6-cover sampling procedure,

which is computationally too demanding in many cases.

In this paper, we propose a novel GP-based global optimization algorithm, which maintains an
exponential convergence rate and converges rapithoutthe §-cover sampling procedure.



2 Gaussian Process Optimization

In Gaussian process optimization, we estimate the distribution over funttod use this informa-

tion to decide which point of should be evaluated next. In a parametric approach, we consider a pa-
rameterized functiorf (z; 9), with 6 being distributed according to some prior. In contrast, the non-
parametric GP approach directly puts the GP prior gvasf(-) ~ GP(m(-), (-, -)) wherem(-) is

the mean function and(-, -) is the covariance function or the kernel. Thatigx) = E[f(z)] and
k(z,2') = E[(f(z) — m(x))(f(2") —m(x’))T]. For afinite set of points, the GP model is simply a
joint Gaussianf (x,. ) ~ N(m(x,.y),K), whereK; ; = x(z;,z;) andN is the number of data
points. To predict the value gf at a new data point, we first consider the joint distribution ofrer

of the old data points and the new data point:

£(x1.n) ~ N m(x;, ) KT k
flxny) m(zn+1) | k' k(ZNg1,TN41)
wherek = k(x1.x,%xny11) € RVXL. Then, after factorizing the joint distribution using the Schur

complement for the joint Gaussian, we obtain the conditional distribution, conditioned on observed
entitiesDy := {x1.n,f(x;. )} @nday 41, as:

fxn+1) DN, an 1 ~ N(w@n1|Dn), 0% (@n41|Dn))

where ji(zy1|Dy) = m(zy) + KK (£(x,y) — m(x,,y)) and o”(zx+1[Dy) =
k(Xn11,Xn+1) — kT K~ k. One advantage of GP is that this closed-form solution simplifies both
its analysis and implementation.

To use a GP, we must specify the mean function and the covariance function. The mean function is
usually set to be zero. With this zero mean function, the conditional méan_1|Dx) can still
be flexibly specified by the covariance function, as shown in the above equation far the co-
variance function, there are several common choices, including the Matern kernel and the Gaussian

kernel. For example, the Gaussian kernel is defined ast’) = exp(—%(x —a)'e e — :c’))

whereX ! is the kernel parameter matrix. The kernel parameters or hyperparameters can be esti-
mated by empirical Bayesian method$[; see [[7] for more information about GP.

The flexibility and simplicity of the GP prior make it a common choice for continuous objective
functions in the Bayesian optimization literature. Bayesian optimization with GP selects the next
guery point that optimizes the acquisition function generated by GP. Commonly used acquisition
functions include the upper confidence bound (UCB) and expected improvement (EIl). For brevity,
we consider Bayesian optimization with UCB, which works as follows. At each iteration, the UCB
functionl{ is maintained a&{(x|Dy) = u(z|Dn) + so(x|Dx) wheres € R is a parameter of the
algorithm. To find the next query,,.; for the objective functiory, GP-UCB solves an additional
non-convex optimization problem witl asz 1 = arg max, U (z|Dy). This is often carried out

by other global optimization methods such as DIRECT and CMA-ES. The justification for intro-
ducing a new optimization problem lies in the assumption that the cost of evaluating the objective
function f dominates that of solving additional optimization problem.

For deterministic function, de Freitas et dl] fecently presented a theoretical procedure that main-
tains exponential convergence rate. However, their own paper and the follow-up re&ez}point

out that this result relies on an impractical sampling procedurej-ttever sampling. To overcome
this issue, Wang et alZ] combined GP-UCB with a hierarchical partitioning optimization method,
the SOO algorithmg], providing a regret bound with polynomial dependence on the number of
function evaluations. They concluded that creating a GP-based algorithm wéttpanentiaton-
vergence ratgithoutthe impractical sampling procedure remained an open problem.

3 Infinite-Metric GP Optimization
3.1 Overview

The GP-UCB algorithm can be seen as a member of the class of bound-based search methods,
which includes Lipschitz optimization, A* search, and PAC-MDP algorithms with optimism in the

face of uncertainty. Bound-based search methods have a common property: the tightness of the
bound determines its effectiveness. The tighter the bound is, the better the performance becomes.



However, it is often difficult to obtain a tight bound while maintaining correctness. For example,
in A* search, admissible heuristics maintain the correctness of the bound, but the estimated bound
with admissibility is often too loose in practice, resulting in a long period of global search.

The GP-UCB algorithm has the same problem. The bound in GP-UCB is represented by UCB,
which has the following propertyf (z) < U(x|D) with some probability. We formalize this prop-

erty in the analysis of our algorithm. The problem is essentially due to the difficulty of obtaining a
tight boundi/ (z|D) such thatf(z) < U(z|D) and f(x) =~ U(x|D) (with some probability). Our
solution strategy is to first admit that the bound encoded in GP prior may not be tight enough to be
useful by itself. Instead of relying on a single bound given by the GP, we leverage the existence of
anunknownrbound encoded in the continuity at a global optimizer.

Assumption 1L (Unknown Bound) There exists a global optimizérand anunknownsemi-metric
¢such thatforal € Q, f(z*) < f(z) + £ (x,2*) and? (z, z*) < oco.

In other words, we do not expect thkmownupper bound due to GP to be tight, but instead expect that
there exists somenknownbound that might be tighter. Notice that in the case where the bound by
GP is as tight as the unknown bound by semi-méthcAssumption 1, our method still maintains an
exponential convergence rate and an advantage over GP-UCB (no need for auxiliary optimization).
Our method is expected to become relatively much better whekninenbound due to GP is less

tight compared to the unknown bound hy

As the semi-metri¢ is unknown, there are infinitely many possible candidates that we can think of
for £. Accordingly, we simultaneously conduct global and local searches based on all the candidates
of the bounds. The bound estimated by GP is used to reduce the number of candidates. Since
the bound estimated by GP is known, we can ignore the candidates of the bounds that are looser
than the bound estimated by GP. The source code of the proposed algorithm is publicly available at
hitp://is_csail.mit_edu/code/imgpo.hfmi

3.2 Description of Algorithm

Figure 1 illustrates how the algorithm works with a simple 1-dimensional objective function. We
employ hierarchical partitioning to maintain hyperintervals, as illustrated by the line segments in the
figure. We consider a hyperrectangle as our hyperinterval, with its center being the evaluation point
of f (blue points in each line segment in Figure 1). For each iteratitive algorithm performs the
following procedurdor each interval size

(i) Selectthe interval with the maximum center value among the intervals of the same size.

(i) Keep the interval selected by (i) if it has a center value greater than that ofasggr
interval.

(iif) Keep the interval accepted by (ii) if it contains a UCB greater than the center value of any
smallerinterval.

(iv) If aninterval is accepted by (iii), divide it along with the longest coordinate into three new
intervals.

(v) Foreach new interval, if the UCB of the evaluation point is less than the best function value
found so far, skip the evaluation and use the UCB value as the center value until the interval
is accepted in step (ii) on some future iteration; otherwise, evaluate the center value.

(vi) Repeat steps (i)—(v) until every size of intervals are considered

Then, at the end of each iteration, the algorithm updates the GP hyperparameters. Here, the purpose
of steps (i)—(iii) is to select an interval that might contain the global optimizer. Steps (i) and (ii)
select the possible intervals based on the unknown bourddvelyile Step (iii) does so based on the
bound by GP.

We now explain the procedure using the example in Figure 1nlket the number of divisions of
intervals and letV be the number of function evaluationsis the number of iterations. Initially,

there is only one interval (the center of the input regidorc R) and thus this interval is divided,
resulting in the first diagram of Figure 1. At the beginning of iteratien2 , step (i) selects the third
interval from the left side in the first diagram £ 1,n = 2), as its center value is the maximum.
Because there are no intervals of different size at this point, steps (ii) and (iii) are skipped. Step
(iv) divides the third interval, and then the GP hyperparameters are updated, resulting in the second
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Figure 1: An illustration of IMGPOt is the number of iteratiom is the number of divisions (or
splits), V is the number of function evaluations.

diagram { = 2,n = 3). At the beginning of iteration = 3, it starts conducting steps (i)—(v) for the
largest intervals. Step (i) selects the second interval from the left side and step (ii) is skipped. Step
(iii) accepts the second interval, because the UCB within this interval is no less than the center value
of the smaller intervals, resulting in the third diagraim= 3,n = 4). lterationt = 3 continues

by conducting steps (i)—(v) for the smaller intervals. Step (i) selects the second interval from the
left side, step (ii) accepts it, and step (iii) is skipped, resulting in the forth diagram3(n = 4).

The effect of the step (v) can be seen in the diagrams for iteratierd. At n = 16, the far right
interval is divided, but no function evaluation occurs. Instead, UCB values given by GP are placed
in the new intervals indicated by the red asterisks. One of the temporary dummy values is resolved
atn = 17 when the interval is queried for division, as shown by the green asterisk. The effect of
step (iii) for the rejection case is illustrated in the last diagram for iteratienl0. At n = 18, tis
increased to 10 from 9, meaning that the largest intervals are first considered for division. However,
the three largest intervals are all rejected in step (iii), resulting in the division of a very small interval
near the global optimum at = 18.

3.3 Technical Detail of Algorithm

We defineh to be the depth of the hierarchical partitioning tree, apg to be the center point

of the i*" hyperrectangle at depti Ng, is the number of the GP evaluations. Defifeth(7)

to be the largest integér such that the sef}, is not empty. To compute UCH/, we usesy; =

/2 log(72M?2/12n) whereM is the number of the calls made so far§ofi.e., each time we ugé,

we increment\/ by one). This particular form afy, is to maintain the property of(x) < U(z|D)
during an execution of our algorithm with probability at least n. Here,n is the parameter of
IMGPO. E,,,,.. is another parameter, but it is only used to limit the possibly long computation of
step (iii) (in the worst case, step (iii) computes UCBs:+= times although it would rarely happen).

The pseudocode is shown in Algorithm 1. Lines 8 to 23 correspond to steps (i)-(iii). These lines
compute the index; of the candidate of the rectangle that may contain a global optimizer for each
depthh. For each depttk, non-null index:;, at Line 24 indicates the remaining candidate of a
rectangle that we want to divide. Lines 24 to 33 correspond to steps (iv)-(v) where the remaining
candidates of the rectangles for alare divided. To provide a simple executable division scheme
(line 29), we assum@ to be a hyperrectangle (see the last paragraph of section 4 for a general case).

Lines 8 to 17 correspond to steps (i)-(ii). Specifically, line 10 implements step (i) where a single
candidate is selected for each depth, and lines 11 to 12 conduct step (ii) where some candidates are
screened out. Lines 13 to 17 resolve the the temporary dummy values computed by GP. Lines 18
to 23 correspond to step (iii) where the candidates are further screened out. At m@gaqh,i;)

indicates the set ddll center points of a fully expanded tree until depth- ¢ within the region

covered by the hyperrectangle centeredhat In other words7;/ +£(ch i ) contains the nodes of

the fully expanded tree rooted af ;= with depthg and can be Computed by dividing the current
rectangle aty, ;- and recurswely divide all the resulting new rectangles until dégite., depths

fromcp, ;x, which is depthh + £ in the whole tree).



Algorithm 1 Infinite-Metric GP Optimization (IMGPO)

Input: an objective functiory, the search domaif, the GP kernek, S, € N* andn € (0, 1)
. Initialize the set7;, = {#} Vh > 0
. Seteg o to be the center point &2 andZy — {co 0}
: Evaluatef atcg,0: g(co,0) < f(co,0)

1
2
3
4: f+ — g(co,0), D — {(co,0,9(c0,0))}
5 n,N«—1,Ngp —0,E«1
6
7
8
9

s fort=1,2,3,...do

Umazx < —OO

for h = 0 to depth(7) do # for-loop for steps (i)-(ii)
while truedo
10: i}, « argmax;., .e7;, 9(Ch,i)
11: if g(cn,iz) < vmaa then
12: iy < 0, break
13: else if g(ch)iz) is notlabeled assP-basedhen
14: Vmaz — g(ch’i; ), break
15: else
16: g(eniz) « flenir) and remove th&P-basedabel fromg(ch,iz)
17: N «— N+1, Ngp — Ngp — 1
18: D — {D, (ch,iz9(chiz))}
19: for h = 0todepth(7) do # for-loop for step (iii)
20: if i, # 0 then
21: ¢ — the smallest positive integer sif,, . # 0 and{ < min(E, Z,,.4.) if exists, and 0 otherwise
22: z(h,iy) = man5Ch+§,k€'T;i+§(Ch‘q‘,;‘L) U(chte,x|D)
23: if £ #0andz(h,i;) < g(ch+5,i;+§) then
24: ij, — 0, break
25. Umaz — —0
26: for h = 0todepth(7T) do # for-loop for steps (iv)-(v)
27: if i £0 andg(cp,iz ) = Umaz then
28: n<«—n-+ 1.
29: Divide the hyperrectangle centeredcgt- along with the longest coordinate into three new hy-

perrectangles with the following centers:
§= {Ch+1,i(left) y Ch+-1,i(center)s Ch+1,i(right)}

30: Thi1 < {Th41,S}

31 Th — Th \ Ch,i;l g(Ch+1,i(ce7LteT')) — g(ch,i;)
32 for inew = {i(left),i(right)} do

33: if U(chi1,., D) > fT then

34: 9(Cht1,imen) — F(ChA1 inow)

35: D — {D, (Chi1,inew> I(Cht1,inew )}

N = N+1 Y —max(f*, g(chs1,inen ) Vmaz = max(Vmaz, 9(Chi1,inen )
36: else
37 9(Cht1inow) — U(Cht1,in.,, |D) and labelg(cy41,4,,.,,) asGP-based
Ngp < Ngp +1
38: Update=: if fT was updateds « = + 22, and otherwisez « max(Z — 271, 1)
39:  Update GP hyperparameters by an empirical Bayesian method

3.4 Relationship to Previous Algorithms

The most closely related algorithm is the BaMSOO algoritBinyhich combines SOO with GP-

UCB. However, it only achieves a polynomial regret bound while IMGPO achieves a exponential
regret bound. IMGPO can achieve exponential regret because it utilizes the information encoded in
the GP prior/posterior to reduce the degree of the unknownness of the semi+mnetric

The idea of considering a set of infinitely many bounds was first proposed by Jone&&}.alhgir
DIRECT algorithm has been successfully applied to real-world problgn&g, [but it only maintains

the consistency property (i.e., convergence in the limit) from a theoretical viewpoint. DIRECT takes
an input parameterto balance the global and local search efforts. This idea was generalized to the
case of an unknown semi-metric and strengthened with a theoretical support (finite regret bound) by



Munos [18] in the SOO algorithm. By limiting the depth of the search tree with a parametgr,
the SOO algorithm achieves a finite regret bound that depenttearear-optimality dimension

4 Analysis

In this section, we prove an exponential convergence rate of IMGPO and theoretically discuss the
reason why the novel idea underling IMGPO is beneficial. The proofs are provided in the supple-
mentary material. To examine the effect of considering infinitely many possible candidates of the
bounds, we introduce the following term.

Definition 1. (Infinite-metric exploration loss). The infinite-metric exploration Ipsg the number
of intervals to be divided during iteratiagn

The infinite-metric exploration losg, can be computed g8 = Ziiplth(ﬂ 1(i; # 0) at line

25. ltis the cost (in terms of the number of function evaluations) incurred by not committing to
any particular upper bound. If we were to rely on a specific bowndyould be minimized to 1.

For example, the DOO algorithnif] hasp, = 1 V¢ > 1. Even if we know a particular upper
bound relying on this knowledge and thus minimizipg is not a good optiorunless the known
bound is tight enough compared to the unknown bound leveraged in our algorithia will be
clarified in our analysis. Lef; be the maximum of the averages@f;: fort/ = 1,2,...,¢ (i.e.,

Py = max({tl, 23:1 pri =12, t}).

Assumption 2. There existL > 0, « > 0 andp > 1 in R such that for alle, 2’ € Q, (2/,z) <
L|z" — x[[5.

In Theorem 1, we show that the exponential convergencecrdte” +Vor ) with X < 1 is achieved.
We define=,, < =,,4. to be the largest used so far withn total node expansions. For simplicity,
we assume tha® is a square, which we satisfied in our experiments by scaling original

Theorem 1. Assume Assumptions 1 and 2. L@t=sup,, ,/cq 5|7 —2/|| . LetA = 37 2hm < 1.
Then, with probability at least — n, the regret of IMGPO is bounded as

N + N,
< 1/p\a _ gp _En _ _ N+Ngp .
ry < L(3BD /") exp ( o [72013/% 2} In 3) =0 ()\ )

Importantly, our bound holds for the best values of the unkndwa and p even though these
values are not given. The closest result in previous work is that of BaM&D@fhich obtained
O(n‘ﬁ) with probability1 — » for « = {1,2}. As can be seen, we have improved the regret
bound. Additionally, in our analysis, we can see hbwp, and « affect the bound, allowing us
to view the inherent difficulty of an objective function in a theoretical perspective. Heig,a
constant inN and is used in previous worki®, Z]. For example, if we condu@” or 3° — 1
function evaluations per node-expansion angd+ oo, we have tha' = 1.

We note that\ can get close to one as input dimensibnincreases, which suggests that there

is a remaining challenge in scalability for higher dimensionality. One strategy for addressing this
problem would be to leverage additional assumptions such as thdsg .

Remark 1. (The effect of the tightness of UCB by GP) If UCB computed by GP is “useful” such

thatN/p, = Q(N), then our regret bound becor’r(és<exp (— Mt 1n 3)) If the bound due to

UCB by GP is too loose (and thus uselegg)can increase up tO(N/t) (due top; < Zﬁzl i/t <
O(N/t)), resulting in the regret bound o} (exp (—%aln 3)) which can be bounded

2CD VN’

Remark 2. (The effect of GP) Without the use of GP, our regret bound would be as followss
L(33DY?)* exp(—a] In 3), wherep, < p, is the infinite-metric exploration loss without

by O (exp (— BEer max(—k, 4 )aln 3))”‘. This is still better than the known results.

N 1
2CD 5_2]

1This can be done by limiting the depth of search tredash(T) = O(v/N). Our proof works with this
additional mechanism, but results in the regret bound Witheing replaced by/N. Thus, if we assume to

have at least “not useless” UCBs such thétp: = Q(+/ N), this additional mechanism can be disadvanta-
geous. Accordingly, we do not adopt it in our experiments.



GP. Therefore, the use of GP reduces the regret bound by increggjrand decreasing;, but may
potentially increase the bound by increasifig< =.

Remark 3. (The effect of infinite-metric optimization) To understand the effect of considering all
the possible upper bounds, we consider the case without GP. If we consider all the possible bounds,
we have the regret bount(33D'/7)* exp(—a[555 + 5, — 2]In3) for the best unknowd, o andp.

For standard optimization with a estimated bound, we hay@3D'/?" )" exp(—a’ (585 — 2]1n3)
for an estimated., o/, andp’. By algebraic manipulation, considering all the possible bounds has

o ’ / 1/p"ya! . ..
a better regretwhep; ' > 250 (545 —2)In3% +2In3% —In %) For an intuitive

insight, we can simplify the above by assumirig= o andC’ = C'asp; ' > 1 €2l n & D“/p

Becausd. andp are the ones that achieve the lowest bound, the Ioganthm on the rlgﬁt hand side is
always non-negative. Hencg, = 1 always satisfies the condition. Whén andp’ are not tight
enough, the logarithmic term increases in magnitude, alloin increase. For example, if the
second term on the right-hand side has a magnitude of greater than 0.5, thefi satisfies the
inequality. Therefore, even if we know the upper bound of the function, we can see that it may be
better not to rely on this, but rather take the infinite many possibilities into account.

One may improve the algorithm with different division procedures than one presented in Algorithm
1. Accordingly, in the supplementary material, we derive an abstract version of the regret bound for
IMGPO with a family of division procedures that satisfy some assumptions. This information could
be used to design a new division procedure.

5 Experiments

In this section, we compare the IMGPO algorithm with the SOO, BaMSOO, GP-PI and GP-El algo-
rithms [18, 2, B]. In previous work, BaMSOO and GP-UCB were tested with a pair of a handpicked
good kernel and hyperparameters for each functin [n our experiments, we assume that the
knowledge of good kernel and hyperparameters is unavailable, which is usually the case in practice.
Thus, for IMGPO, BaMSOO, GP-PI and GP-EI, we simply used one of the most popular kernels,
the isotropic Matern kernel with = 5/2. This is given byx(z,z") = g(1/5]|x — 2’||?/1), where

g(z) = d%(1 + z + 22/3) exp(—2). Then, we blindly initialized the hyperparameterssto= 1
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Figure 2: Performance Comparison: in the order, the digits inside of the parentheses [ ] indicate the
dimensionality of each function, and the variabjesind=,, at the end of computation for IMGPO.
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Table 1: Average CPU time (in seconds) for the experiment with each test function

Algorithm | Sinl Sin2 | Peaks| Rosenbrock2| Branin | Hartmann3| Hartmann6| Shei5
GP-PI 29.66 | 115.90| 47.90 921.82 1124.21 573.67 657.36 611.01
GP-El 12.74 | 115.79 | 44.94 893.04 1153.49 562.08 604.93 558.58
SO0 0.19 0.19 0.24 0.744 0.33 0.30 0.25 0.29
BaMSOO | 43.80| 4.61 7.83 12.09 14.86 14.14 26.68 371.36
IMGPO 161 3.15 4.70 11.11 5.73 6.80 13.47 15.92

and! = 0.25 for all the experiments; these values were updated with an empirical Bayesian method
after each iteration. To compute the UCB by GP, we uged 0.05 for IMGPO and BaMSOO.

For IMGPO,Z,,.. Was fixed to be2? (the effect of selecting different values is discussed later).
For BaMSOO and SOO, the parametgf,, was set to,/n, according to Corollary 4.3 inif).

For GP-PIl and GP-EI, we used the SOO algorithm and a local optimization method using gradients
to solve the auxiliary optimization. For SOO, BaMSOO and IMGPO, we used the corresponding
deterministic division procedure (given, the initial point is fixed and no randomness exists). For
GP-PI and GP-El, we randomly initialized the first evaluation point and report the mean and one
standard deviation for 50 runs.

The experimental results for eight different objective functions are shown in Figure 2. The vertical
axisis logo(f(z*) — f(z ™)), wheref(x*) is the global optima and(z*) is the best value found

by the algorithm. Hence, the lower the plotted value on the vertical axis, the better the algorithm’s
performance. The last five functions are standard benchmarks for global optimiZilfiofte first

two were used inf8)] to test SOO, and can be written #s,,1 () = (sin(13xz) sin+1)/2 for Sinl

and fgino(x) = fsin1(x1) fein1(x2) for Sin2. The form of the third function is given in Equation
(16) and Figure 2 in4Z). The last function is Sin2 embedded in 1000 dimension in the same manner
described in Section 4.1 ifi4], which is used here to illustrate a possibility of using IMGPO as a
main subroutine to scale up to higher dimensions with additional assumptions. For this function,
we used REMBOI14] with IMGPO and BaMSOO as its Bayesian optimization subroutine. All of
these functions are multimodal, except for Rosenbrock2, with dimensionality from 1 to 1000.

As we can see from Figure 2, IMGPO outperformed the other algorithms in general. SOO produced
the competitive results for Rosenbrock2 because our GP prior was misleading (i.e., it did not model
the objective function well and thus the propefty:) < U/(x|D) did not hold many times). As can

be seen in Table 1, IMGPO is much faster than traditional GP optimization methods although it is
slower than SOO. For Sin 1, Sin2, Branin and Hartmann3, increasjng does not affect IMGPO
becaus&,, did not reaclE,,,, = 22 (Figure 2). For the rest of the test functions, we would be able

to improve the performance of IMGPO by increasig,.. at the cost of extra CPU time.

6 Conclusion

We have presented the first GP-based optimization method with an exponential convergence rate
O (AN*Nar) (X < 1) withoutthe need of auxiliary optimization and thecover sampling. Perhaps

more importantly in the viewpoint of a broader global optimization community, we have provided

a practically oriented analysis framework, enabling us to seenshyelying on a particular bound

is advantageous, and how a non-tight bound can still be useful (in Remarks 1, 2 and 3). Following
the advent of the DIRECT algorithm, the literature diverged along two paths, one with a particular
bound and one without. GP-UCB can be categorized into the former. Our approach illustrates the
benefits of combining these two paths.

As stated in Section 3.1, our solution idea was to use a bound-based method but rely less on the
estimated bound by considering all the possible bounds. It would be interesting to see if a similar
principle can be applicable to other types of bound-based methods such as planning algorithms (e.qg.,
A* search and the UCT or FSSS algorith&#8]) and learning algorithms (e.g., PAC-MDP algorithms

[24])).
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