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Abstract

This paper investigates stochastic and adversarial combinatorial multi-armed ban-
dit problems. In the stochastic setting under semi-bandit feedback, we derive
a problem-specific regret lower bound, and discuss its scaling with the dimen-
sion of the decision space. We propose ESCB, an algorithm that efficiently ex-
ploits the structure of the problem and provide a finite-time analysis of its regret.
ESCB has better performance guarantees than existing algorithms, and signifi-
cantly outperforms these algorithms in practice. In the adversarial setting under
bandit feedback, we propose COMBEXP, an algorithm with the same regret scal-
ing as state-of-the-art algorithms, but with lower computational complexity for
some combinatorial problems.

1 Introduction

Multi-Armed Bandit (MAB) problems [[1]] constitute the most fundamental sequential decision prob-
lems with an exploration vs. exploitation trade-off. In such problems, the decision maker selects
an arm in each round, and observes a realization of the corresponding unknown reward distribution.
Each decision is based on past decisions and observed rewards. The objective is to maximize the
expected cumulative reward over some time horizon by balancing exploitation (arms with higher
observed rewards should be selected often) and exploration (all arms should be explored to learn
their average rewards). Equivalently, the performance of a decision rule or algorithm can be mea-
sured through its expected regret, defined as the gap between the expected reward achieved by the
algorithm and that achieved by an oracle algorithm always selecting the best arm. MAB problems
have found applications in many fields, including sequential clinical trials, communication systems,
economics, see e.g. [2,13]].

In this paper, we investigate generic combinatorial MAB problems with linear rewards, as introduced
in [4]. In each round n > 1, a decision maker selects an arm M from a finite set M C {0, l}d and

receives a reward M X (n) = Zle M;X;(n). The reward vector X(n) € R% is unknown.
We focus here on the case where all arms consist of the same number m of basic actions in the
sense that | M|y = m, VM € M. After selecting an arm M in round n, the decision maker
receives some feedback. We consider both (i) semi-bandit feedback under which after round n, for
all i € {1,...,d}, the component X;(n) of the reward vector is revealed if and only if M; = 1; (ii)
bandit feedback under which only the reward M T X (n) is revealed. Based on the feedback received
up to round n — 1, the decision maker selects an arm for the next round n, and her objective is to
maximize her cumulative reward over a given time horizon consisting of 7" rounds. The challenge in
these problems resides in the very large number of arms, i.e., in its combinatorial structure: the size
of M could well grow as d"*. Fortunately, one may hope to exploit the problem structure to speed
up the exploration of sub-optimal arms.

We consider two instances of combinatorial bandit problems, depending on how the sequence
of reward vectors is generated. We first analyze the case of stochastic rewards, where for all



Algorithm LLR CUCB CUCB ESCB
[91 [10] [l (Theorem 5)
Regret | O (% log(T)) o ( mid log(T)> o (A’::fn 1og(T)) o (@ log(T))

Table 1: Regret upper bounds for stochastic combinatorial optimization under semi-bandit feedback.

i€ {1,...,d}, (Xi(n))n>1 are ii.d. with Bernoulli distribution of unknown mean. The reward
sequences are also independent across ¢. We then address the problem in the adversarial setting
where the sequence of vectors X (n) is arbitrary and selected by an adversary at the beginning of
the experiment. In the stochastic setting, we provide sequential arm selection algorithms whose per-
formance exceeds that of existing algorithms, whereas in the adversarial setting, we devise simple
algorithms whose regret have the same scaling as that of state-of-the-art algorithms, but with lower
computational complexity.

2 Contribution and Related Work

2.1 Stochastic combinatorial bandits under semi-bandit feedback

Contribution. (a) We derive an asymptotic (as the time horizon 7' grows large) regret lower bound
satisfied by any algorithm (Theorem [I). This lower bound is problem-specific and tight: there
exists an algorithm that attains the bound on all problem instances, although the algorithm might
be computationally expensive. To our knowledge, such lower bounds have not been proposed in
the case of stochastic combinatorial bandits. The dependency in m and d of the lower bound is
unfortunately not explicit. We further provide a simplified lower bound (Theorem [2)) and derive its
scaling in (m, d) in specific examples.

(b) We propose ESCB (Efficient Sampling for Combinatorial Bandits), an algorithm whose regret
scales at most as (’)(\/TTLdA;ﬂln log(T")) (Theorem , where A, denotes the expected reward dif-
ference between the best and the second-best arm. ESCB assigns an index to each arm. The index
of given arm can be interpreted as performing likelihood tests with vanishing risk on its average re-
ward. Our indexes are the natural extension of KL-UCB and UCBI1 indexes defined for unstructured
bandits [5} 21]. Numerical experiments for some specific combinatorial problems are presented in

the supplementary material, and show that ESCB significantly outperforms existing algorithms.

Related work. Previous contributions on stochastic combinatorial bandits focused on specific com-
binatorial structures, e.g. m-sets [6], matroids [7], or permutations [8]]. Generic combinatorial prob-
lems were investigated in [9} [10} [11} [12]. The proposed algorithms, LLR and CUCB are variants
of the UCB algorithm, and their performance guarantees are presented in Table[I} Our algorithms
improve over LLR and CUCB by a multiplicative factor of /m.

2.2 Adversarial combinatorial problems under bandit feedback

Contribution. We present CoMBEXP, whose

9] <\/m3T(d +ml/22 Y log p;iln), where  fimin = min;e(g) ﬁ SaremM; and A s

the smallest nonzero eigenvalue of the matrix E[AM/ M T] when M is uniformly distributed over M
(Theorem @) For most problems of interest m(dA)~™* = O(1) [4] and p i, = O(poly(d/m)),
so that COMBEXP has O(+/m3dT log(d/m)) regret. A known regret lower bound is Q(m~/dT’)
[13], so the regret gap between COMBEXP and this lower bound scales at most as m'/2 up to a

logarithmic factor.

algorithm regret  is

Related work. Adversarial combinatorial bandits have been extensively investigated recently,
see [13] and references therein. Some papers consider specific instances of these problems, e.g.,
shortest-path routing [[14], m-sets [[15], and permutations [L6]. For generic combinatorial problems,

known regret lower bounds scale as {2 (\/ de) and Q) (m\/ dT) (if d > 2m) in the case of semi-
bandit and bandit feedback, respectively [[13]. In the case of semi-bandit feedback, [[13] proposes



Algorithm Regret
Lower Bound [[13]] Q (m dT), ifd > 2m
COMBAND [4] o <\/m3dTlog 4 (1 + %))
EXP2 WITH JOHN’S EXPLORATION [18]] @ (‘ /m3dT log %)
CoMBEXP (Theorem 6 @ (\/m3dT (1 + m;f) log ,u;ﬂln)

Table 2: Regret of various algorithms for adversarial combinatorial bandits with bandit feedback.
Note that for most combinatorial classes of interests, m(d)A) ~* = O(1) and p_;. = O(poly(d/m)).

OSMD, an algorithm whose regret upper bound matches the lower bound. [[17] presents an algorithm
with O(m+/dL% log(d/m)) regret where L% is the total reward of the best arm after 7" rounds.

For problems with bandit feedback, [4] proposes COMBAND and derives a regret upper bound which
depends on the structure of arm set M. For most problems of interest, the regret under COMBAND
is upper-bounded by O(1/m3dT log(d/m)). [18] addresses generic linear optimization with bandit
feedback and the proposed algorithm, referred to as EXP2 WITH JOHN’S EXPLORATION, has a
regret scaling at most as O(1/m3dT log(d/m)) in the case of combinatorial structure. As we show
next, for many combinatorial structures of interest (e.g. m-sets, matchings, spanning trees), COMB-
EXP yields the same regret as COMBAND and EXP2 WITH JOHN’S EXPLORATION, with lower
computational complexity for a large class of problems. Table[2]summarises known regret bounds.

Example 1: m-sets. M is the set of all d-dimensional binary vectors with m non-zero coordinates.

We have pipin = 7 and A = ";EZ:’S) (refer to the supplementary material for details). Hence when

m = o(d), the regret upper bound of COMBEXP becomes O(1/m3dT log(d/m)), which is the
same as that of COMBAND and EXP2 WITH JOHN’S EXPLORATION.

Example 2: matchings. The set of arms M is the set of perfect matchings in Ky, ,,,. d = m? and
M| = m!. We have pmin = % and \ = ﬁ Hence the regret upper bound of COMBEXP is

O(y/m°T log(m)), the same as for COMBAND and EXP2 WITH JOHN’S EXPLORATION.

Example 3: spanning trees. M is the set of spanning trees in the complete graph . In this
case, d = (g’), m = N — 1, and by Cayley’s formula M has NV=2 arms. logu_i, < 2N for
N > 2and 75 < 7when N > 6, The regret upper bound of COMBAND and EXP2 WITH JOHN’S

EXPLORATION becomes O(1/N°T log(N)). As for COMBEXP, we get the same regret upper

bound O(y/N5T log(N)).

3 Models and Objectives

We consider MAB problems where each arm M is a subset of m basic actions taken from [d] =
{1,...,d}. For i € [d], X;(n) denotes the reward of basic action 7 in round n. In the stochastic
setting, for each ¢, the sequence of rewards (X;(n)),>1 is i.i.d. with Bernoulli distribution with
mean ;. Rewards are assumed to be independent across actions. We denote by 6 = (64, ..., Hd)T S
© = [0,1]% the vector of unknown expected rewards of the various basic actions. In the adversarial
setting, the reward vector X (n) = (X1(n),...,Xq(n))" € [0,1] is arbitrary, and the sequence
(X(n),n > 1) is decided (but unknown) at the beginning of the experiment.

The set of arms M is an arbitrary subset of {0, 1}, such that each of its elements M has m basic
actions. Arm M is identified with a binary column vector (M, ..., M), and we have | M||; =
m, VM € M. At the beginning of each round n, a policy 7, selects an arm M™(n) € M based on
the arms chosen in previous rounds and their observed rewards. The reward of arm M ™ (n) selected
inround nis 3, (g M7 (n) Xi(n) = M™(n)" X (n).



We consider both semi-bandit and bandit feedbacks. Under semi-bandit feedback and policy 7,
at the end of round n, the outcome of basic actions X;(n) for all i € M™(n) are revealed to the
decision maker, whereas under bandit feedback, M7 (n) ' X (n) only can be observed.

Let IT be the set of all feasible policies. The objective is to identify a policy in II maximizing the
cumulative expected reward over a finite time horizon 7'. The expectation is here taken with respect
to possible randomness in the rewards (in the stochastic setting) and the possible randomization in
the policy. Equivalently, we aim at designing a policy that minimizes regret, where the regret of
policy 7 € Il is defined by:

R™(T) = ]\I}léiﬂ}ilE

ZTJ MTX(n)] - E

n=1

Z M”(n)TX(n)] .

Finally, for the stochastic setting, we denote by pp/(0) = M T the expected reward of arm M,
and let M*(0) € M, or M* for short, be any arm with maximum expected reward: M*(0) €
argmaxrem pas(60). In what follows, to simplify the presentation, we assume that the optimal
M* is unique. We further define: p*(6) = M*T0, Apm = minaszar+ Ay where App =
w*(0) — par(0), and Apax = maxps (u*(60) — par(9)).

4 Stochastic Combinatorial Bandits under Semi-bandit Feedback

4.1 Regret Lower Bound

Given 6, define the set of parameters that cannot be distinguished from 6 when selecting action
M*(0), and for which arm M*(0) is suboptimal:

B(0) = {A€ 0 : M 0)(0; — \i) =0, Vi, i*(\) > *(0)}.

We define X = (RT)™! and kl(u,v) the Kullback-Leibler divergence between Bernoulli distri-
butions of respective means u and v, i.e., kl(u,v) = ulog(u/v) + (1 — w)log((1 — u)/(1 — v)).
Finally, for (6, \) € ©2, we define the vector k1(6, ) = (k1(6;, \;));e[a-

We derive a regret lower bound valid for any uniformly good algorithm. An algorithm 7 is uniformly
good iff R™(T') = o(T) for all & > 0 and all parameters § € O. The proof of this result relies on
a general result on controlled Markov chains [19].

Theorem 1 For all 0 € O, for any uniformly good policy 7 € II, liminfp_, % > (),

where c(0) is the optimal value of the optimization problem:

.
inf Y an (MO - M0 st (Z xMM) K(0,\) >1,¥Ae B@O). (1)
MeM MeM

Observe first that optimization problem () is a semi-infinite linear program which can be solved for
any fixed 6, but its optimal value is difficult to compute explicitly. Determining how ¢(6) scales as
a function of the problem dimensions d and m is not obvious. Also note that (1)) has the following
interpretation: assume that (I)) has a unique solution z*. Then any uniformly good algorithm must
select action M at least %, log(T") times over the T first rounds. From [19], we know that there
exists an algorithm which is asymptotically optimal, so that its regret matches the lower bound of
Theorem [I] However this algorithm suffers from two problems: it is computationally infeasible
for large problems since it involves solving (I)) 7" times, furthermore the algorithm has no finite
time performance guarantees, and numerical experiments suggest that its finite time performance
on typical problems is rather poor. Further remark that if M is the set of singletons (classical
bandit), Theorem [I] reduces to the Lai-Robbins bound [20] and if M is the set of m-sets (bandit
with multiple plays), Theorem [I]reduces to the lower bound derived in [6]. Finally, Theorem [I|can
be generalized in a straightforward manner for when rewards belong to a one-parameter exponential
family of distributions (e.g., Gaussian, Exponential, Gamma etc.) by replacing kl by the appropriate
divergence measure.



A Simplified Lower Bound We now study how the regret ¢(#) scales as a function of the problem
dimensions d and m. To this aim, we present a simplified regret lower bound. Given 6, we say that
aset H C M\ M* has property P(0) iff, for all (M, M’) € H?, M # M’ we have M; M/ (1 —
Mx(0)) = 0 for all ;. We may now state Theorem

Theorem 2 Let H be a maximal (inclusion-wise) subset of M with property P(0). Define 5(0) =
minM¢M* \]\/[A\ij\]\i[ﬂ Then:

p9)

MeH MaX;e p\ M+ kl (91‘7 W EjeM*\]V[ 93‘)

c(f) >

Corollary 1 Let 6 € [a, 1]¢ for some constant a > 0 and M be such that each arm M € M, M #
M* has at most k suboptimal basic actions. Then c(0) = Q(|H|/k).

Theorem [2| provides an explicit regret lower bound. Corollary |1| states that ¢(6) scales at least
with the size of H. For most combinatorial sets, || is proportional to d — m (see supplementary
material for some examples), which implies that in these cases, one cannot obtain a regret smaller
than O((d — m)A_ 1 log(T)). This result is intuitive since d — m is the number of parameters
not observed when selecting the optimal arm. The algorithms proposed below have a regret of
O(dv/mA_} log(T)), which is acceptable since typically, /m is much smaller than d.

min

4.2 Algorithms

Next we present ESCB, an algorithm for stochastic combinatorial bandits that relies on arm indexes
as in UCBI1 [21]] and KL-UCB [5]. We derive finite-time regret upper bounds for ESCB that hold
even if we assume that ||M||; < m, YM € M, instead of ||M]|; = m, so that arms may have
different numbers of basic actions.

4.2.1 Indexes

ESCB relies on arm indexes. In general, an index of arm M in round n, say bas(n), should be
defined so that by (n) > M 76 with high probability. Then as for UCB1 and KL-UCB, applying the
principle of optimism in face of uncertainty, a natural way to devise algorithms based on indexes is
to select in each round the arm with the highest index. Under a given algorithm, at time n, we define
ti(n) = >_._, M;(s) the number of times basic action ¢ has been sampled. The empirical mean

reward of action i is then defined as 6;(n) = (1/t;(n)) S Xi(s)M;(s) if ti(n) > 0 and 0;(n) =
0 otherwise. We define the corresponding vectors ¢(n) = (¢;(n));c[q) and 6(n) = (éi(n))ie[d].
The indexes we propose are functions of the round n and of é(n) Our first index for arm M,

referred to as bys(n, (n)) or byr(n) for short, is an extension of KL-UCB index. Let f(n) =
log(n) +4mlog(log(n)). bas(n, 6(n)) is the optimal value of the following optimization problem:

r;leaexMTq st (Mt(n)TkI(O(n), q) < f(n), (2)

where we use the convention that for v, u € R?, vu = (v;u;);e(q- As we show later, by (n) may be
computed efficiently using a line search procedure similar to that used to determine KL-UCB index.

Our second index cay(n,0(n)) or ¢py(n) for short is a generalization of the UCB1 and UCB-tuned
indexes:

d
cn(n) = MTA(n) + @ <Z M; >

“— ti(n)

Note that, in the classical bandit problems with independent arms, i.e., when m = 1, bys(n) re-
duces to the KL-UCB index (which yields an asymptotically optimal algorithm) and ¢, (n) reduces
to the UCB-tuned index. The next theorem provides generic properties of our indexes. An impor-

tant consequence of these properties is that the expected number of times where by« (n, é(n)) or
ey« (n, 0(n)) underestimate p*(0) is finite, as stated in the corollary below.



Theorem 3 (i) Foralln > 1, M € M and 7 € [0, 1]¢, we have byr(n,7) < car(n, 7).
(ii) There exists Cy, > 0 depending on m only such that, for all M € M andn > 2:

Plbar(n, (n)) < MT6] < Cpon~ ' (log(n)) 2.
Corollary 2 >°, - P[bas-(n, O(n)) < p*] <14 Chp D on>2 n~t(log(n))™? < oo.

Statement (i) in the above theorem is obtained combining Pinsker and Cauchy-Schwarz inequalities.
The proof of statement (ii) is based on a concentration inequality on sums of empirical KL diver-
gences proven in [22]. It enables to control the fluctuations of multivariate empirical distributions
for exponential families. It should also be observed that indexes bys(n) and cps(n) can be extended
in a straightforward manner to the case of continuous linear bandit problems, where the set of arms
is the unit sphere and one wants to maximize the dot product between the arm and an unknown
vector. bys(n) can also be extended to the case where reward distributions are not Bernoulli but
lie in an exponential family (e.g. Gaussian, Exponential, Gamma, etc.), replacing kl by a suitably
chosen divergence measure. A close look at ¢j(n) reveals that the indexes proposed in [[10], [L1],
and [9] are too conservative to be optimal in our setting: there the “confidence bonus” 2?21 M

t; (n
was replaced by (at least) m Z?Zl % Note that [10]], [11] assume that the various basic actions

are arbitrarily correlated, while we assume independence among basic actions. When independence
does not hold, [11]] provides a problem instance where the regret is at least Q(ﬁfﬂ log(T)). This

does not contradict our regret upper bound (scaling as O( ZT‘/‘T log(T))), since we have added the
independence assumption.

4.2.2 Index computation

While the index cj/(n) is explicit, bas (n) is defined as the solution to an optimization problem. We
show that it may be computed by a simple line search. For A > 0, w € [0, 1] and v € N, define:

g\ w,v) = (1 — v+ /(1= )2+ 4wv)\) /2.

Fix n, M, (n) and t(n). Define I = {i : M; = 1,6;(n) # 1}, and for X > 0, define:
F(A) =Y t:(n)kl(0:(n), g\, 6:(n), t:(n))).

el

Theorem4 If I = 0, byr(n) = ||M||1. Otherwise: (i) A — F(X) is strictly increasing, and
F(R*) = R™. (ii) Define \* as the unique solution to F(\) = f(n). Thenby;(n) = ||M||1 — || +

> ier 9N, 0;(n), t;(n)).

Theorem E] shows that bys(n) can be computed using a line search procedure such as bisection,
as this computation amounts to solving the nonlinear equation F'(A\) = f(n), where F is strictly
increasing. The proof of Theorem [ follows from KKT conditions and the convexity of the KL
divergence.

4.2.3 The ESCB Algorithm

The pseudo-code of ESCB is presented in Algorithm|lI} We consider two variants of the algorithm
based on the choice of the index £ys(n): ESCB-1 when £p7(n) = bas(n) and ESCB-2 if {3 (n) =
ey (n). In practice, ESCB-1 outperforms ESCB-2. Introducing ESCB-2 is however instrumental
in the regret analysis of ESCB-1 (in view of Theorem |3| (i)). The following theorem provides a
finite time analysis of our ESCB algorithms. The proof of this theorem borrows some ideas from
the proof of [11, Theorem 3].

Theorem 5 The regret under algorithms m € {ESCB-1, ESCB-2} satisfies for all T > 1:
R™(T) < 16dv/mA_L f(T) + 4dm*A2 + C!.,

min

where C! > 0 does not depend on 0, d and T. As a consequence R™(T) = O(dv/mA_;, log(T))
when T' — oo.



Algorithm 1 ESCB
forn > 1do
Select arm M (n) € arg maxaream Ev(n).

Observe the rewards, and update ¢;(n) and 6;(n),Vi € M(n).
end for

Algorithm 2 COMBEXP

0 = Vmlog popiy,
LY =

\/m log ,u;]ilnﬁ»\/C(C'mzd«km)T
forn > 1do

Mixing: Let ¢,y = (1 = 7)qn—1 + yu°.
Decomposition: Select a distribution p, 1 over M such that >, pn_1(M)M = mq,_1.
Sampling: Select a random arm M (n) with distribution p, 1 and incur areward Y,, = >, X;(n)M;(n).
Estimation: Let ©,_1 = E [MM "], where M has law p,—1. Set X (n) = Y, X, M(n), where £} _,
is the pseudo-inverse of ¥, 1.
Update: Set G (i) o qn—1(i) exp(nX;(n)), Vi € [d].
Projection: Set gy, to be the projection of ¢, onto the set P using the KL divergence.
end for

Initialization: Set gy = 1 and n = yC, with C' = ﬁ

ESCB with time horizon T" has a complexity of O(|]M|T’) as neither by nor cp; can be writ-
ten as M "y for some vector y € R? Assuming that the offline (static) combinatorial prob-
lem is solvable in O(V(M)) time, the complexity of the CUCB algorithm in [L0] and [11]
after T' rounds is O(V(M)T). Thus, if the offline problem is efficiently implementable, i.e.,
V(M) = O(poly(d/m)), CUCB is efficient, whereas ESCB is not since | M| may have expo-
nentially many elements. In §2.5 of the supplement, we provide an extension of ESCB called
EPOCH-ESCB, that attains almost the same regret as ESCB while enjoying much better computa-
tional complexity.

5 Adversarial Combinatorial Bandits under Bandit Feedback

We now consider adversarial combinatorial bandits with bandit feedback. We start with the follow-
ing observation:

max M'X = max pu' X,

MeM neCo(M)
with Co(M) the convex hull of M. We embed M in the d-dimensional simplex by dividing its
elements by m. Let P be this scaled version of Co(M).

Inspired by OSMD [13| [18]], we propose the COMBEXP algorithm, where the KL divergence
is the Bregman divergence used to project onto P. Projection using the KL divergence is

addressed in [23]. We denote the KL divergence between distributions ¢ and p in P by
KL(p,q) = Zie[ d p(i) log 5 8 The projection of distribution ¢ onto a closed convex set = of
distributions is p* = arg min,e= KL(p, q).

Let A be the smallest nonzero eigenvalue of E[M M '], where M is uniformly distributed over M.
We define the exploration-inducing distribution 0 € P: puf = ﬁ > omem Mi, Vi€ [d], and

let fimin = min; mu?. 1 is the distribution over basic actions [d] induced by the uniform distri-
bution over M. The pseudo-code for COMBEXP is shown in Algorithm 2| The KL projection
in COMBEXP ensures that mg,_1 € Co(M). There exists A, a distribution over M such that
MGn—1 =y A(M)M. This guarantees that the system of linear equations in the decomposition
step is consistent. We propose to perform the projection step (the KL projection of ¢ onto P) using
interior-point methods [24]. We provide a simpler method in §3.4 of the supplement. The decom-
position step can be efficiently implemented using the algorithm of [25]. The following theorem
provides a regret upper bound for COMBEXP.

Theorem 6 For all T > 1: RCOVBEXP(T) < 2\/m3T (d + ) log ik, + ™ log k.



For most classes of M, we have p_1 = O(poly(d/m)) and m(d\)~! = O(1) [4]. For these

classes, COMBEXP has a regret of O(y/m3dT log(d/m)), which is a factor y/m log(d/m) off the
lower bound (see Table [2).

It might not be possible to compute the projection step exactly, and this step can be solved up
to accuracy €, in round n. Namely we find g, such that KL(gy, Gn) — min,e= KL(p, G») < €,.
Proposition [1| shows that for ¢, = O(n"21log™*(n)), the approximate projection gives the same
regret as when the projection is computed exactly. Theorem|[7]gives the computational complexity of
CoMBEXP with approximate projection. When C'o(M) is described by polynomially (in d) many
linear equalities/inequalities, COMBEXP is efficiently implementable and its running time scales
(almost) linearly in 7'. Proposition [I|and Theorem [7]easily extend to other OSMD-type algorithms
and thus might be of independent interest.

Proposition 1 If the projection step of COMBEXP is solved up to accuracy
en = O(n"2log 3(n)), we have:

1/2 ) 5/2
RCOMBEXP(T) < 2\/2m3T (d + m)\ ) log ,u;liln + T‘I;\ log :u’I:lill’l'

Theorem 7 Assume that Co(M) is defined by c linear equalities and s linear inequalities. If the
projection step is solved up to accuracy €, = O(n"2log™%(n)), then COMBEXP has time com-
plexity.

The time complexity of COMBEXP can be reduced by exploiting the structure of M (See [24,
page 545]). In particular, if inequality constraints describing C'o(M) are box constraints, the time
complexity of COMBEXP is O(T'[¢?\/s(c + d) log(T) + d*)).

The computational complexity of COMBEXP is determined by the structure of Co(M) and COMB-
EXP has O(T log(T)) time complexity due to the efficiency of interior-point methods. In con-
trast, the computational complexity of COMBAND depends on the complexity of sampling from M.
COMBAND may have a time complexity that is super-linear in 7" (see [16}, page 217]). For instance,
consider the matching problem described in Section[2] We have ¢ = 2m equality constraints and
s = m? box constraints, so that the time complexity of COMBEXP is: O(m®T log(T')). It is noted
that using [26, Algorithm 1], the cost of decomposition in this case is O(m4). On the other hand,
COMBBAND has a time complexity of O(m!°F(T)), with F a super-linear function, as it requires
to approximate a permanent, requiring O(m!") operations per round. Thus, COMBEXP has much
lower complexity than COMBAND and achieves the same regret.

6 Conclusion

We have investigated stochastic and adversarial combinatorial bandits. For stochastic combinatorial
bandits with semi-bandit feedback, we have provided a tight, problem-dependent regret lower bound
that, in most cases, scales at least as O((d — m)A_ ! log(T)). We proposed ESCB, an algorithm
with O(dy/mA_1 log(T)) regret. We plan to reduce the gap between this regret guarantee and
the regret lower bound, as well as investigate the performance of EPOCH-ESCB. For adversarial
combinatorial bandits with bandit feedback, we proposed the COMBEXP algorithm. There is a gap
between the regret of COMBEXP and the known regret lower bound in this setting, and we plan to

reduce it as much as possible.

Acknowledgments

A. Proutiere’s research is supported by the ERC FSA grant, and the SSF ICT-Psi project.



References

1

—

2

—

3

—

[4

—

(5

—

[6

—_

[7

—

(8]

[9

—

(10]

(1]

(12]

(13]

[14]

(15]

[16]

(17]
(18]

(19]

[20]

(21]

(22]

(23]
[24]
[25]

[26]

Herbert Robbins. Some aspects of the sequential design of experiments. In Herbert Robbins Selected
Papers, pages 169-177. Springer, 1985.

Sébastien Bubeck and Nicolo Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-armed
bandit problems. Foundations and Trends in Machine Learning, 5(1):1-222, 2012.

Nicold Cesa-Bianchi and Gabor Lugosi. Prediction, learning, and games, volume 1. Cambridge Univer-
sity Press Cambridge, 2006.

Nicolo Cesa-Bianchi and Gabor Lugosi. Combinatorial bandits. Journal of Computer and System Sci-
ences, 78(5):1404-1422, 2012.

Aurélien Garivier and Olivier Cappé. The KL-UCB algorithm for bounded stochastic bandits and beyond.
In Proc. of COLT, 2011.

Venkatachalam Anantharam, Pravin Varaiya, and Jean Walrand. Asymptotically efficient allocation rules
for the multiarmed bandit problem with multiple plays-part i: iid rewards. Automatic Control, IEEE
Transactions on, 32(11):968-976, 1987.

Branislav Kveton, Zheng Wen, Azin Ashkan, Hoda Eydgahi, and Brian Eriksson. Matroid bandits: Fast
combinatorial optimization with learning. In Proc. of UAI 2014.

Yi Gai, Bhaskar Krishnamachari, and Rahul Jain. Learning multiuser channel allocations in cognitive
radio networks: A combinatorial multi-armed bandit formulation. In Proc. of IEEE DySpan, 2010.

Yi Gai, Bhaskar Krishnamachari, and Rahul Jain. Combinatorial network optimization with unknown
variables: Multi-armed bandits with linear rewards and individual observations. IEEE/ACM Trans. on
Networking, 20(5):1466-1478, 2012.

Wei Chen, Yajun Wang, and Yang Yuan. Combinatorial multi-armed bandit: General framework and
applications. In Proc. of ICML, 2013.

Branislav Kveton, Zheng Wen, Azin Ashkan, and Csaba Szepesvari. Tight regret bounds for stochastic
combinatorial semi-bandits. In Proc. of AISTATS, 2015.

Zheng Wen, Azin Ashkan, Hoda Eydgahi, and Branislav Kveton. Efficient learning in large-scale combi-
natorial semi-bandits. In Proc. of ICML, 2015.

Jean-Yves Audibert, Sébastien Bubeck, and Gabor Lugosi. Regret in online combinatorial optimization.
Mathematics of Operations Research, 39(1):31-45, 2013.

Andras Gyorgy, Tamds Linder, Gdbor Lugosi, and Gyorgy Ottucsdk. The on-line shortest path problem
under partial monitoring. Journal of Machine Learning Research, 8(10), 2007.

Satyen Kale, Lev Reyzin, and Robert Schapire. Non-stochastic bandit slate problems. Advances in Neural
Information Processing Systems, pages 1054—1062, 2010.

Nir Ailon, Kohei Hatano, and Eiji Takimoto. Bandit online optimization over the permutahedron. In
Algorithmic Learning Theory, pages 215-229. Springer, 2014.

Gergely Neu. First-order regret bounds for combinatorial semi-bandits. In Proc. of COLT, 2015.

Sébastien Bubeck, Nicold Cesa-Bianchi, and Sham M. Kakade. Towards minimax policies for online
linear optimization with bandit feedback. Proc. of COLT, 2012.

Todd L. Graves and Tze Leung Lai. Asymptotically efficient adaptive choice of control laws in controlled
markov chains. SIAM J. Control and Optimization, 35(3):715-743, 1997.

Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. Advances in
Applied Mathematics, 6(1):4-22, 1985.

Peter Auer, Nicolod Cesa-Bianchi, and Paul Fischer. Finite time analysis of the multiarmed bandit problem.
Machine Learning, 47(2-3):235-256, 2002.

Stefan Magureanu, Richard Combes, and Alexandre Proutiere. Lipschitz bandits: Regret lower bounds
and optimal algorithms. Proc. of COLT, 2014.

I. Csiszar and P.C. Shields. Information theory and statistics: A tutorial. Now Publishers Inc, 2004.
Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

H. D. Sherali. A constructive proof of the representation theorem for polyhedral sets based on fundamental
definitions. American Journal of Mathematical and Management Sciences, 7(3-4):253-270, 1987.

David P. Helmbold and Manfred K. Warmuth. Learning permutations with exponential weights. Journal
of Machine Learning Research, 10:1705-1736, 2009.



