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Abstract

The process of dynamic state estimation (filtering) based on point process ob-
servations is in general intractable. Numerical sampling techniques are often
practically useful, but lead to limited conceptual insight about optimal encod-
ing/decoding strategies, which are of significant relevance to Computational Neu-
roscience. We develop an analytically tractable Bayesian approximation to opti-
mal filtering based on point process observations, which allows us to introduce
distributional assumptions about sensory cell properties, that greatly facilitate the
analysis of optimal encoding in situations deviating from common assumptions of
uniform coding. The analytic framework leads to insights which are difficult to
obtain from numerical algorithms, and is consistent with experiments about the
distribution of tuning curve centers. Interestingly, we find that the information
gained from the absence of spikes may be crucial to performance.

1 Introduction

The task of inferring a hidden dynamic state based on partial noisy observations plays an important
role within both applied and natural domains. A widely studied problem is that of online inference
of the hidden state at a given time based on observations up to to that time, referred to as filtering
[1]. For the linear setting with Gaussian noise and quadratic cost, the solution is well known since
the early 1960s both for discrete and continuous times, leading to the celebrated Kalman and the
Kalman-Bucy filters [2, 3], respectively. In these cases the exact posterior distribution is Gaussian,
resulting in closed form recursive update equations for the mean and variance of this distribution,
implying finite-dimensional filters. However, beyond some very specific settings [4], the optimal
filter is infinite-dimensional and impossible to compute in closed form, requiring either approximate
analytic techniques (e.g., the extended Kalman filter (e.g., [1]), the unscented filter [5]) or numerical
procedures (e.g., particle filters [6]). The latter usually require time discretization and a finite number
of particles, resulting in loss of precision . For many practical tasks (e.g., queuing [7] and optical
communication [8]) and biologically motivated problems (e.g., [9]) a natural observation process is
given by a point process observer, leading to a nonlinear infinite-dimensional optimal filter (except
in specific settings, e.g., finite state spaces, [7, 10]).

We consider a continuous-state and continuous-time multivariate hidden Markov process observed
through a set of sensory neuron-like elements characterized by multi-dimensional unimodal tuning
functions, representing the elements’ average firing rate. The tuning function parameters are char-
acterized by a distribution allowing much flexibility. The actual firing of each cell is random and is
given by a Poisson process with rate determined by the input and by the cell’s tuning function. In-
ferring the hidden state under such circumstances has been widely studied within the Computational
Neuroscience literature, mostly for static stimuli. In the more challenging and practically important
dynamic setting, much work has been devoted to the development of numerical sampling techniques
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for fast and effective approximation of the posterior distribution (e.g., [11]). In this work we are less
concerned with algorithmic issues, and more with establishing closed-form analytic expressions for
an approximately optimal filter (see [10, 12, 13] for previous work in related, but more restrictive
settings), and using these to characterize the nature of near-optimal encoders, namely determining
the structure of the tuning functions for optimal state inference. A significant advantage of the closed
form expressions over purely numerical techniques is the insight and intuition that is gained from
them about qualitative aspects of the system. Moreover, the leverage gained by the analytic compu-
tation contributes to reducing the variance inherent to Monte Carlo approaches. Technically, given
the intractable infinite-dimensional nature of the posterior distribution, we use a projection method
replacing the full posterior at each point in time by a projection onto a simple family of distributions
(Gaussian in our case). This approach, originally developed in the Filtering literature [14, 15], and
termed Assumed Density Filtering (ADF), has been successfully used more recently in Machine
Learning [16, 17]. As far as we are aware, this is the first application of this methodology to point
process filtering.

The main contributions of the paper are the following: (i) Derivation of closed form recursive expres-
sions for the continuous time posterior mean and variance within the ADF approximation, allowing
for the incorporation of distributional assumptions over sensory variables. (ii) Characterization of
the optimal tuning curves (encoders) for sensory cells in a more general setting than hitherto con-
sidered. Specifically, we study the optimal shift of tuning curve centers, providing an explanation
for observed experimental phenomena [18]. (iii) Demonstration that absence of spikes is informa-
tive, and that, depending on the relationship between the tuning curve distribution and the dynamic
process (the ‘prior’), may significantly improve the inference. This issue has not been emphasized
in previous studies focusing on homogeneous populations.

We note that most previous work in the field of neural encoding/decoding has dealt with static
observations and was based on the Fisher information, which often leads to misleading qualitative
results (e.g., [19, 20]). Our results address the full dynamic setting in continuous time, and provide
results for the posterior variance, which is shown to yield an excellent approximation of the posterior
Mean Square Error (MSE). Previous work addressing non-uniform distributions over tuning curve
parameters [21] used static univariate observations and was based on Fisher information rather than
the MSE itself.

2 Problem formulation

2.1 Dense Gaussian neural code

We consider a dynamical system with state Xt ∈ Rn, observed through an observation process N
describing the firing patterns of sensory neurons in response to the processX . The observed process
is a diffusion process obeying the Stochastic Differential Equation (SDE)

dXt = A (Xt) dt+D (Xt) dWt, (t ≥ 0)

whereA (·) , D (·) are arbitrary functions andWt is standard Brownian motion. The initial condition
X0 is assumed to have a continuous distribution with a known density. The observation process N
is a marked point process [8] defined on [0,∞) × Rm, meaning that each point, representing the
firing of a neuron, is identified by its time t ∈ [0,∞), and a mark θ ∈ Rm. In this work the mark is
interpreted as a parameter of the firing neuron, which we refer to as the neuron’s preferred stimulus.
Specifically, a neuron with parameter θ is taken to have firing rate

λ (x; θ) = h exp

(
−1

2
‖Hx− θ‖2Σ−1

tc

)
,

in response to state x, where H ∈ Rm×n and Σtc ∈ Rm×m , m ≤ n, are fixed matrices, and the
notation ‖y‖2M denotes yTMy. The choice of Gaussian form for λ facilitates analytic tractability.
The inclusion of the matrix H allows using high-dimensional models where only some dimensions
are observed, for example when the full state includes velocities but only locations are directly
observable. We also define Nt , N ([0, t)× Rm), i.e., Nt is the total number of points up to time
t, regardless of their location θ, and denote by Nt the sequence of points up to time t — formally,
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the process N restricted to [0, t)× Rm. Following [8], we use the notation

ˆ b

a

ˆ
U

f (t, θ)N (dt× dθ) ,
∑
i

1 {ti ∈ [a, b] , θi ∈ U} f (ti, θi) , (1)

for U ⊆ Rm and any function f , where (ti, θi) are respectively the time and mark of the i-th point
of the process N .

Consider a network with M sensory neurons, having random preferred stimuli θ = {θi}Mi=1 that are
drawn independently from a common distribution with probability density f (θ), which we refer to
as the population density. Positing a distribution for the preferred stimuli allows us to obtain simple
closed form solutions, and to optimize over distribution parameters rather than over the higher-
dimensional space of all the θi. The total rate of spikes with preferred stimuli in a set A ⊂ Rm,
given Xt = x, is then λA (x;θ) = h

∑
i 1{θi∈A} exp

(
− 1

2 ‖Hx− θi‖
2
Σ−1

tc

)
. Averaging over f (θ),

we have the expected rate λA (x) , EλA (x;θ) = hM
´
A
f (θ) exp

(
− 1

2 ‖Hx− θ‖
2
Σ−1

tc

)
dθ. We

now obtain an infinite neural network by considering the limit M → ∞ while holding λ0 = hM
fixed. In the limit we have λA (x;θ)→ λA (x), so that the process N has density

λt (θ,Xt) = λ0f (θ) exp

(
−1

2
‖HXt − θ‖2Σ−1

tc

)
, (2)

meaning that the expected number of points in a small rectangle [t, t+ dt]×
∏
i [θi, θi + dθi], con-

ditioned on the history X[0,t],Nt, is λt (θ,Xt) dt
∏
i dθi + o (dt, |dθ|). A finite network can be

obtained as a special case by taking f to be a sum of delta functions.

For analytic tractability, we assume that f (θ) is Gaussian with center c and covariance Σpop, namely
f (θ) = N (θ; c,Σpop). We refer to c as the population center. Previous work [22, 20, 23] considered
the case where neurons’ preferred stimuli uniformly cover the space, obtained by removing the factor
f (θ) from (2). Then, the total firing rate

´
λt (θ, x) dθ is independent of x, which simplifies the

analysis, and leads to a Gaussian posterior (see [22]). We refer to the assumption that
´
λt (θ, x) dθ

is independent of x as uniform coding. The uniform coding case may be obtained from our model
by taking the limit Σ−1

pop → 0 with λ0/
√

det Σpop held constant.

2.2 Optimal encoding and decoding

We consider the question of optimal encoding and decoding under the above model. The process of
neural decoding is assumed to compute (exactly or approximately) the full posterior distribution of
Xt given Nt. The problem of neural encoding is then to choose the parameters φ = (c,Σpop,Σtc),
which govern the statistics of the observation process N , given a specific decoding scheme.

To quantify the performance of the encoding-decoding system, we summarize the result of de-
coding using a single estimator X̂t = X̂t (Nt), and define the Mean Square Error (MSE) as
εt , trace[(Xt − X̂t)(Xt − X̂t)

T ]. We seek X̂t and φ that solve minφ limt→∞minX̂t
E [εt] =

minφ limt→∞ E[minX̂t
E[εt|Nt]]. The inner minimization problem in this equation is solved by the

MSE-optimal decoder, which is the posterior mean X̂t = µt , E [Xt|Nt]. The posterior mean
may be computed from the full posterior obtained by decoding. The outer minimization problem is
solved by the optimal encoder. In principle, the encoding/decoding problem can be solved for any
value of t. In order to assess performance it is convenient to consider the steady-state limit t → ∞
for the encoding problem.

Below, we find a closed form approximate solution to the decoding problem for any t using ADF. We
then explore the problem of choosing the steady-state optimal encoding parameters φ using Monte
Carlo simulations. Note that if decoding is exact, the problem of optimal encoding becomes that of
minimizing the expected posterior variance.
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3 Neural decoding

3.1 Exact filtering equations

Let P (·, t) denote the posterior density of Xt given Nt, and EtP [·] the posterior expectation given
Nt. The prior density P (·, 0) is assumed to be known.

The problem of filtering a diffusion process X from a doubly stochastic Poisson process driven by
X is formally solved in [24]. The result is extended to marked point processes in [22], where the
authors derive a stochastic PDE for the posterior density1,

dP (x, t) = L∗P (x, t) dt+ P (x, t)

ˆ
θ∈Rm

λt (θ, x)− λ̂t (θ)

λ̂t (θ)

(
N (dt× dθ)− λ̂t (θ) dθ dt

)
, (3)

where the integral with respect to N is interpreted as in (1), L is the state’s in-
finitesimal generator (Kolmogorov’s backward operator), defined as Lf (x) =
lim∆t→0+ (E [f (Xt+∆t) |Xt = x]− f (x)) /∆t, L∗ is L’s adjoint operator (Kolmogorov’s
forward operator), and λ̂t (θ) , EtP [λt (θ,Xt)] =

´
P (x, t)λt (θ, x) dx.

The stochastic PDE (3) is usually intractable. In [22, 23] the authors consider linear dynamics with
uniform coding and Gaussian prior. In this case, the posterior is Gaussian, and (3) leads to closed
form ODEs for its moments. When the uniform coding assumption is violated, the posterior is no
longer Gaussian. Still, we can obtain exact equations for the posterior moments, as follows.

Let µt = EtPXt, X̃t = Xt − µt,Σt = EtP [X̃tX̃
T
t ]. Using (3), and the known results for L for

diffusion processes (see supplementary material), the first two posterior moments can be shown to
obey the following equations between spikes (see [23] for the finite population case):

dµt
dt

= EtP [A (Xt)] + EtP

[
Xt

ˆ (
λ̂t (θ)− λt (θ,Xt)

)
dθ

]
dΣt
dt

= EtP

[
A (Xt) X̃

T
t

]
+ EtP

[
X̃tA (Xt)

T
]

+ EtP

[
D (Xt)D (Xt)

T
]

+EtP

[
X̃tX̃

T
t

ˆ (
λ̂t (θ)− λt (θ,Xt)

)
dθ

]
. (4)

3.2 ADF approximation

While equations (4) are exact, they are not practical, since they require computation of EtP [·]. We
now proceed to find an approximate closed form for (4). Here we present the main ideas of the
derivation. The formulation presented here assumes, for simplicity, an open-loop setting where the
system is passively observed. It can be readily extended to a closed-loop control-based setting, and
is presented in this more general framework in the supplementary material, including full details.

To bring (4) to a closed form, we use ADF with an assumed Gaussian density (see [16] for de-
tails). Conceptually, this may be envisioned as integrating (4) while replacing the distribution P
by its approximating Gaussian “at each time step”. Assuming the moments are known exactly, the
Gaussian is obtained by matching the first two moments of P [16]. Note that the solution of the
resulting equations does not in general match the first two moments of the exact solution, though it
may approximate it.

Abusing notation, in the sequel we use µt,Σt to refer to the ADF approximation rather than to
the exact values. Substituting the normal distribution N (x;µt,Σt) for P (x, t) to compute the ex-
pectations involving λt in (4), and using (2) and the Gaussian form of f(θ), results in computable
Gaussian integrals. Other terms may also be computed in closed form if the functionA,D can be ex-
panded as power series. This computation yields approximate equations for µt,Σt between spikes.
The updates at spike times can similarly be computed in closed form either from (3) or directly from
a Bayesian update of the posterior (see supplementary material, or e.g., [13]).

1The model considered in [22] assumes linear dynamics and uniform coding – meaning that the total rate of
Nt, namely

´
θ
λt (θ,Xt) dθ, is independent of Xt. However, these assumption are only relevant to establish

other proposition in that paper. The proof of equation (3) still holds as is in our more general setting.
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Figure 1: Left Changes to the posterior moments between spikes as a function of the current pos-
terior mean estimate, for a static 1-d state. The parameters are a = d = 0, H = 1, σ2

pop =

1, σ2
tc = 0.2, c = 0, λ0 = 10, σt = 1. The bottom plot shows the density of preferred stim-

uli f (θ) and tuning curve for a neuron with preferred stimulus θ = 0. Right An example of
filtering a linear one-dimensional process. Each dot correspond to a spike with the vertical lo-
cation indicating the preferred stimulus θ. The curves to the right of the graph show the pre-
ferred stimulus density (black), and a tuning curve centered at θ = 0 (gray). The tuning curve
and preferred stimulus density are normalized to the same height for visualization. The bottom
graph shows the posterior variance, with the vertical lines showing spike times. Parameters are:
a = −0.1, d = 2, H = 1, σ2

pop = 2, σ2
tc = 0.2, c = 0, λ0 = 10, µ0 = 0, σ2

0 = 1. Note the decrease
of the posterior variance following t = 4 even though no spikes are observed.

For simplicity, we assume that the dynamics are linear, dXt = AXt dt + DdWt, resulting in the
filtering equations

dµt = Aµtdt+ gtΣtH
TSt (Hµt − c) dt+ Σt−H

TStc
t−

ˆ
θ∈Rm

(θ −Hµt−)N (dt× dθ) (5)

dΣt =
(
AΣt + ΣtA

T +DDT
)
dt

+ gtΣtH
T
[
St − St (Hµt − c) (Hµt − c)T St

]
HΣtdt

− Σt−H
TStc

t−HΣt−dNt, (6)

where Stc
t ,

(
Σtc +HΣtH

T
)−1

, St ,
(
Σtc + Σpop +HΣtH

T
)−1

, and

gt ,
ˆ
λ̂ (θ) dθ =

ˆ
EtP [λ (θ,Xt)] dθ = λ0

√
det (ΣtcSt) exp

(
−1

2
‖Hµt − c‖2St

)
is the posterior expected total firing rate. Expressions including t− are to be interpreted as left limits
f (t−) = lims→t− f (s), which are necessary since the solution is discontinuous at spike times.

The last term in (5) is to be interpreted as in (1). It contributes an instantaneous jump in µt at the
time of a spike with preferred stimulus θ, moving Hµt closer to θ. Similarly, the last term in (6)
contributes an instantaneous jump in Σt at each spike time, which is the same regardless of spike
location. All other terms describe the evolution of the posterior between spikes: the first few terms
in (5)-(6) are the same as in the dynamics of the prior, as in [13, 23], whereas the terms involving
gt correspond to information from the absence of spikes. Note that the latter scale with gt, the
expected total firing rate, i.e., lack of spikes becomes “more informative” the higher the expected
rate of spikes.

It is illustrative to consider these equations in the scalar case m = n = 1, with H = 1. Letting
σ2
t = Σt, σ

2
tc = Σtc, σ

2
pop = Σpop, a = A, d = D yields

dµt = aµtdt+ gt
σ2
t

σ2
t + σ2

tc + σ2
pop

(µt − c) dt+
σ2
t−

σ2
t− + σ2

tc

ˆ
θ∈R

(θ − µt−)N (dt× dθ) (7)

dσ2
t =

(
2aσ2

t + d2 + gt
σ2
t

σ2
t + σ2

tc + σ2
pop

[
1− (µt − c)2

σ2
t + σ2

tc + σ2
pop

]
σ2
t

)
dt−

σ2
t−

σ2
t− + σ2

tc

σ2
t−dNt,

(8)
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Figure 2: Left Illustration of information gained between spikes. A static state Xt = 0.5, shown
in a dotted line, is observed and filtered twice: with the correct value σ2

pop = 0.5 (“ADF”, solid
blue line), and with σ2

pop = ∞ (“Uniform coding filter”, dashed line). The curves to the right of
the graph show the preferred stimulus density (black), and a tuning curve centered at θ = 0 (gray).
Both filters are initialized with µ0 = 0, σ2

0 = 1. Right Comparison of MSE for the ADF filter and
the uniform coding filter. The vertical axis shows the integral of the square error integrated over the
time interval [5, 10], averaged over 1000 trials. Shaded areas indicate estimated errors, computed as
the sample standard deviation divided by the square root of the number of trials. Parameters in both
plots are a = d = 0, c = 0, σ2

pop = 0.5, σ2
tc = 0.1, H = 1, λ0 = 10.

where gt = λ0
√

2πσ2
tcN

(
µt; c, σ

2
t + σ2

tc + σ2
pop

)
. Figure 1 (left) shows how µt, σ

2
t change be-

tween spikes for a static 1-dimensional state (a = d = 0). In this case, all terms in the filtering
equations drop out except those involving gt. The term involving gt in dµt pushes µt away from c in
the absence of spikes. This effect weakens as |µt − c| grows due to the factor gt, consistent with the
idea that far from c, the lack of spikes is less surprising, hence less informative. The term involving
gt in dσ2

t increases the variance when µt is near c, otherwise decreases it.

3.3 Information from lack of spikes

An interesting aspect of the filtering equations (5)-(6) is that the dynamics of the posterior density
between spikes differ from the prior dynamics. This is in contrast to previous models which assumed
uniform coding: the (exact) filtering equations appearing in [22] and [23] have the same form as (5)-
(6) except that they do not include the correction terms involving gt, so that between spikes the
dynamics are identical to the prior dynamics. This reflects the fact that lack of spikes in a time
interval is an indication that the total firing rate is low; in the uniform coding case, this is not
informative, since the total firing rate is independent of the state.

Figure 2 (left) illustrates the information gained from lack of spikes. A static scalar state is observed
by a process with rate (2), and filtered twice: once with the correct value of σpop, and once with
σpop → ∞, as in the uniform coding filter of [23]. Between spikes, the ADF estimate moves
away from the population center c = 0, whereas the uniform coding estimate remains fixed. The
size of this effect decreases with time, as the posterior variance estimate (not shown) decreases.
The reduction in filtering errors gained from the additional terms in (5)-(6) is illustrated in Figure
2 (right). Despite the approximation involved, the full filter significantly outperforms the uniform
coding filter. The difference disappears as σpop increases and the population becomes uniform.

Special cases To gain additional insight into the filtering equations, we consider their behavior in
several limits. (i) As σ2

pop → ∞, spikes become rare as the density f (θ) approaches 0 for any θ.
The total expected rate of spikes gt also approaches 0, and the terms corresponding to information
from lack of spikes vanish. Other terms in the equations are unaffected. (ii) In the limit σ2

tc → ∞,
each neuron fires as a Poisson process with a constant rate independent of the observed state. The
total expected firing rate gt saturates at its maximum, λ0. Therefore the preferred stimuli of spiking
neurons provide no information, nor does the presence or absence of spikes. Accordingly, all terms
other than those related to the prior dynamics vanish. (iii) The uniform coding case [22, 23] is
obtained as a special case in the limit σ2

pop → ∞ with λ0/σpop constant. In this limit the terms
involving gt drop out, recovering the (exact) filtering equations in [22].
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4 Optimal neural encoding

We model the problem of optimal neural encoding as choosing the parameters c,Σpop,Σtc of the
population and tuning curves, so as to minimize the steady-state MSE. As noted above, when the
estimate is exactly the posterior mean, this is equivalent to minimizing the steady-state expected
posterior variance. The posterior variance has the advantage of being less noisy than the square error
itself, since by definition it is the mean of the square error (of the posterior mean) under conditioning
by Nt. We explore the question of optimal neural encoding by measuring the steady-state variance
through Monte Carlo simulations of the system dynamics and the filtering equations (5)-(6). Since
the posterior mean and variance computed by ADF are approximate, we verified numerically that
the variance closely matches the MSE in the steady state when averaged across many trials (see
supplementary material), suggesting that asymptotically the error in estimating µt and Σt is small.

4.1 Optimal population center

We now consider the question of the optimal value for the population center c. Intuitively, if the
prior distribution of the process X is unimodal with mode x0, the optimal population center is at
Hx0, to produce the most spikes. On the other hand, the terms involving gt in the filtering equation
(5)-(6) suggest that the lack of spikes is also informative. Moreover, as seen in Figure 1 (left), the
posterior variance is reduced between spikes only when the current estimate is far enough from c.
These considerations suggest that there is a trade-off between maximizing the frequency of spikes
and maximizing the information obtained from lack of spikes, yielding an optimal value for c that
differs from Hx0.

We simulated a simple one-dimensional process to determine the optimal value of cwhich minimizes
the approximate posterior variance Σt. Figure 3 (left) shows the posterior variance for varying
values of the population center c and base firing rate λ0. For each firing rate, we note the value of
c minimizing the posterior variance (the optimal population center), as well as the value of cm =
argminc (dσt/dt|µt=0), which maximizes the reduction in the posterior variance when the current
state estimate µt is at the process equilibrium x0 = 0. Consistent with the discussion above, the
optimal value lies between 0 (where spikes are most abundant) and cm (where lack of spikes is most
informative). As could be expected, the optimal center is closer to 0 the higher the base firing rate.
Similarly, wide tuning curves, which render the spikes less informative, lead to an optimal center
farther from 0 (Figure 3, right).

A shift of the population center relative to the prior mode has been observed physiologically in
encoding of inter-aural time differences for localization of sound sources [25]. In [18], this phe-
nomenon was explained in a finite population model based on maximization of Fisher information.
This is in contrast to the results of [21], which consider a heterogeneous population where the tuning
curve width scales roughly inversely with neuron density. In this case, the population density max-
imizing the Fisher information is shown to be monotonic with the prior, i.e., more neurons should
be assigned to more probable states. This apparent discrepancy may be due to the scaling of tuning
curve widths in [21], which produces roughly constant total firing rate, i.e., uniform coding. This
demonstrates that a non-constant total firing rate, which renders lack of spikes informative, may be
necessary to explain the physiologically observed shift phenomenon.

4.2 Optimization of population distribution

Next, we consider the optimization of the population distribution, namely, the simultaneous opti-
mization of the population center c and the population variance Σpop in the case of a static scalar
state. Previous work using a finite neuron population and a Fisher information-based criterion [18]
has shown that the optimal distribution of preferred stimuli depends on the prior variance. When
it is small relative to the tuning curve width, optimal encoding is achieved by placing all preferred
stimuli at a fixed distance from the prior mean. On the other hand, when the prior variance is large
relative to the tuning curve width, optimal encoding is uniform (see figure 2 in [18]).

Similar results are obtained with our model, as shown in Figure 4. Here, a static scalar state drawn
from N (0, σ2

p) is filtered by a population with tuning curve width σtc = 1 and preferred stimulus
density N (c, σ2

pop). In Figure 4 (left), the prior distribution is narrow relative to the tuning curve
width, leading to an optimal population with a narrow population distribution far from the origin. In
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Figure 4: Optimal population distribution depends on prior variance relative to tuning curve width.
A static scalar state drawn fromN (0, σ2

p) is filtered with tuning curve σtc = 1 and preferred stimulus
densityN (c, σ2

pop). Both graphs show the posterior standard deviation relative to the prior standard
deviation σp. In the left graph, the prior distribution is narrow, σ2

p = 0.1, whereas on the right, it is
wide, σ2

p = 10. In both cases the filter is initialized with the correct prior, and the square error is
averaged over the time interval [5, 10] and across 100 trials for each data point.

Figure 4 (right), the prior is wide relative to the tuning curve width, leading to an optimal population
with variance that roughly matches the prior variance. When both the tuning curves and the popu-
lation density are narrow relative to the prior, so that spikes are rare (low values of σpop in Figure 4
(right)), the ADF approximation becomes poor, resulting in MSEs larger than the prior variance.

5 Conclusions

We have introduced an analytically tractable Bayesian approximation to point process filtering, al-
lowing us to gain insight into the generally intractable infinite-dimensional filtering problem. The
approach enables the derivation of near-optimal encoding schemes going beyond previously studied
uniform coding assumptions. The framework is presented in continuous time, circumventing tem-
poral discretization errors and numerical imprecisions in sampling-based methods, applies to fully
dynamic setups, and directly estimates the MSE rather than lower bounds to it. It successfully ex-
plains observed experimental results, and opens the door to many future predictions. Future work
will include a development of previously successful mean field approaches [13] within our more
general framework, leading to further analytic insight. Moreover, the proposed strategy may lead to
practically useful decoding of spike trains.
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