Online Gradient Boosting

Alina Beygelzimer Elad Hazan Satyen Kale
Yahoo Labs Princeton University Yahoo Labs
New York, NY 10036 Princeton, NJ 08540 New York, NY 10036
beygel@yahoo-inc.com ehazan@cs.princeton.edu satyen@yahoo-inc.com

Haipeng Luo
Princeton University
Princeton, NJ 08540

haipengl@cs.princeton.edu

Abstract

We extend the theory of boosting for regression problems to the online
learning setting. Generalizing from the batch setting for boosting, the no-
tion of a weak learning algorithm is modeled as an online learning algorithm
with linear loss functions that competes with a base class of regression func-
tions, while a strong learning algorithm is an online learning algorithm with
smooth convex loss functions that competes with a larger class of regres-
sion functions. Our main result is an online gradient boosting algorithm
that converts a weak online learning algorithm into a strong one where the
larger class of functions is the linear span of the base class. We also give a
simpler boosting algorithm that converts a weak online learning algorithm
into a strong one where the larger class of functions is the convex hull of
the base class, and prove its optimality.

1 Introduction

Boosting algorithms [21] are ensemble methods that convert a learning algorithm for a base
class of models with weak predictive power, such as decision trees, into a learning algorithm
for a class of models with stronger predictive power, such as a weighted majority vote over
base models in the case of classification, or a linear combination of base models in the case
of regression.

Boosting methods such as AdaBoost [9] and Gradient Boosting [10] have found tremendous
practical application, especially using decision trees as the base class of models. These
algorithms were developed in the batch setting, where training is done over a fixed batch of
sample data. However, with the recent explosion of huge data sets which do not fit in main
memory, training in the batch setting is infeasible, and online learning techniques which
train a model in one pass over the data have proven extremely useful.

A natural goal therefore is to extend boosting algorithms to the online learning setting.
Indeed, there has already been some work on online boosting for classification problems [20,
11, 17, 12, 4, 5, 2]. Of these, the work by Chen et al. [4] provided the first theoretical study
of online boosting for classification, which was later generalized by Beygelzimer et al. [2] to
obtain optimal and adaptive online boosting algorithms.

However, extending boosting algorithms for regression to the online setting has been elusive
and escaped theoretical guarantees thus far. In this paper, we rigorously formalize the
setting of online boosting for regression and then extend the very commonly used gradient

boosting methods [10, 19] to the online setting, providing theoretical guarantees on their
performance.

The main result of this paper is an online boosting algorithm that competes with any
linear combination the base functions, given an online linear learning algorithm over the
base class. This algorithm is the online analogue of the batch boosting algorithm of Zhang
and Yu [24], and in fact our algorithmic technique, when specialized to the batch boosting
setting, provides exponentially better convergence guarantees.

We also give an online boosting algorithm that competes with the best convex combination
of base functions. This is a simpler algorithm which is analyzed along the lines of the Frank-
Wolfe algorithm [8]. While the algorithm has weaker theoretical guarantees, it can still be
useful in practice. We also prove that this algorithm obtains the optimal regret bound (up
to constant factors) for this setting.

Finally, we conduct some proof-of-concept experiments which show that our online boosting
algorithms do obtain performance improvements over different classes of base learners.

1.1 Related Work

While the theory of boosting for classification in the batch setting is well-developed (see
[21]), the theory of boosting for regression is comparatively sparse.The foundational theory
of boosting for regression can be found in the statistics literature [14, 13], where boosting
is understood as a greedy stagewise algorithm for fitting of additive models. The goal is to
achieve the performance of linear combinations of base models, and to prove convergence to
the performance of the best such linear combination.

While the earliest works on boosting for regression such as [10] do not have such convergence
proofs, later works such as [19, 6] do have convergence proofs but without a bound on the
speed of convergence. Bounds on the speed of convergence have been obtained by Duffy
and Helmbold [7] relying on a somewhat strong assumption on the performance of the base
learning algorithm. A different approach to boosting for regression was taken by Freund and
Schapire [9], who give an algorithm that reduces the regression problem to classification and
then applies AdaBoost; the corresponding proof of convergence relies on an assumption on
the induced classification problem which may be hard to satisfy in practice. The strongest
result is that of Zhang and Yu [24], who prove convergence to the performance of the best
linear combination of base functions, along with a bound on the rate of convergence, making
essentially no assumptions on the performance of the base learning algorithm. Telgarsky [22]
proves similar results for logistic (or similar) loss using a slightly simpler boosting algorithm.

The results in this paper are a generalization of the results of Zhang and Yu [24] to the online
setting. However, we emphasize that this generalization is nontrivial and requires different
algorithmic ideas and proof techniques. Indeed, we were not able to directly generalize
the analysis in [24] by simply adapting the techniques used in recent online boosting work
[4, 2], but we made use of the classical Frank-Wolfe algorithm [8]. On the other hand, while
an important part of the convergence analysis for the batch setting is to show statistical
consistency of the algorithms [24, 1, 22], in the online setting we only need to study the
empirical convergence (that is, the regret), which makes our analysis much more concise.

2 Setup
Examples are chosen from a feature space X', and the prediction space is RZ. Let |- || denote
some norm in R%. In the setting for online regression, in each round ¢ for t = 1,2,...,T, an

adversary selects an example x; € X' and a loss function ¢, : R — R, and presents x; to the
online learner. The online learner outputs a prediction y, € R, obtains the loss function
£y, and incurs loss £;(y¢).

Let F denote a reference class of regression functions f : X — R?, and let C denote a class
of loss functions ¢ : R — R. Also, let R : N — R, be a non-decreasing function. We
say that the function class F is online learnable for losses in C with regret R if there is an
online learning algorithm 4, that for every T' € N and every sequence (x¢,4;) € X x C for

t=1,2,...,T chosen by the adversary, generates predictions’ A(x;) € R? such that

T T
D b(Ax) < inf > 4(f(x1)) + R(T). (1)

If the online learning algorithm is randomized, we require the above bound to hold with
high probability.

The above definition is simply the online generalization of standard empirical risk mini-
mization (ERM) in the batch setting. A concrete example is 1-dimensional regression, i.e.
the prediction space is R. For a labeled data point (x,y*) € X x R, the loss for the pre-
diction y € R is given by ¢(y*,y) where £(-,-) is a fixed loss function that is convex in
the second argument (such as squared loss, logistic loss, etc). Given a batch of T labeled
data points {(x:,y7r) | t = 1,2,...,T} and a base class of regression functions F (say, the
set of bounded norm linear regressors), an ERM algorithm finds the function f € F that

minimizes ZtTZI Uz, f(xt))-

In the online setting, the adversary reveals the data (x;,y;) in an online fashion, only
presenting the true label y; after the online learner A has chosen a prediction y;. Thus,
setting ¢ (y) = £(y;,y:), we observe that if A satisfies the regret bound (1), then it makes
predictions with total loss almost as small as that of the empirical risk minimizer, up to the
regret term. If F is the set of all bounded-norm linear regressors, for example, the algorithm
A could be online gradient descent [25] or online Newton Step [16].

At a high level, in the batch setting, “boosting” is understood as a procedure that, given a
batch of data and access to an ERM algorithm for a function class F (this is called a “weak”
learner), obtains an approximate ERM algorithm for a richer function class F’ (this is called
a “strong” learner). Generally, F' is the set of finite linear combinations of functions in F.
The efficiency of boosting is measured by how many times, N, the base ERM algorithm
needs to be called (i.e., the number of boosting steps) to obtain an ERM algorithm for
the richer function within the desired approximation tolerance. Convergence rates [24] give
bounds on how quickly the approximation error goes to 0 and N — oc.

We now extend this notion of boosting to the online setting in the natural manner. To
capture the full generality of the techniques, we also specify a class of loss functions that
the online learning algorithm can work with. Informally, an online boosting algorithm is a
reduction that, given access to an online learning algorithm A for a function class F and
loss function class C with regret R, and a bound N on the total number of calls made in each
iteration to copies of A, obtains an online learning algorithm A’ for a richer function class
F’, aricher loss function class C’, and (possibly larger) regret R’. The bound N on the total
number of calls made to all the copies of A corresponds to the number of boosting stages in
the batch setting, and in the online setting it may be viewed as a resource constraint on the
algorithm. The efficacy of the reduction is measured by R’ which is a function of R, N, and
certain parameters of the comparator class F' and loss function class C’. We desire online
boosting algorithms such that %R’(T) — 0 quickly as N — oo and T' — co. We make the
notions of richness in the above informal description more precise now.

Comparator function classes. A given function class F is said to be D-bounded if for
all x € X and all f € F, we have ||f(x)|| < D. Throughout this paper, we assume that F is
symmetric:? i.e. if f € F, then —f € F, and it contains the constant zero function, which
we denote, with some abuse of notation, by 0.

!There is a slight abuse of notation here. A(-) is not a function but rather the output of the
online learning algorithm A computed on the given example using its internal state.

2This is without loss of generality; as will be seen momentarily, our base assumption only requires
an online learning algorithm A for F for linear losses ¢;. By running the Hedge algorithm on two
copies of A, one of which receives the actual loss functions ¢; and the other recieves —/¢;, we get
an algorithm which competes with negations of functions in F and the constant zero function as
well. Furthermore, since the loss functions are convex (indeed, linear) this can be made into a
deterministic reduction by choosing the convex combination of the outputs of the two copies of A
with mixing weights given by the Hedge algorithm.

Given F, we define two richer function classes F’: the convex hull of F, de-
noted CH(F), is the set of convex combinations of a finite number of func-
tions in F, and the span of F, denoted span(F), is the set of linear combina-
tions of finitely many functions in F. For any f € span(F), define |f|1 :=

inf{max{l,zges lwgl}: f=2eswgg, SCF, [S| <oo, wy € R}. Since functions in

span(JF) are not bounded, it is not possible to obtain a uniform regret bound for all functions
in span(F): rather, the regret of an online learning algorithm A for span(F) is specified in
terms of regret bounds for individual comparator functions f € span(F), viz.

T T
Ry(T) = Z&(A(Xt)) - th(f(xt))'

Loss function classes. The base loss function class we consider is £, the set of all linear
functions ¢ : R? — R, with Lipschitz constant bounded by 1. A function class F that is
online learnable with the loss function class L is called online linear learnable for short. The
richer loss function class we consider is denoted by C and is a set of convex loss functions
¢ : R? — R satisfying some regularity conditions specified in terms of certain parameters
described below.

We define a few parameters of the class C. For any b > 0, let B4(b) = {y € R?: |ly|| < b}
be the ball of radius b. The class C is said to have Lipschitz constant L, on B%(b) if for all
¢ € C and all y € BY(b) there is an efficiently computable subgradient V¢(y) with norm at
most L;. Next, C is said to be By-smooth on B¢(b) if for all £ € C and all y,y’ € B4(b) we
have

(y') < Uy)+Viy)-(y —y)+ %Hy—y/ﬂz-

Next, define the projection operator II;, : R? — B(b) as II;(y) := arg ming cgae) |y —y'|5

(I () —(y)

and define €, := supycga sec 0 o) =y |

3 Online Boosting Algorithms

The setup is that we are given a D-bounded reference class of functions F with an online
linear learning algorithm A4 with regret bound R(-). For normalization, we also assume that
the output of A at any time is bounded in norm by D, i.e. |A(x:)| < D for all t. We
further assume that for every b > 0, we can compute? a Lipschitz constant L, a smoothness
parameter 3, and the parameter €, for the class C over B4(b). Furthermore, the online
boosting algorithm may make up to NV calls per iteration to any copies of A it maintains,
for a given a budget parameter N.

Given this setup, our main result is an online boosting algorithm, Algorithm 1, competing
with span(F). The algorithm maintains N copies of A, denoted A, fori = 1,2,..., N. Each
copy corresponds to one stage in boosting. When it receives a new example x;, it passes it
to each A’ and obtains their predictions A?(x;), which it then combines into a prediction
for y; using a linear combination. At the most basic level, this linear combination is simply
the sum of all the predictions scaled by a step size parameter 1. Two tweaks are made to
this sum in step 8 to facilitate the analysis:

1. While constructing the sum, the partial sum yi_l is multiplied by a shrinkage factor
(1 — oin). This shrinkage term is tuned using an online gradient descent algorithm
in step 14. The goal of the tuning is to induce the partial sums yi_l to be aligned
with a descent direction for the loss functions, as measured by the inner product
Ve(yy)

2. The partial sums y! are made to lie in BY(B), for some parameter B, by using the
projection operator IIg. This is done to ensure that the Lipschitz constant and
smoothness of the loss function are suitably bounded.

31t suffices to compute upper bounds on these parameters.

Algorithm 1 Online Gradient Boosting for span(F)

Require: Number of weak learners N, step size parameter 1 € [%, 1],
1: Let B =min{nND, inf{b > D: nByb* > ¢,D}}.
2: Maintain N copies of the algorithm A, denoted A’ for i = 1,2,..., N.
3: For each i, initialize of = 0.
4: fortfltono
Receive example X¢.
Define y§ = 0.
fori=1to N do
Define y; = Ip((1 = ofn)y; " +nA (x:)).
9: end for
10: Predict y; = y.
11: Obtain loss function ¢; and suffer loss £;(y:).
12 fori=1to N do

13: Pass loss function £i(y) = iV@t(yéfl) y to A’

14: Set o}, = max{min{o} + a; V¢l (y; ") - yi "), 1},0}, where a; = %Bﬂ'
15: end for

16: end for

Once the boosting algorithm makes the prediction y; and obtains the loss function ¢;, each
Al is updated using a suitably scaled hnear approx1mat10n to the loss function at the partial
sum yy ~1 i.e. the linear loss function s L (y!) y. This forces A’ to produce predictions

that are ahgned with a descent dlrectlon for the loss function.

For lack of space, we provide the analysis of the algorithm in Section B in the supplementary
material. The analysis yields the following regret bound for the algorithm:

Theorem 1. Letn € [%, 1] be a given parameter. Let B = min{nND, inf{b > D : npyb* >
eyD}}. Algorithm 1 is an online learning algorithm for span(F) and losses in C with the
following regret bound for any f € span(F):

Ry(T) < (1 L) o+ 3085 B2 fINT + Lullf | R(T) + 2Ls B fl, VT

where Ag == 31—, £:(0) — £e(f(x1))-

The regret bound in this theorem depends on several parameters such as B, g and Lpg.
In applications of the algorithm for 1-dimensional regression with commonly used loss func-
tions, however, these parameters are essentially modest constants; see Section 3.1 for calcu-
lations of the parameters for various loss functions. Furthermore, if 7 is appropriately set
(e.g. m = (log N)/N), then the average regret R (1')/T" clearly converges to 0 as N — oo
and T' — oco. While the requirement that N — co may raise concerns about computational
efficiency, this is in fact analogous to the guarantee in the batch setting: the algorithms
converge only when the number of boosting stages goes to infinity. Moreover, our lower
bound (Theorem 4) shows that this is indeed necessary.

We also present a simpler boosting algorithm, Algorithm 2, that competes with CH(F).
Algorithm 2 is similar to Algorithm 1, with some simplifications: the final prediction is
simply a convex combination of the predictions of the base learners, with no projections or
shrinkage necessary. While Algorithm 1 is more general, Algorithm 2 may still be useful in
practice when a bound on the norm of the comparator function is known in advance, using
the observations in Section 4.2. Furthermore, its analysis is cleaner and easier to understand
for readers who are familiar with the Frank-Wolfe method, and this serves as a foundation
for the analysis of Algorithm 1. This algorithm has an optimal (up to constant factors)
regret bound as given in the following theorem, proved in Section A in the supplementary
material. The upper bound in this theorem is proved along the lines of the Frank-Wolfe [§]
algorithm, and the lower bound using information-theoretic arguments.

Theorem 2. Algorithm 2 is an online learning algorithm for CH(F) for losses in C with
the regret bound

83p D?
N

R(T) < T+ LpR(T).

Furthermore, the dependence of this regret bound on N is optimal up to constant factors.

The dependence of the regret bound on R(T) is unimprovable without additional assump-
tions: otherwise, Algorithm 2 will be an online linear learning algorithm over F with better
than R(T) regret.

Algorithm 2 Online Gradient Boosting for CH(F)

1: Maintain N copies of the algorithm A, denoted A", A%, ..., AN, and let n; = Z_%l for
i=1,2,...,N.
:fort=1 to T do

Receive example X

Define y¥ = 0.

fori=1to N do _ ‘

Define y; = (1 — n;)y; " + ni Al (xe).
end for
Predict y; = yi.
9: Obtain loss function ¢; and suffer loss ¢;(y:).

10: fori=1to N do

11: Pass loss function £;(y) = 7=V, (yi7') -y to A’
12: end for
13: end for

Using a deterministic base online linear learning algorithm. If the base online
linear learning algorithm A is deterministic, then our results can be improved, because our
online boosting algorithms are also deterministic, and using a standard simple reduction,
we can now allow C to be any set of convex functions (smooth or not) with a computable
Lipschitz constant L; over the domain B%(b) for any b > 0.

This reduction converts arbitrary convex loss functions into linear functions: viz. if y; is
the output of the online boosting algorithm, then the loss function provided to the boosting
algorithm as feedback is the linear function ¢;(y) = V{;(y:)-y. This reduction 1mmed1ately
implies that the base online linear learning algorlthm A, when fed loss functions —é;, is

already an online learning algorithm for CH(F) with losses in C with the regret bound
R/(T) < LpR(T).

As for competing with span(F), since linear loss functions are 0-smooth, we obtain the
following easy corollary of Theorem 1:

Corollary 1. Let n € [%, 1] be a given parameter, and set B = nND. Algorithm 1 is an
online learning algorithm for span(F) for losses in C with the following regret bound for any
f € span(F):

R(T) < (1 e) Ao + Lallf L R(T) + 2L s Bl fI1 VT,

where Ag := Zle 0(0) — £ (f(x4)).

3.1 The parameters for several basic loss functions

In this section we consider the application of our results to 1-dimensional regression, where
we assume, for normalization, that the true labels of the examples and the predictions of
the functions in the class F are in [—1,1]. In this case || - || denotes the absolute value norm.
Thus, in each round, the adversary chooses a labeled data point (x¢,y;) € X x [—1,1], and
the loss for the prediction y; € [—1,1] is given by £,(y:) = ¢(y;, y:) where £(-,-) is a fixed
loss function that is convex in the second argument. Note that D = 1 in this setting. We

give examples of several such loss functions below, and compute the parameters Ly, 5, and
€p for every b > 0, as well as B from Theorem 1.

1. Linear loss: ¢(y*,y) = —y*y. We have L, =1, 8, =0, ¢, = 1, and B = nN.

2. p-norm loss, for some p > 2: {(y*,y) = |y* — y|’. We have L, = p(b+ 1)P~ 1,
Bo=p(p—1)(b+1)P7?% & = max{p(l — b)’~",0}, and B = 1.

3. Modified least squares: £(y*,y) = %max{l —y*y,0}%. We have Ly =b+1, 3, =1,
ey = max{1 —b,0}, and B = 1.

4. Logistic loss: £(y*,y) = In(1 + exp(—y*y)). We have L, = =2 g — 1

\ 1+exp(b)?’
€ = %, and B = min{nN,In(4/n)}.

4 Variants of the boosting algorithms

Our boosting algorithms and the analysis are considerably flexible: it is easy to modify
the algorithms to work with a different (and perhaps more natural) kind of base learner
which does greedy fitting, or incorporate a scaling of the base functions which improves
performance. Also, when specialized to the batch setting, our algorithms provide better
convergence rates than previous work.

4.1 Fitting to actual loss functions

The choice of an online linear learning algorithm over the base function class in our algo-
rithms was made to ease the analysis. In practice, it is more common to have an online
algorithm which produce predictions with comparable accuracy to the best function in hind-
sight for the actual sequence of loss functions. In particular, a common heuristic in boosting
algorithms such as the original gradient boosting algorithm by Friedman [10] or the match-
ing pursuit algorithm of Mallat and Zhang [18] is to build a linear combination of base
functions by iteratively augmenting the current linear combination via greedily choosing a
base function and a step size for it that minimizes the loss with respect to the residual label.
Indeed, the boosting algorithm of Zhang and Yu [24] also uses this kind of greedy fitting
algorithm as the base learner.

In the online setting, we can model greedy fitting as follows. We first fix a step size a > 0
in advance. Then, in each round ¢, the base learner A receives not only the example x;, but
also an offset y; € RY for the prediction, and produces a prediction A(x;) € R?, after which
it receives the loss function ¢; and suffers loss ¢;(y} + @ A(x:)). The predictions of A satisfy

T T
Uy, + aA(x)) < inf Oy + af(x)) + R(T),
; 167 (x¢)) < fg; 1y +af(x¢)) + R(T)
where R is the regret. Our algorithms can be made to work with this kind of base learner
as well. The details can be found in Section C.1 of the supplementary material.

4.2 Improving the regret bound via scaling

Given an online linear learning algorithm A over the function class F with regret R, then
for any scaling parameter A > 0, we trivially obtain an online linear learning algorithm,
denoted AA, over a A-scaling of F, viz. AF := {\f | f € F}, simply by multiplying the
predictions of A by A. The corresponding regret scales by A as well, i.e. it becomes AR.

The performance of Algorithm 1 can be improved by using such an online linear learning
algorithm over AF for a suitably chosen scaling A > 1 of the function class F. The regret
bound from Theorem 1 improves because the 1-norm of f measured with respect to AF,
ie. ||f]|] = max{1, %}, is smaller than ||f||1, but degrades because the parameter B’ =
min{nNAD, inf{b > AD : nByb*> > e,AD}} is larger than B. But, as detailed in Section
C.2 of the supplementary material, in many situations the improvement due to the former
compensates for the degradation due to the latter, and overall we can get improved regret
bounds using a suitable value of .

4.3 Improvements for batch boosting

Our algorithmic technique can be easily specialized and modified to the standard batch
setting with a fixed batch of training examples and a base learning algorithm operating over
the batch, exactly as in [24]. The main difference compared to the algorithm of [24] is the
use of the o variables to scale the coefficients of the weak hypotheses appropriately. While
a seemingly innocuous tweak, this allows us to derive analogous bounds to those of Zhang
and Yu [24] on the optimization error that show that our boosting algorithm converges
exponential faster. A detailed comparison can be found in Section C.3 of the supplementary
material.

5 Experimental Results

Is it possible to boost in an online fashion in practice with real base learners? To study
this question, we implemented and evaluated Algorithms 1 and 2 within the Vowpal Wabbit
(VW) open source machine learning system [23]. The three online base learners used were
VW’s default linear learner (a variant of stochastic gradient descent), two-layer sigmoidal
neural networks with 10 hidden units, and regression stumps.

Regression stumps were implemented by doing stochastic gradient descent on each individual
feature, and predicting with the best-performing non-zero valued feature in the current
example.

All experiments were done on a collection of 14 publically available regression and classifi-
cation datasets (described in Section D in the supplementary material) using squared loss.
The only parameters tuned were the learning rate and the number of weak learners, as well
as the step size parameter for Algorithm 1. Parameters were tuned based on progressive
validation loss on half of the dataset; reported is propressive validation loss on the remaining
half. Progressive validation is a standard online validation technique, where each training
example is used for testing before it is used for updating the model [3].

The following table reports the average and the median, over the datasets, relative improve-
ment in squared loss over the respective base learner. Detailed results can be found in
Section D in the supplementary material.

Average relative improvement Median relative improvement

Base learner Algorithm 1 Algorithm 2 Algorithm 1 Algorithm 2

SGD 1.65% 1.33% 0.03% 0.29%
Regression stumps 20.22% 15.9% 10.45% 13.69%
Neural networks 7.88% 0.72% 0.72% 0.33%

Note that both SGD (stochastic gradient descent) and neural networks are already very
strong learners. Naturally, boosting is much more effective for regression stumps, which is
a weak base learner.

6 Conclusions and Future Work

In this paper we generalized the theory of boosting for regression problems to the online
setting and provided online boosting algorithms with theoretical convergence guarantees.
Our algorithmic technique also improves convergence guarantees for batch boosting algo-
rithms. We also provide experimental evidence that our boosting algorithms do improve
prediction accuracy over commonly used base learners in practice, with greater improve-
ments for weaker base learners. The main remaining open question is whether the boosting
algorithm for competing with the span of the base functions is optimal in any sense, similar
to our proof of optimality for the the boosting algorithm for competing with the convex hull
of the base functions.

References

Peter L. Bartlett and Mikhail Traskin. AdaBoost is consistent. JMLR, 8:2347-2368,
2007.

Alina Beygelzimer, Satyen Kale, and Haipeng Luo. Optimal and adaptive algorithms
for online boosting. In ICML, 2015.

Avrim Blum, Adam Kalai, and John Langford. Beating the hold-out: Bounds for k-fold
and progressive cross-validation. In COLT, pages 203—208, 1999.

Shang-Tse Chen, Hsuan-Tien Lin, and Chi-Jen Lu. An Online Boosting Algorithm
with Theoretical Justifications. In ICML, 2012.

Shang-Tse Chen, Hsuan-Tien Lin, and Chi-Jen Lu. Boosting with Online Binary Learn-
ers for the Multiclass Bandit Problem. In ICML, 2014.

Michael Collins, Robert E. Schapire, and Yoram Singer. Logistic regression, AdaBoost
and Bregman distances. In COLT, 2000.

Nigel Duffy and David Helmbold. Boosting methods for regression. Machine Learning,
47(2/3):153-200, 2002.

Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval
Res. Logis. Quart., 3:95-110, 1956.

Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. JCSS, 55(1):119-139, August 1997.

Jerome H. Friedman. Greedy function approximation: A gradient boosting machine.
Annals of Statistics, 29(5), October 2001.

Helmut Grabner and Horst Bischof. On-line boosting and vision. In CVPR, volume 1,
pages 260-267, 2006.

Helmut Grabner, Christian Leistner, and Horst Bischof. Semi-supervised on-line boost-
ing for robust tracking. In ECCYV, pages 234-247, 2008.

Trevor Hastie and R. J Robet Tibshirani. Generalized Additive Models. Chapman and
Hall, 1990.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer Verlag, 2001.

Elad Hazan and Satyen Kale. Beyond the regret minimization barrier: optimal algo-
rithms for stochastic strongly-convex optimization. JMLR, 15(1):2489-2512, 2014.

Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online
convex optimization. Machine Learning, 69(2-3):169-192, 2007.

Xiaoming Liu and Ting Yu. Gradient feature selection for online boosting. In ICCYV,
pages 1-8, 2007.

Stéphane G. Mallat and Zhifeng Zhang. Matching pursuits with time-frequency dictio-
naries. IEEE Transactions on Signal Processing, 41(12):3397-3415, December 1993.

Llew Mason, Jonathan Baxter, Peter Bartlett, and Marcus Frean. Boosting algorithms
as gradient descent. In NIPS, 2000.

Nikunj C. Oza and Stuart Russell. Online bagging and boosting. In AISTATS, pages
105-112, 2001.

Robert E. Schapire and Yoav Freund. Boosting: Foundations and Algorithms. MIT
Press, 2012.

Matus Telgarsky. Boosting with the logistic loss is consistent. In COLT, 2013.
VW. URL https://github.com/JohnLangford/vowpal_wabbit/.

Tong Zhang and Bin Yu. Boosting with early stopping: Convergence and consistency.
Annals of Statistics, 33(4):1538-1579, 2005.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient
ascent. In ICML, 2003.

