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Abstract

In many problem settings, parameter vectors are not merely sparse, but depen-
dent in such a way that non-zero coefficients tend to cluster together. We re-
fer to this form of dependency as “region sparsity”. Classical sparse regression
methods, such as the lasso and automatic relevance determination (ARD), model
parameters as independent a priori, and therefore do not exploit such dependen-
cies. Here we introduce a hierarchical model for smooth, region-sparse weight
vectors and tensors in a linear regression setting. Our approach represents a hi-
erarchical extension of the relevance determination framework, where we add a
transformed Gaussian process to model the dependencies between the prior vari-
ances of regression weights. We combine this with a structured model of the prior
variances of Fourier coefficients, which eliminates unnecessary high frequencies.
The resulting prior encourages weights to be region-sparse in two different bases
simultaneously. We develop efficient approximate inference methods and show
substantial improvements over comparable methods (e.g., group lasso and smooth
RVM) for both simulated and real datasets from brain imaging.

1 Introduction

Recent work in statistics has focused on high-dimensional inference problems where the number of
parameters p equals or exceeds the number of samples n. Although ill-posed in general, such prob-
lems are made tractable when the parameters have special structure, such as sparsity in a particular
basis. A large literature has provided theoretical guarantees about the solutions to sparse regression
problems and introduced a suite of practical methods for solving them efficiently [1–7].

The Bayesian interpretation of standard “shrinkage” based methods for sparse regression problems
involves maximum a postieriori (MAP) inference under a sparse, independent prior on the regres-
sion coefficients [8–15]. Under such priors, the posterior has high concentration near the axes, so
the posterior maximum is at zero for many weights unless it is pulled strongly away by the likeli-
hood. However, these independent priors neglect a statistical feature of many real-world regression
problems, which is that non-zero weights tend to arise in clusters, and are therefore not independent
a priori. In many settings, regression weights have an explicit topographic relationship, as when
they index regressors in time or space (e.g., time series regression, or spatio-temporal neural recep-
tive field regression). In such settings, nearby weights exhibit dependencies that are not captured by
independent priors, which results in sub-optimal performance.

Recent literature has explored a variety of techniques for improving sparse inference methods by
incorporating different types of prior dependencies, which we will review here briefly. The smooth
relevance vector machine (s-RVM) extends the RVM to incorporate a smoothness prior defined
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in a kernel space, so that weights are smooth as well as sparse in a particular basis [16]. The
group lasso captures the tendency for groups of coefficients to remain in or drop out of a model
in a coordinated manner by using an l1 penalty on the l2 norms pre-defined groups of coefficients
[17]. A method described in [18] uses a multivariate Laplace distribution to impose spatio-temporal
coupling between prior variances of regression coefficients, which imposes group sparsity while
leaving coefficients marginally uncorrelated. The literature includes many related methods [19–24],
although most require a priori knowledge of the dependency structure, which may be unavailable in
many applications of interest.

Here we introduce a novel, flexible method for capturing dependencies in sparse regression prob-
lems, which we call dependent relevance determination (DRD). Our approach uses a Gaussian
process to model dependencies between latent variables governing the prior variance of regres-
sion weights. (See [25], which independently proposed a similar idea.) We simultaneously impose
smoothness by using a structured model of the prior variance of the weights’ Fourier coefficients.
The resulting model captures sparse, local structure in two different bases simultaneously, yielding
estimates that are sparse as well as smooth. Our method extends previous work on automatic local-
ity determination (ALD) [26] and Bayesian structure learning (BSL) [27], both of which described
hierarchical models for capturing sparsity, locality, and smoothness. Unlike these methods, DRD
can tractably recover region-sparse estimates with multiple regions of non-zero coefficients, without
pre-definining number of regions. We argue that DRD can substantially improve structure recovery
and predictive performance in real-world applications.

This paper is organized as follows: Sec. 2 describes the basic sparse regression problem; Sec. 3 in-
troduces the DRD model; Sec. 4 and Sec. 5 describe the approximate methods we use for inference;
In Sec. 6, we show applications to simulated data and neuroimaging data.

2 Problem setup

2.1 Observation model

We consdier a scalar response yi ∈ R linked to an input vector xi ∈ Rp via the linear model:

yi = xi
>w + εi, for i = 1, 2, · · · , n, (1)

with observation noise εi ∼ N (0, σ2). The regression (linear weight) vector w ∈ Rp is the quantity
of interest. We denote the design matrix by X ∈ Rn×p, where each row of X is the ith input vector
xi
>, and the observation vector by y = [y1, · · · , yn]> ∈ Rn. The likelihood can be written:

y|X,w, σ2 ∼ N (y|Xw, σ2I). (2)

2.2 Prior on regression vector

We impose the zero-mean multivariate normal prior on w:

w|θ ∼ N (0, C(θ)) (3)

where the prior covariance matrix C(θ) is a function of hyperparameters θ. One can specify C(θ)
based on prior knowledge on the regression vector, e.g. sparsity [28–30], smoothness [16, 31], or
both [26]. Ridge regression assumes C(θ) = θ−1I where θ is a scalar for precision. Automatic rel-
evance determination (ARD) uses a diagonal prior covariance matrix with a distinct hyperparameter
θi for each element of the diagonal, thus Cii = θ−1i . Automatic smoothness determination (ASD)
assumes a non-diagonal prior covariance, given by a Gaussian kernel, Cij = exp(−ρ − ∆ij/2δ

2)
where ∆ij is the squared distance between the filter coefficients wi and wj in pixel space and
θ = {ρ, δ2}. Automatic locality determination (ALD) parametrizes the local region with a Gaus-
sian form, so that prior variance of each filter coefficient is determined by its Mahalanobis distance
(in coordinate space) from some mean location ν under a symmetric positive semi-definite matrix
Ψ. The diagonal prior covariance matrix is given by Cii = exp(− 1

2 (χi− ν)>Ψ−1(χi− ν))), where
χi is the space-time location (i.e., filter coordinates) of the ith filter coefficient wi and θ = {ν,Ψ}.
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3 Dependent relevance determination (DRD) priors

We formulate the prior covariances to capture the region dependent sparsity in the regression vector
in the following.

Sparsity inducing covariance

We first parameterise the prior covariance to capture region sparsity in w

Cs = diag[exp(u)], (4)

where the parameters are u ∈ Rp. We impose the Gaussian process (GP) hyperprior on u

u ∼ N (b1,K). (5)

The GP hyperprior is controlled by the mean parameter b ∈ R and the squared exponential kernel
parameters, overall scale ρ ∈ R and the length scale l ∈ R. We denote the hyperparameters by
θs = {b, ρ, l}. We refer to the prior distribution associated with the covariance Cs as dependent
relevance determination (DRD) prior.

Note that this hyperprior induces dependencies between the ARD precisions, that is, prior variance
changes slowly between neighboring coefficients. If the ith coefficient of u has large prior variance,
then probably the i+ 1 and i− 1 coefficients are large as well.

Smoothness inducing covariance

We then formulate the smoothness inducing covariance in frequency domain. Smoothness is cap-
tured by a low pass filter with only lower frequencies passing through. Therefore, we define a zero-
mean Gaussian prior over the Fourier-transformed weights w using a diagonal covariance matrix
Cf with diagonal

Cf,ii = exp(− χ2
i

2δ2
), (6)

where χi is the ith location of the regression weights w in frequency domain and δ2 is the Gaussian
covariance. We denote the hyperparameters by θf = δ2. This formulation imposes neighboring
weights to have similar levels of Fourier power.

Similar to the automatic determination in frequency coordinates (ALDf) [26], this way of formulat-
ing the covariance requires taking discrete Fourier transform of input vectors to construct the prior in
the frequency domain. This is a significant consumption in computation and memory requirements
especially when p is large. To avoid the huge expense, we abandon the single frequency version Cf
but combine it with Cs to form Csf with both sparsity and smoothness induced as the following.

Smoothness and region sparsity inducing covariance

Finally, to capture both region sparsity and smoothness in w, we combineCs andCf in the following
way

Csf = C
1
2
s B
>CfBC

1
2
s , (7)

where B is the Fourier transformation matrix which could be huge when p is large. Implementation
exploits the speed of the FFT to apply B implicitly. This formulation implies that the sparse regions
that are captured by Cs are pruned out and the variance of the remaining entries in weights are
correlated by Cf . We refer to the prior distribution associated with the covariance Csf as smooth
dependent relevance determination (sDRD) prior.

Unlike Cs, the covariance Csf is no longer diagonal. To reduce computational complexity and
storage requirements, we only store those values that correspond to non-zero portions in the diagonal
of Cs and Cf from the full Csf .
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Figure 1: Generative model for locally smooth and glob-
ally sparse Bayesian structure learning. The ith response
yi is linked to an input vector xi and a weight vector w
in each i. The weight vector w is governed by u and θf .
The hyper-prior p(u|θs) imposes correlated sparsity in w
and the hyperparameters θf imposes smoothness in w.

4 Posterior inference for w

First, we denote the overall hyperparameter set to be θ = {σ2,θs,θf} = {σ2, b, ρ, l, δ2}. We
compute the maximum likelihood estimate for θ (denoted by θ̂) and compute the conditional MAP
estimate for the weights w given θ̂ (closed form), which is the empirical Bayes procedure equipped
with a hyper-prior. Our goal is to infer w. The posterior distribution over w is obtained by

p(w|X,y) =

∫ ∫
p(w,u,θ|X,y)dudθ, (8)

which is analytically intractable. Instead, we approximate the marginal posterior distribution with
the conditional distribution given the MAP estimate of u, denoted by µu, and the maximum likeli-
hood estimation of σ2, θs, θf denoted by σ̂2, θ̂s, θ̂f ,

p(w|X,y) ≈ p(w|X,y,µu, σ̂2, θ̂s, θ̂f ). (9)

The approximate posterior over w is multivariate normal with the mean and covariance given by

p(w|X,y,µu, σ̂2, θ̂s, θ̂f ) = N (µw,Λw), (10)

Λw = (
1

σ̂2
X>X + C−1

µu,θ̂s,θ̂f
)−1, (11)

µw = 1

σ̂2
ΛwX

Ty. (12)

5 Inference for hyperparameters

The MAP inference of w derived in the previous section depends on the values of θ̂ = {σ̂2, θ̂s, θ̂f}.
To estimate θ̂, we maximize the marginal likelihood of the evidence.

θ̂ = arg max
θ

log p(y|X,θ) (13)

where

p(y|X,θ) =

∫ ∫
p(y|X,w, σ2)p(w|u,θf )p(u|θs)dwdu. (14)

Unfortunately, computing the double integrals is intractable. In the following, we consider the the
approximation method based on Laplace approximation to compute the integral approximately.

Laplace approximation to posterior over u

To approximate the marginal likelihood, we can rewrite Bayes’ rule to express the marginal likeli-
hood as the likelihood times prior divided by the posterior,

p(y|X,θ) =
p(y|X,u)p(u|θ)

p(u|y, X,θ)
, (15)

Laplace’s method allows us to approximate p(u|y, X,θ), the posterior over the latent u given
the data {X,y} and hyper-parameters θ, using a Gaussian centered at the mode of the distri-
bution and inverse covariance given by the Hessian of the negative log-likelihood. Let µu =

arg maxu p(u|y, X,θ) and Λu = −( ∂2

∂u∂u>
log p(u|y, X,θ))−1 denote the mean and covariance
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Figure 2: Comparison of estimators for 1D simulated example. First column: True filter
weight, maximum likelihood (linear regression) estimate, empirical Bayesian ridge regression (L2-
penalized) estimate; Second column: ARD estimate with different and independent prior covari-
ance hyperparameters, lasso regression with L1-regularization and group lasso with group size of 5;
Third column: ALD methods in space-time domain, frequency domain and combination of both, re-
spectively; Fourth column: DRD method in space-time domain only and its smooth version sDRD
imposing both sparsity (space-time) and smoothness (frequency), and smooth RVM initialized with
elastic net estimate.

of this Gaussian, respectively. Although the right-hand-side can be evaluated at any value of u, a
common approach is to use the mode u = µu, since this is where the Laplace approximation is
most accurate. This leads to the following expression for the log marginal likelihood:

log p(y|X,θ) ≈ log p(y|X,µu) + log p(µu|θ)− 1
2 log |2πΛu|. (16)

Then by optimizing log p(y|X,θ) with regard to θ, we can get θ̂ given a fixed µu, de-
noted as θ̂µu . Following an iterative optimization procedure, we obtain an updating rule µtu =

arg maxu p(u|y, X, θ̂µt−1
u

) at tth iteration. The algorithm will stop when u and θ converge. More
information and details about formulation and derivation are described in the appendix.

6 Experiment and Results

6.1 One Dimensional Simulated Data

Beginning with simulated data, we compare performances of various regression estimators. One
dimensional data is generated from a generative model with d = 200 dimensions. Firstly to generate
a Gaussian process, a covariance kernel matrix K is built with squared exponential kernel with the
spatial locations of regression weights as inputs. Then a scalar b is set as the mean function to
determine the scale of prior covariance. Given the Gaussian process, we generate a multivariate
vector u, and then take its exponential to obtain the diagonal of prior covariance Cs in space-time
domain. To induce smoothness, eq. 7 is introduced to get covariance Csf . Then a weight vector w
is sampled from a Gaussian distribution with zero mean and Csf . Finally, we obtain the response
y given stimulus x with w plus Gaussian noise ε. In our case, ε should be large enough to ensure
that data and response won’t impose strong likelihood over prior knowledge. Thus the introduced
prior would largely dominate the estimate. Three local regions are constructed, which are positive,
negative and a half-positive-half-negative with sufficient zeros between separate bumps clearly apart.
As shown in Figure 2, the left top subfigure shows the underlying weight vector w.

Traditional methods like maximum likelihood, without any prior, are significantly overwhelmed by
large noise of the data. Weak priors such as ridge, ARD, lasso could fit the true weight better with
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Figure 3: Estimated filter weights
and prior covariances. Upper row
shows the true filter (dotted black)
and estimated ones (red); Bottom
row shows the underlying prior co-
variance matrix.

different levels of sparsity imposed, but are still not sparse enough and not smooth at all. Group
lasso enforces a stronger sparsity than lasso by assuming block sparsity, thus making the result
smoother locally. ALD based methods have better performance, compared with traditional ones, in
identifying one big bump explicitly. ALDs is restricted by the assumption of one modal Gaussian,
therefore is able to find one dominating local region. ALDf focuses localities in frequency domain
thus make the estimate smoother but no spatial local regions are discovered. ALDsf combines
the effects in both ALDs and ALDf, and thus possesses smoothness but only one region is found.
Smooth Relevance Vector Machine (sRVM) can smooth the curve by incorporating a flexible noise-
dependent smoothness prior into the RVM, but is not able to draw information from data likelihood
magnificently. Our DRD can impose distinct local sparsity via Gaussian process prior and sDRD can
induce smoothness via bounding the frequencies. For all baseline models, we do model selection
via cross-validation varying through a wide range of parameter space, thus we can guarantee the
fairness for comparisons.

To further illustrate the benefits and principles of DRD, we demonstrate the estimated covariance
via ARD, ALDsf and sDRD in Figure 3. It can be stated that ARD could detect multiple localities
since its priors are purely independent scalars which could be easily influenced by data with strong
likelihood, but the consideration is the loss of dependency and smoothness. ALDsf can only detect
one locality due to its deterministic Gaussian form when likelihood is not sufficiently strong, but
with Fourier components over the prior, it exhibits smoothness. sDRD could capture multiple local
sparse regions as well as impose smoothness. The underlying Gaussian process allows multiple
non-zero regions in prior covariance with the result of multiple local sparsities for weight tensor.
Smoothness is introduced by a Gaussian type of function controlling the frequency bandwidth and
direction.

In addition, we examine the convergence properties of various estimators as a function of the amount
of collected data and give the average relative errors of each method in Figure 4. Responses are
simulated from the same filter as above with large Gaussian white noise which weakens the data
likelihood and thus guarantees a significant effect of prior over likelihood. The results show that
sDRD estimate achieves the smallest MSE (mean squared error), regardless of the number of training
samples. The MSE, mentioned here and in the following paragraphs, refers to the error compared
with the underlying w. The test error, which will be mentioned in later context, refers to the error
compared with true y. The left plot in Figure 4 shows that other methods require at least 1-2 times
more data than sDRD to achieve the same error rate. The right figure shows the ratio of the MSE for
each estimate to the MSE for sDRD estimate, showing that the next best method (ALDsf) exhibits
an error nearly two times of sDRD.

6.2 Two Dimensional Simulated Data

To better illustrate the performance of DRD and lay the groundwork for real data experiment, we
present a 2-dimensional synthetic experiment. The data is generated to match characteristics of
real fMRI data, as will be outlined in the next section. With a similar generation procedure as in 1-
dimensional experiment, a 2-dimensional w is generated with analogical properties as the regression
weights in fMRI data. The analogy is based on reasonable speculation and accumulated acknowl-
edge from repeated trials and experiment. Two comparative studies are conducted to investigate the
influences of sample size on the recovery accuracy of w and predictive ability, both with dimension
= 1600 (the same as fMRI). To demonstrate structural sparsity recovery, we only compare our DRD
method with ARD, lasso, elastic net (elnet), group lasso (glasso).
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Figure 4: Convergence of error rates on simulated data with varying training size (Left) and the
relative error (MSE ratio) for sDRD (Right)

Figure 5: Test error for each method when n = 215 (Left) and n = 800 (Right) for 2D simulated
data.

The sample size n varies in {215, 800}. The results are shown in Fig. 5 and Fig. 6. When n = 215,
only DRD is able to reveal an approximative estimation of true w with a small level of noise as well
as giving the lowest predictive error. Group lasso performs slightly better than ARD, lasso and elnet,
and presents only a weakly distinct block wise estimation compared with lasso and elnet. Lasso
and elnet both show similar performances and give a stronger sparsity than ARD, which indicates
that ARD fails to impose strong sparsity in this synthetic case due to its complete independencies
among dimensions when data is less sufficient and noisy. When n = 800, DRD still holds the
best prediction. Group lasso fails to keep the record since block-wise penalty can capture group
information but miss the subtlety when finer details matter. ARD progresses to the second place
because when data likelihood is strong enough, posterior of w won’t be greatly influenced by the
noise but follow the likelihood and the prior. Additionally, since ARD’s prior is more flexible and
independent than lasso and elnet, the posterior would approximate the underlying w better and finer.

6.3 fMRI Data

We analyzed functional MRI data from the Human Connectome Project 1 collected from 215 healthy
adult participants on a relational reasoning task. We used contrast images for the comparison of re-
lational reasoning and matching tasks. Data were processed using the HCP minimal preprocessing
pipelines [32], down-sampled to 63×76×63 voxels using the flirt applyXfm tool [33], then tailored
further down to 40 × 76 × 40 by deleting zero-signal regions outside the brain. We analyzed 215
samples, each of which is an average from Z-slice 37 to 39 slices of 3D structure based on recom-
mendations by domain experts. As the dependent variable in the regression, we selected the number
of correct responses on the Penn Matrix Text, which is a measure of fluid intelligence that should be
related to relational reasoning performance.

In each run, we randomly split the fMRI data into five sets for five-fold cross-validation, and took
an average of test errors across five folds for each run. Hyperparameters were chosen by a five-fold
cross-validation within the training set, and the optimal hyper parameter set was used for computing
test performance. Fig. 7 shows the regions of positive (red) and negative (blue) support for the
regression weights we obtained using different sparse regression methods. The rightmost panel
quantifies performance using mean squared error on held out test data. Both predictive performance
and estimated pattern are similar to n = 215 result in 2D synthetic experiment. ARD returns a quite
noisy estimation due to the complete independencies and weak likelihood. The elastic net estimate
improves slightly over lasso but is significantly better than ARD, which indicates that lasso type
of regularizations impose stronger sparsity than ARD in this case. Group lasso is slightly better

1http://www.humanconnectomeproject.org/.
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Figure 6: Surface plot of estimated w from each method using 2-dimensional simulated data when
n = 215.

Figure 7: Positive (red) and negative (blue) supports of the estimated weights from each method
using real fMRI data and the corresponding test errors.

because of its block-wise regularization, but more noisy blocks pop up influencing the predictive
ability. DRD reveals strong sparsity as well as clustered local regions. It also possesses the smallest
test error indicating the best predictive ability. Given that local group information most likely gather
around a few pixels in fMRI data, smoothness would be less valuable to be induced. This is the
reason that sDRD doesn’t show a distinct outperforming result over DRD, as a result of which we
omit smoothness imposing comparative experiment for fMRI data. In addition, we also test the
StructOMP [24] method for both 2D simulated data and fMRI data, but it doesn’t show satisfactory
estimation and predictive ability in the 2D data with our data’s intrinsic properties. Therefore we
chose to not show it for comparison in this study.

7 Conclusion

We proposed DRD, a hierarchal model for smooth and region-sparse weight tensors, which uses a
Gaussian process to model spatial dependencies in prior variances, an extension of the relevance
determination framework. To impose smoothness, we also employed a structured model of the
prior variances of Fourier coefficients, which allows for pruning of high frequencies. Due to the
intractability of marginal likelihood integration, we developed an efficient approximate inference
method based on Laplace approximation, and showed substantial improvements over comparable
methods on both simulated and fMRI real datasets. Our method yielded more interpretable weights
and indeed discovered multiple sparse regions that were not detected by other methods. We have
shown that DRD can gracefully incorporate structured dependencies to recover smooth, region-
sparse weights without any specification of groups or regions, and believe it will be useful for other
kinds of high-dimensional datasets from biology and neuroscience.
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