
Online Decision-Making in
General Combinatorial Spaces

Arun Rajkumar Shivani Agarwal

Department of Computer Science and Automation
Indian Institute of Science, Bangalore 560012, India
{arun r,shivani}@csa.iisc.ernet.in

Abstract

We study online combinatorial decision problems, where one must make sequen-
tial decisions in some combinatorial space without knowing in advance the cost of
decisions on each trial; the goal is to minimize the total regret over some sequence
of trials relative to the best fixed decision in hindsight. Such problems have been
studied mostly in settings where decisions are represented by Boolean vectors and
costs are linear in this representation. Here we study a general setting where costs
may be linear in any suitable low-dimensional vector representation of elements
of the decision space. We give a general algorithm for such problems that we
call low-dimensional online mirror descent (LDOMD); the algorithm generalizes
both the Component Hedge algorithm of Koolen et al. (2010), and a recent algo-
rithm of Suehiro et al. (2012). Our study offers a unification and generalization of
previous work, and emphasizes the role of the convex polytope arising from the
vector representation of the decision space; while Boolean representations lead to
0-1 polytopes, more general vector representations lead to more general polytopes.
We study several examples of both types of polytopes. Finally, we demonstrate the
benefit of having a general framework for such problems via an application to an
online transportation problem; the associated transportation polytopes generalize
the Birkhoff polytope of doubly stochastic matrices, and the resulting algorithm
generalizes the PermELearn algorithm of Helmbold and Warmuth (2009).

1 Introduction

In an online combinatorial decision problem, the decision space is a set of combinatorial structures,
such as subsets, trees, paths, permutations, etc. On each trial, one selects a combinatorial structure
from the decision space, and incurs a loss; the goal is to minimize the regret over some sequence of
trials relative to the best fixed structure in hindsight. Such problems have been studied extensively
in the last several years, primarily in the setting where the combinatorial structures are represented
by Boolean vectors, and costs are linear in this representation; this includes online learning of paths,
permutations, and various other specific combinatorial structures [16, 17, 12], as well as the Compo-
nent Hedge algorithm of Koolen et al. [14] which generalizes many of these previous studies. More
recently, Suehiro et al. [15] considered a setting where the combinatorial structures of interest are
represented by the vertices of the base polytope of a submodular function, and costs are linear in this
representation; this includes as special cases several of the Boolean examples considered earlier, as
well as new settings such as learning permutations with certain position-based losses (see also [2]).

In this work, we consider a general form of the online combinatorial decision problem, where costs
can be linear in any suitable low-dimensional vector representation of the combinatorial structures
of interest. This encompasses representations as Boolean vectors and vertices of submodular base
polytopes as special cases, but also includes many other settings. We give a general algorithm for

1

such problems that we call low-dimensional online mirror descent (LDOMD); the algorithm gener-
alizes both the Component Hedge algorithm of Koolen et al. for Boolean representations [14], and
the algorithm of Suehiro et al. for submodular polytope vertex representations [15].1 As we show, in
many settings of interest, the regret bounds for LDOMD are better than what can be obtained with
other algorithms for online decision problems, such as the Hedge algorithm of Freund and Schapire
[10] and the Follow the Perturbed Leader algorithm of Kalai and Vempala [13].

We start with some preliminaries and background in Section 2, and describe the LDOMD algorithm
and its analysis in Section 3. Our study emphasizes the role of the convex polytope arising from the
vector representation of the decision space; we study several examples of such polytopes, including
matroid polytopes, polytopes associated with submodular functions, and permutation polytopes in
Sections 4–6, respectively. Section 7 applies our framework to an online transportation problem.

2 Preliminaries and Background

Notation. For n ∈ Z+, we will denote [n] = {1, . . . , n}. For a vector z ∈ Rd, we will denote by
‖z‖1, ‖z‖2, and ‖z‖∞ the standard L1, L2, and L∞ norms of z, respectively. For a set Z ⊆ Rd, we
will denote by conv(Z) the convex hull of Z , and by int(Z) the interior of Z . For a closed convex
set K ⊆ Rd and Legendre function F : K→R,2 we will denote by BF : K × int(K)→R+ the
Bregman divergence associated with F , defined as BF (x, x′) = F (x)−F (x′)−∇F (x′) · (x−x′),
and by F ∗ : ∇F (int(K))→R the Fenchel conjugate of F , defined as F ∗(u) = supx∈K(x·u−F (x)).

Online Combinatorial Decision-Making

Inputs:
Finite set of combinatorial structures C
Mapping φ : C→Rd

For t = 1 . . . T :
– Predict ct ∈ C
– Receive loss vector `t ∈ [0, 1]d

– Incur loss φ(ct) · `t

Figure 1: Online decision-making in a gen-
eral combinatorial space.

Problem Setup. Let C be a (finite but large) set of
combinatorial structures. Let φ : C→Rd be some in-
jective mapping that maps each c ∈ C to a unique
vector φ(c) ∈ Rd (so that |φ(C)| = |C|). We will
generally assume d � |C| (e.g. d = poly log(|C|)).
The online combinatorial decision-making problem
we consider can be described as follows: On each
trial t, one makes a decision in C by selecting a struc-
ture ct ∈ C, and receives a loss vector `t ∈ [0, 1]d;
the loss incurred is given by φ(ct) · `t (see Figure 1).
The goal is to minimize the regret relative to the sin-
gle best structure in C in hindsight; specifically, the
regret of an algorithm A that selects ct ∈ C on trial t
over T trials is defined as

RT [A] =
∑T
t=1 φ(ct) · `t −minc∈C

∑T
t=1 φ(c) · `t .

In particular, we would like to design algorithms whose worst-case regret (over all possible loss se-
quences) is sublinear in T (and also has as good a dependence as possible on other relevant problem
parameters). From standard results, it follows that for any deterministic algorithm, there is always a
loss sequence that forces the regret to be linear in T ; as is common in the online learning literature,
we will therefore consider randomized algorithms that maintain a probability distribution pt over C
from which ct is randomly drawn, and consider bounding the expected regret of such algorithms.

Online Mirror Descent (OMD). Recall that online mirror descent (OMD) is a general algorithmic
framework for online convex optimization problems, where on each trial t, one selects a point xt in
some convex set Ω ⊆ Rn, receives a convex cost function ft : Ω→R, and incurs a loss ft(xt); the
goal is to minimize the regret relative to the best single point in Ω in hindsight. The OMD algorithm
makes use of a Legendre function F : K→R defined on a closed convex set K ⊇ Ω, and effectively
performs a form of projected gradient descent in the dual space of int(K) under F , the projections
being in terms of the Bregman divergence BF associated with F . See Appendix A.1 for an outline
of OMD and its regret bound for the special case of online linear optimization, where costs ft are
linear (so that ft(x) = `t · x for some `t ∈ Rn), which will be relevant to our study.

1We note that the recent online stochastic mirror descent (OSMD) algorithm of Audibert et al. [3] also
generalizes the Component Hedge algorithm, but in a different direction: OSMD (as described in [3]) applies
to only Boolean representations, but allows also for partial information (bandit) settings; here we consider only
full information settings, but allow for more general vector representations.

2Recall that for a closed convex set K ⊆ Rd, a function F : K→R is Legendre if it is strictly convex,
differentiable on int(K), and (for any norm ‖ · ‖ on Rd) ‖∇F (xn)‖→ +∞ whenever {xn} converges to a
point in the boundary of K.

2

Hedge/Naı̈ve OMD. The Hedge algorithm proposed by Freund and Schapire [10] is widely used
for online decision problems in general. The algorithm maintains a probability distribution over the
decision space, and can be viewed as an instantiation of the OMD framework, with Ω (and K) the
probability simplex over the decision space, linear costs ft (since one works with expected losses),
and F the negative entropy. When applied to online combinatorial decision problems in a naı̈ve
manner, the Hedge algorithm requires maintaining a probability distribution over the combinatorial
decision space C, which in many cases can be computationally prohibitive (see Appendix A.2 for
an outline of the algorithm, which we also refer to as Naı̈ve OMD). The following bound on the
expected regret of the Hedge/Naı̈ve OMD algorithm is well known:
Theorem 1 (Regret bound for Hedge/Naı̈ve OMD). Let φ(c) · `t ∈ [a, b] ∀c ∈ C, t ∈ [T]. Then

setting η∗ = 2
(b−a)

√
2 ln |C|
T gives

E
[
RT
[

Hedge(η∗)
]]
≤ (b− a)

√
T ln |C|

2
.

Follow the Perturbed Leader (FPL). Another widely used algorithm for online decision problems
is the Follow the Perturbed Leader (FPL) algorithm proposed by Kalai and Vempala [13] (see Ap-
pendix A.3 for an outline of the algorithm). Note that in the combinatorial setting, FPL requires the
solution to a combinatorial optimization problem on each trial, which may or may not be efficiently
solvable depending on the form of the mapping φ. The following bound on the expected regret of
the FPL algorithm is well known:
Theorem 2 (Regret bound for FPL). Let ‖φ(c) − φ(c′)‖1 ≤ D1, ‖`t‖1 ≤ G1, and |φ(c) · `t| ≤ B

∀c, c′ ∈ C, t ∈ [T]. Then setting η∗ =
√

D1

BG1T
gives

E
[
RT
[

FPL(η∗)
]]
≤ 2

√
D1BG1T .

Polytopes. Recall that a set S ⊂ Rd is a polytope if there exist a finite number of points x1, . . . , xn ∈
Rd such that S = conv({x1, . . . , xn}). Any polytope S ⊂ Rd has a unique minimal set of points
x′1, . . . , x

′
m ∈ Rd such that S = conv({x′1, . . . , x′m}); these points are called the vertices of S. A

polytope S ⊂ Rd is said to be a 0-1 polytope if all its vertices lie in the Boolean hypercube {0, 1}d.

As we shall see, in our study of online combinatorial decision problems as above, the polytope
conv(φ(C)) ⊂ Rd will play a central role. Clearly, if φ(C) ⊆ {0, 1}d, then conv(φ(C)) is a 0-1
polytope; in general, however, conv(φ(C)) can be any polytope in Rd.

3 Low-Dimensional Online Mirror Descent (LDOMD)
We describe the Low-Dimensional OMD (LDOMD) algorithm in Figure 2. The algorithm maintains
a point xt in the polytope conv(φ(C)). It makes use of a Legendre function F : K→R defined on
a closed convex set K ⊇ conv(φ(C)), and effectively performs OMD in a d-dimensional space
rather than in a |C|-dimensional space as in the case of Hedge/Naı̈ve OMD. Note that an efficient
implementation of LDOMD requires two operations to be performed efficiently: (a) given a point
xt ∈ conv(φ(C)), one needs to be able to efficiently find a ‘decomposition’ of xt into a convex
combination of a small number of points in φ(C) (this yields a distribution pt ∈ ∆C that satisfies
Ec∼pt [φ(c)] = xt and also has small support, allowing efficient sampling); and (b) given a point
x̃t+1 ∈ K, one needs to be able to efficiently find a ‘projection’ of x̃t+1 onto conv(φ(C)) in terms
of the Bregman divergence BF . The following regret bound for LDOMD follows directly from the
standard OMD regret bound (see Theorem 4 in Appendix A.1):
Theorem 3 (Regret bound for LDOMD). Let BF (φ(c), x1) ≤ D2 ∀c ∈ C. Let ‖ · ‖ be any norm
in Rd such that ‖`t‖ ≤ G ∀t ∈ [T], and such that the restriction of F to conv(φ(C)) is α-strongly

convex w.r.t. ‖ · ‖∗, the dual norm of ‖ · ‖. Then setting η∗ = D
G

√
2α
T gives

E
[
RT
[

LDOMD(η∗)
]]
≤ DG

√
2T

α
.

As we shall see below, the LDOMD algorithm generalizes both the Component Hedge algorithm
of Koolen et al. [14], which applies to settings where φ(C) ⊆ {0, 1}d (Section 3.1), and the recent
algorithm of Suehiro et al. [15], which applies to settings where conv(φ(C)) is the base polytope
associated with a submodular function (Section 5).

3

Algorithm Low-Dimensional OMD (LDOMD) for Online Combinatorial Decision-Making

Inputs:
Finite set of combinatorial structures C
Mapping φ : C→Rd

Parameters:
η > 0
Closed convex set K ⊇ conv(φ(C)), Legendre function F : K→R

Initialize:
x1 = argminx∈conv(φ(C)) F (x) (or x1 = any other point in conv(φ(C)))

For t = 1 . . . T :
– Let pt be any distribution over C such that Ec∼pt [φ(c)] = xt [Decomposition step]
– Randomly draw ct ∼ pt
– Receive loss vector `t ∈ [0, 1]d

– Incur loss φ(ct) · `t
– Update:

x̃t+1 ← ∇F ∗(∇F (xt)− η`t)
xt+1 ← argminx∈conv(φ(C))BF (x, x̃t+1) [Bregman projection step]

Figure 2: The LDOMD algorithm.

3.1 LDOMD with 0-1 Polytopes

Consider first a setting where each c ∈ C is represented as a Boolean vector, so that φ(C) ⊆ {0, 1}d.
In this case conv(φ(C)) is a 0-1 polytope. This is the setting commonly studied under the term
‘online combinatorial learning’ [14, 8, 3]. In analyzing this setting, one generally introduces an
additional problem parameter, namely an upper bound m on the ‘size’ of each Boolean vector φ(c).
Specifically, let us assume ‖φ(c)‖1 ≤ m ∀c ∈ C for some m ∈ [d].

Under the above assumption, it is easy to verify that applying Theorems 1 and 2 gives

E
[
RT
[

Hedge(η∗)
]]

= O
(
m
√
Tm ln(dm)

)
; E

[
RT
[

FPL(η∗)
]]

= O(m
√
Td) .

For the LDOMD algorithm, since conv(φ(C)) ⊆ [0, 1]d ⊂ Rd+, it is common to takeK = Rd+ and to
let F : K→R be the unnormalized negative entropy, defined as F (x) =

∑d
i=1 xi lnxi −

∑d
i=1 xi,

which leads to a multiplicative update algorithm; the resulting algorithm was termed Component
Hedge in [14]. For the above choice of F , it is easy to see that BF (φ(c), x1) ≤ m ln(dm) ∀c ∈ C;
moreover, ‖`t‖∞ ≤ 1 ∀t, and the restriction of F on conv(φ(C)) is (1

m)-strongly convex w.r.t. ‖·‖1.
Therefore, applying Theorem 3 with appropriate η∗, one gets

E
[
RT
[

LDOMD(η∗)
]]

= O
(
m
√
T ln(dm)

)
.

Thus, when φ(C) ⊆ {0, 1}d, the LDOMD algorithm with the above choice of F gives a better regret
bound than both Hedge/Naı̈ve OMD and FPL; in fact the performance of LDOMD in this setting is
essentially optimal, as one can easily show a matching lower bound [3].

Below we will see how several online combinatorial decision problems studied in the literature can
be recovered under the above framework (e.g. see [16, 17, 12, 14, 8]); in many of these cases, both
decomposition and unnormalized relative entropy projection steps in LDOMD can be performed
efficiently (in poly(d) time) (e.g. see [14]). As a warm-up, consider the following simple example:
Example 1 (m-sets with element-based losses). Here C contains all size-m subsets of a ground set
of d elements: C = {S ⊆ [d] | |S| = m}. On each trial t, one selects a subset St ∈ C and receives
a loss vector `t ∈ [0, 1]d, with `ti specifying the loss for including element i ∈ [d]; the loss for the
subset St is given by

∑
i∈St `ti. Here it is natural to define a mapping φ : C→{0, 1}d that maps

each S ∈ C to its characteristic vector, defined as φi(S) = 1(i ∈ S) ∀i ∈ [d]; the loss incurred
on predicting St ∈ C is then simply φ(St) · `t. Thus φ(C) = {x ∈ {0, 1}d | ‖x‖1 = m}, and
conv(φ(C)) = {x ∈ [0, 1]d | ‖x‖1 = m}. LDOMD with unnormalized negative entropy as above

has a regret bound of O
(
m
√
T ln(dm)

)
. It can be shown that both decomposition and unnormalized

relative entropy projection steps take O(d2) time [17, 14].

4

3.2 LDOMD with General Polytopes

Now consider a general setting where φ : C→Rd, and conv(φ(C)) ⊂ Rd is an arbitrary polytope.
Let us assume again ‖φ(c)‖1 ≤ m ∀c ∈ C for some m > 0.

Again, it is easy to verify that applying Theorems 1 and 2 gives

E
[
RT
[

Hedge(η∗)
]]

= O(m
√
T ln |C|) ; E

[
RT
[

FPL(η∗)
]]

= O(m
√
Td) .

For the LDOMD algorithm, we consider two cases:

Case 1: φ(C) ⊂ Rd+. Here one can again take K = Rd+ and let F : K→R be the unnormalized
negative entropy. In this case, one gets BF (φ(c), x1) ≤ m ln(d) + m ∀c ∈ C if m < d, and
BF (φ(c), x1) ≤ m ln(m) + d ∀c ∈ C if m ≥ d. As before, ‖`t‖∞ ≤ 1 ∀t, and the restriction of F
on conv(φ(C)) is (1

m)-strongly convex w.r.t. ‖ · ‖1, so applying Theorem 3 for appropriate η∗ gives

E
[
RT
[

LDOMD(η∗)
]]

=

{
O
(
m
√
T ln(d)

)
if m < d

O
(
m
√
T ln(m)

)
if m ≥ d.

Thus, when φ(C) ⊂ Rd+, if ln |C| = ω(max(ln(m), ln(d)))) and d = ω(ln(m)), then the
LDOMD algorithm with unnormalized negative entropy again gives a better regret bound than both
Hedge/Naı̈ve OMD and FPL.

Case 2: φ(C) 6⊂ Rd+. Here one can no longer use the unnormalized negative entropy in LDOMD.
One possibility is to take K = Rd and let F : K→R be defined as F (x) = 1

2‖x‖
2
2, which leads to

an additive update algorithm. In this case, one gets BF (φ(c), x1) = 1
2‖φ(c)− x1‖22 ≤ 2m2 ∀c ∈ C;

moreover, ‖`t‖2 ≤
√
d ∀t, and F is 1-strongly convex w.r.t. ‖ · ‖2. Applying Theorem 3 for

appropriate η∗ then gives
E
[
RT
[

LDOMD(η∗)
]]

= O(m
√
Td) .

Thus in general, when φ(C) 6⊂ Rd+, LDOMD with squared L2-norm has a similar regret bound as
that of Hedge/Naı̈ve OMD and FPL. Note however that in some cases, Hedge/Naı̈ve OMD and FPL
may be infeasible to implement efficiently, while LDOMD with squared L2-norm may be efficiently
implementable; moreover, in certain cases it may be possible to implement LDOMD with other
choices of K and F that lead to better regret bounds.

In the following sections we will consider several examples of applications of LDOMD to online
combinatorial decision problems involving both 0-1 polytopes and general polytopes in Rd.

4 Matroid Polytopes
Consider an online decision problem in which the decision space C contains (not necessarily all)
independent sets in a matroidM = (E, I). Specifically, on each trial t, one selects an independent
set It ∈ C, and receives a loss vector `t ∈ [0, 1]|E|, with `te specifying the loss for including element
e ∈ E; the loss for the independent set It is given by

∑
e∈It `

t
e. Here it is natural to define a

mapping φ : C→{0, 1}|E| that maps each independent set I ∈ C to its characteristic vector, defined
as φe(I) = 1(e ∈ I); the loss on selecting It ∈ C is then φ(It) · `t. Thus here d = |E|, and
φ(C) ⊆ {0, 1}|E|. A particularly interesting case is obtained by taking C to contain all the maximal
independent sets (bases) in I; in this case, the polytope conv(φ(C)) is known as the matroid base
polytope ofM. This polytope, often denoted as B(M), is also given by

B(M) =
{
x ∈ R|E|

∣∣∣ ∑e∈S xe ≤ rankM(S) ∀S ⊂ E, and
∑
e∈E xe = rankM(E)

}
,

where rankM : 2E→R is the matroid rank function ofM defined as
rankM(S) = max

{
|I| | I ∈ I, I ⊆ S

}
∀S ⊆ E .

We will see below (Section 5) that both decomposition and unnormalized relative entropy projection
steps in this case can be performed efficiently assuming an appropriate oracle.

We note that Example 1 (m-subsets of a ground set of d elements) can be viewed as a special case of
the above setting for the matroidMsub = (E, I) defined by E = [d] and I = {S ⊆ E | |S| ≤ m};
the set C of m-subsets of [d] is then simply the set of bases in I, and conv(φ(C)) = B(Msub). The
following is another well-studied example:

5

Example 2 (Spanning trees with edge-based losses). Here one is given a connected, undirected
graph G = ([n], E), and the decision space C is the set of all spanning trees in G. On each trial t,
one selects a spanning tree T t ∈ C and receives a loss vector `t ∈ [0, 1]|E|, with `te specifying the
loss for using edge e; the loss for the tree T t is given by

∑
e∈T t `te. It is well known that the set of

all spanning trees in G is the set of bases in the graphic matroidMG = (E, I), where I contains
edge sets of all acyclic subgraphs of G. Therefore here d = |E|, φ(C) is the set of incidence vectors
of all spanning trees in G, and conv(φ(C)) = B(MG), also known as the spanning tree polytope.

Here LDOMD with unnormalized negative entropy has a regret bound of O
(
n
√
T ln(|E|n−1)

)
.

5 Polytopes Associated with Submodular Functions
Next we consider settings where the decision space C is in one-to-one correspondence with the set
of vertices of the base polytope associated with a submodular function, and losses are linear in the
corresponding vertex representations of elements in C. This setting was considered recently in [15],
and as we shall see, encompasses both of the examples we saw earlier, as well as many others. Let
f : 2[n]→R be a submodular function with f(∅) = 0. The base polytope of f is defined as

B(f) =
{
x ∈ Rn

∣∣∣ ∑i∈S xi ≤ f(S) ∀S ⊂ [n], and
∑n
i=1 xi = f([n])

}
.

Let φ : C→Rn be a bijective mapping from C to the vertices of B(f); thus conv(φ(C)) = B(f).

5.1 Monotone Submodular Functions

It is known that when f is a monotone submodular function (which means U ⊆ V =⇒ f(U) ≤
f(V)), then B(f) ⊆ Rn+ [4]. Therefore in this case one can take K = Rn+ and F : K→R to be the
unnormalized negative entropy. Both decomposition and unnormalized relative entropy projection
steps can be performed in time O(n6 + n5Q), where Q is the time taken by an oracle that given
S returns f(S); for cardinality-based submodular functions, for which f(S) = g(|S|) for some
g : [n]→R, these steps can be performed in just O(n2) time [15].

Remark on matroid base polytopes and spanning trees. We note that the matroid rank function
of any matroidM is a monotone submodular function, and that the matroid base polytope B(M)
is the same as B(rankM). Therefore Examples 1 and 2 can also be viewed as special cases of the
above setting. For the spanning trees of Example 2, the decomposition step of [14] makes use of a
linear programming formulation whose exact time complexity is unclear. Instead, one could use the
decomposition step associated with the submodular function rankMG

, which takes O(|E|6) time.

Matroid polytopes are 0-1 polytopes; the example below illustrates a more general polytope:
Example 3 (Permutations with a certain position-based loss). Let C = Sn, the set of all permutations
of n objects: C = {σ : [n]→[n] |σ is bijective}. On each trial t, one selects a permutation σt ∈ C
and receives a loss vector `t ∈ [0, 1]n; the loss of the permutation is given by

∑n
i=1 `

t
i (n−σt(i)+1).

This type of loss arises in scheduling applications, where `ti denotes the time taken to complete the
i-th job, and the loss of a job schedule (permutation of jobs) is the total waiting time of all jobs
(the waiting time of a job is its own completion time plus the sum of completion times of all jobs
scheduled before it) [15]. Here it is natural to define a mapping φ : C→Rn+ that maps σ ∈ C to
φ(σ) = (n − σ(1) + 1, . . . , n − σ(n) + 1); the loss on selecting σt ∈ C is then φ(σt) · `t. Thus
here we have d = n, and φ(C) = {(σ(1), . . . , σ(n)) |σ ∈ Sn}. It is known that the n! vectors in
φ(C) are exactly the vertices of the base polytope corresponding to the monotone (cardinality-based)
submodular function fperm : 2[n]→R defined as fperm(S) =

∑|S|
i=1(n− i+ 1). Thus conv(φ(C)) =

B(fperm); this is a well-known polytope called the permutahedron [21], and has recently been studied
in the context of online learning applications in [18, 15, 1]. Here ‖φ(σ)‖1 = n(n+1)

2 ∀σ ∈ C, and
therefore LDOMD with unnormalized negative entropy has a regret bound of O

(
n2
√
T ln(n)

)
. As

noted above, decomposition and unnormalized relative entropy projection steps take O(n2) time.

5.2 General Submodular Functions

In general, when f is non-monotone, B(f) ⊂ Rn can contain vectors with non-negative entries.
Here one can use LOMD with the squared L2-norm. The Euclidean projection step can again be
performed in time O(n6 + n5Q) in general, where Q is the time taken by an oracle that given S
returns f(S), and in O(n2) time for cardinality-based submodular functions [15].

6

6 Permutation Polytopes
There has been increasing interest in recent years in online decision problems involving rankings or
permutations, largely due to their role in applications such as information retrieval, recommender
systems, rank aggregation, etc [12, 18, 19, 15, 1, 2]. Here the decision space is C = Sn, the set of
all permutations of n objects:

C = {σ : [n]→[n] |σ is bijective} .
On each trial t, one predicts a permutation σt ∈ C and receives some type of loss. We saw one special
type of loss in Example 3; we now consider any loss that can be represented as a linear function of
some vector representation of the permutations in C. Specifically, let d ∈ Z+, and let φ : C→Rd be
any injective mapping such that on predicting σt, one receives a loss vector `t ∈ [0, 1]d and incurs
loss φ(σt) · `t. For any such mapping φ, the polytope conv(φ(C)) is called a permutation polytope
[5].3 The permutahedron we saw in Example 3 is one example of a permutation polytope; here
we consider various other examples. For any such polytope, if one can perform the decomposition
and suitable Bregman projection steps efficiently, then one can use the LDOMD algorithm to obtain
good regret guarantees with respect to the associated loss.
Example 4 (Permutations with assignment-based losses). Here on each trial t, one selects a per-
mutation σt ∈ C and receives a loss matrix `t ∈ [0, 1]n×n, with `tij specifying the loss for assigning
element i to position j; the loss for the permutation σt is given by

∑n
i=1 `

t
i,σt(i). Here it is natural

to define a mapping φ : C→{0, 1}n×n that maps each σ ∈ C to its associated permutation matrix
Pσ ∈ {0, 1}n×n, defined as Pσij = 1(σ(i) = j) ∀i, j ∈ [n]; the loss incurred on predicting σt ∈ C is
then

∑n
i=1

∑n
j=1 φij(σ

t)`tij . Thus we have here that d = n2, φ(C) = {Pσ ∈ {0, 1}n×n |σ ∈ Sn},
and conv(φ(C)) is the well-known Birkhoff polytope containing all doubly stochastic matrices in
[0, 1]n×n (also known as the assignment polytope or the perfect matching polytope of the complete
bipartite graph Kn,n). Here LDOMD with unnormalized negative entropy has a regret bound of
O
(
n
√
T ln(n)

)
. This recovers exactly the PermELearn algorithm used in [12]; see [12] for effi-

cient implementations of the decomposition and unnormalized relative entropy projection steps.
Example 5 (Permutations with general position-based losses). Here on each trial t, one selects
a permutation σt ∈ C and receives a loss vector `t ∈ [0, 1]n. There is a weight function γ :
[n]→R+ that weights the loss incurred at each position, such that the loss contributed by element
i is `ti γ(σt(i)); the total loss of the permutation σt is given by

∑n
i=1 `

t
i γ(σt(i)). Note that the

particular loss considered in Example 3 (and in [15]) is a special case of such a position-based loss,
with weight function γ(i) = (n−i+1). Several other position-dependent losses are used in practice;
for example, the discounted cumulative gain (DCG) based loss, which is widely used in information
retrieval applications, effectively uses γ(i) = 1 − 1

log2(i)+1 [9]. For a general position-based loss
with weight function γ, one can define φ : C→Rn+ as φ(σ) = (γ(σ(1)), . . . , γ(σ(n))). This yields a
permutation polytope conv(φ(C)) = conv

({
(γ(σ(1)), . . . , γ(σ(n))) | σ ∈ Sn

})
⊂ Rn+. Provided

one can implement the decomposition and suitable Bregman projection steps efficiently, one can use
the LDOMD algorithm to get a sublinear regret.

7 Application to an Online Transportation Problem
Consider now the following transportation problem: there are m supply locations for a particular
commodity and n demand locations, with a supply vector a ∈ Zm+ and demand vector b ∈ Zn+
specifying the (integer) quantities of the commodity supplied/demanded by the various locations.

Assume
∑m
i=1 ai =

∑n
j=1 bj

4
= q. In the offline setting, there is a cost matrix ` ∈ [0, 1]m×n, with

`ij specifying the cost of transporting one unit of the commodity from supply location i to demand
location j, and the goal is to decide on a transportation matrix Q ∈ Zm×n+ that specifies suitable
(integer) quantities of the commodity to be transported between the various supply and demand
locations so as to minimize the total transportation cost,

∑m
i=1

∑n
j=1Qij`ij .

Here we consider an online variant of this problem where the supply vector a and demand vector b
are viewed as remaining constant over some period of time, while the costs of transporting the com-

3The term ‘permutation polytope’ is sometimes used to refer to various polytopes obtained through specific
mappings φ : Sn→Rd; here we use the term in a broad sense for any such polytope, following terminology of
Bowman [5]. (Note that the description Bowman [5] gives of a particular 0-1 permutation polytope in Rn(n−1),
known as the binary choice polytope or the linear ordering polytope [20], is actually incorrect; e.g. see [11].)

7

Algorithm Decomposition Step for Transportation Polytopes

Input: X ∈ T (a, b) (where a ∈ Zm+ , b ∈ Zn+)

Initialize: A1 ← X; k ← 0
Repeat:

– k ← k + 1
– Find an extreme point Qk ∈ T (a, b) such that Akij = 0 =⇒ Qkij = 0 (see Appendix B)

– αk ← min(i,j):Qk
ij>0

(
Ak

ij

Qk
ij

)
– Ak+1 ← Ak − αkQk

Until
(

all entries of Ak+1 are zero
)

Ouput: Decomposition of X as convex combination of extreme points Q1, . . . , Qk:
X =

∑k
r=1 αrQ

r (it can be verified that αr ∈ (0, 1] ∀r and
∑k
r=1 αr = 1)

Figure 3: Decomposition step in applying LDOMD to transportation polytopes.

modity between various supply and demand locations change over time. Specifically, the decision
space here is the set of all valid (integer) transportation matrices satisfying constraints given by a, b:

C =
{
Q ∈ Zm×n+ |

∑n
j=1Qij = ai ∀i ∈ [m] ,

∑m
i=1Qij = bj ∀j ∈ [n]

}
.

On each trial t, one selects a transportation matrix Qt ∈ C, and receives a cost matrix `t ∈
[0, 1]m×n; the loss incurred is

∑m
i=1

∑n
j=1Q

t
ij`

t
ij . A natural mapping here is simply the identity:

φ : C→Zm×n+ with φ(Q) = Q ∀Q ∈ C. Thus we have here d = mn, φ(C) = C, and conv(φ(C)) is
the well-known transportation polytope T (a, b) (e.g. see [6]):
conv(φ(C)) = T (a, b) =

{
X ∈ Rm×n+ |

∑n
j=1Xij = ai ∀i ∈ [m] ,

∑m
i=1Xij = bj ∀j ∈ [n]

}
.

Transportation polytopes generalize the Birkhoff polytope of doubly stochastic matrices, which can
be seen to arise as a special case when m = n and ai = bi = 1 ∀i ∈ [n] (see Example 4). While the
Birkhoff polytope is a 0-1 polytope, a general transportation polytope clearly includes non-Boolean
vertices. Nevertheless, we do have T (a, b) ⊂ Rm×n+ , which suggests we can use the LDOMD
algorithm with unnormalized negative entropy.

For the decomposition step in LDOMD, one can use an algorithm broadly similar to that used for the
Birkhoff polytope in [12]. Specifically, given a matrixX ∈ conv(φ(C)) = T (a, b), one successively
subtracts off multiples of extreme points Qk ∈ C from X until one is left with a zero matrix (see
Figure 3). However, a key step of this algorithm is to find a suitable extreme point to subtract off
on each iteration. In the case of the Birkhoff polytope, this involved finding a suitable permutation
matrix, and was achieved by finding a perfect matching in a suitable bipartite graph. For general
transportation polytopes, we make use of a characterization of extreme points in terms of spanning
forests in a suitable bipartite graph (see Appendix B for details). The overall decomposition results
in a convex combination of at most mn extreme points in C, and takes O(m3n3) time.

The unnormalized relative entropy projection step can be performed efficiently by using a procedure
similar to the Sinkhorn balancing used for the Birkhoff polytope in [12]. Specifically, given a non-
negative matrix X̃ ∈ Rm×n+ , one alternately scales the rows and columns to match the desired row
and column sums until some convergence criterion is met. As with Sinkhorn balancing, this results
in an approximate projection step, but does not hurt the overall regret analysis (other than a constant
additive term), yielding a regret bound of O

(
q
√
T ln(max(mn, q))

)
.

8 Conclusion
We have considered a general form of online combinatorial decision problems, where costs can be
linear in any suitable low-dimensional vector representation of elements of the decision space, and
have given a general algorithm termed low-dimensional online mirror descent (LDOMD) for such
problems. Our study emphasizes the role of the convex polytope arising from the vector representa-
tion of the decision space; this both yields a unification and generalization of previous algorithms,
and gives a general framework that can be used to design new algorithms for specific applications.

Acknowledgments. Thanks to the anonymous reviewers for helpful comments and Chandrashekar
Lakshminarayanan for helpful discussions. AR is supported by a Microsoft Research India PhD
Fellowship. SA thanks DST and the Indo-US Science & Technology Forum for their support.

8

References

[1] Nir Ailon. Bandit online optimization over the permutahedron. CoRR, abs/1312.1530, 2013.
[2] Nir Ailon. Online ranking: Discrete choice, spearman correlation and other feedback. CoRR,

abs/1308.6797, 2013.
[3] Jean-Yves Audibert, Sébastien Bubeck, and Gábor Lugosi. Regret in online combinatorial

optimization. Mathematics of Operations Research, 39(1):31–45, 2014.
[4] Francis Bach. Learning with submodular functions: A convex optimization perspective. Foun-

dations and Trends in Machine Learning, 6(2-3):145–373, 2013.
[5] V. J. Bowman. Permutation polyhedra. SIAM Journal on Applied Mathematics, 22(4):580–

589, 1972.
[6] Richard A Brualdi. Combinatorial Matrix Classes. Cambridge University Press, 2006.
[7] Sébastion Bubeck. Introduction to online optimization. Lecture Notes, Princeton University,

2011.
[8] Nicolò Cesa-Bianchi and Gábor Lugosi. Combinatorial bandits. Journal of Computer and

System Sciences, 78(5):1404–1422, 2012.
[9] David Cossock and Tong Zhang. Statistical analysis of Bayes optimal subset ranking. IEEE

Transactions on Information Theory, 54(11):5140–5154, 2008.
[10] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning

and an application to boosting. Journal of Computer and System Sciences, 55(1):119–139,
1997.

[11] M. Grötschel, M. Jünger, and G. Reinelt. Facets of the linear ordering polytope. Mathematical
Programming, 33:43–60, 1985.

[12] David P. Helmbold and Manfred K. Warmuth. Learning permutations with exponential
weights. Journal of Machine Learning Research, 10:1705–1736, 2009.

[13] Adam Tauman Kalai and Santosh Vempala. Efficient algorithms for online decision problems.
Journal of Computer and System Sciences, 71(3):291–307, 2005.

[14] Wouter M. Koolen, Manfred K. Warmuth, and Jyrki Kivinen. Hedging structured concepts. In
COLT, 2010.

[15] Daiki Suehiro, Kohei Hatano, Shuji Kijima, Eiji Takimoto, and Kiyohito Nagano. Online
prediction under submodular constraints. In ALT, 2012.

[16] Eiji Takimoto and Manfred K. Warmuth. Path kernels and multiplicative updates. Journal of
Machine Learning Research, 4:773–818, 2003.

[17] Manfred K. Warmuth and Dima Kuzmin. Randomized online PCA algorithms with regret
bounds that are logarithmic in the dimension. Journal of Machine Learning Research, 9:2287–
2320, 2008.

[18] Shota Yasutake, Kohei Hatano, Shuji Kijima, Eiji Takimoto, and Masayuki Takeda. Online
linear optimization over permutations. In ISAAC, pages 534–543, 2011.

[19] Shota Yasutake, Kohei Hatano, Eiji Takimoto, and Masayuki Takeda. Online rank aggregation.
In ACML, 2012.

[20] Jun Zhang. Binary choice, subset choice, random utility, and ranking: A unified perspective
using the permutahedron. Journal of Mathematical Psychology, 48:107–134, 2004.

[21] Günter M. Ziegler. Lectures on Polytopes. Springer, 1995.

9

