
Best-Arm Identification in Linear Bandits

Marta Soare Alessandro Lazaric Rémi Munos∗†
INRIA Lille – Nord Europe, SequeL Team

{marta.soare,alessandro.lazaric,remi.munos}@inria.fr

Abstract
We study the best-arm identification problem in linear bandit, where the rewards
of the arms depend linearly on an unknown parameter θ∗ and the objective is to
return the arm with the largest reward. We characterize the complexity of the
problem and introduce sample allocation strategies that pull arms to identify the
best arm with a fixed confidence, while minimizing the sample budget. In partic-
ular, we show the importance of exploiting the global linear structure to improve
the estimate of the reward of near-optimal arms. We analyze the proposed strate-
gies and compare their empirical performance. Finally, as a by-product of our
analysis, we point out the connection to theG-optimality criterion used in optimal
experimental design.

1 Introduction
The stochastic multi-armed bandit problem (MAB) [16] offers a simple formalization for the study
of sequential design of experiments. In the standard model, a learner sequentially chooses an arm
out of K and receives a reward drawn from a fixed, unknown distribution relative to the chosen
arm. While most of the literature in bandit theory focused on the problem of maximization of
cumulative rewards, where the learner needs to trade-off exploration and exploitation, recently the
pure exploration setting [5] has gained a lot of attention. Here, the learner uses the available budget
to identify as accurately as possible the best arm, without trying to maximize the sum of rewards.
Although many results are by now available in a wide range of settings (e.g., best-arm identification
with fixed budget [2, 11] and fixed confidence [7], subset selection [6, 12], and multi-bandit [9]),
most of the work considered only the multi-armed setting, withK independent arms.

An interesting variant of the MAB setup is the stochastic linear bandit problem (LB), introduced
in [3]. In the LB setting, the input space X is a subset of Rd and when pulling an arm x, the learner
observes a reward whose expected value is a linear combination of x and an unknown parameter
θ∗ ∈ R

d. Due to the linear structure of the problem, pulling an arm gives information about the
parameter θ∗ and indirectly, about the value of other arms. Therefore, the estimation of K mean-
rewards is replaced by the estimation of the d features of θ∗. While in the exploration-exploitation
setting the LB has been widely studied both in theory and in practice (e.g., [1, 14]), in this paper we
focus on the pure-exploration scenario.

The fundamental difference between the MAB and the LB best-arm identification strategies stems
from the fact that in MAB an arm is no longer pulled as soon as its sub-optimality is evident (in
high probability), while in the LB setting even a sub-optimal arm may offer valuable information
about the parameter vector θ∗ and thus improve the accuracy of the estimation in discriminating
among near-optimal arms. For instance, consider the situation whenK−2 out ofK arms are already
discarded. In order to identify the best arm, MAB algorithms would concentrate the sampling on
the two remaining arms to increase the accuracy of the estimate of their mean-rewards until the
discarding condition is met for one of them. On the contrary, a LB pure-exploration strategy would
seek to pull the arm x ∈ X whose observed reward allows to refine the estimate θ∗ along the
dimensions which are more suited in discriminating between the two remaining arms. Recently, the
best-arm identification in linear bandits has been studied in a fixed budget setting [10], in this paper
we study the sample complexity required to identify the best-linear arm with a fixed confidence.

∗This work was done when the author was a visiting researcher at Microsoft Research New-England.
†Current affiliation: Google DeepMind.

1

2 Preliminaries
The setting. We consider the standard linear bandit model. Let X ⊆ R

d be a finite set of arms,
where |X | = K and the ℓ2-norm of any arm x ∈ X , denoted by ||x||, is upper-bounded by L.
Given an unknown parameter θ∗ ∈ R

d, we assume that each time an arm x ∈ X is pulled, a random
reward r(x) is generated according to the linear model r(x) = x⊤θ∗ + ε, where ε is a zero-mean
i.i.d. noise bounded in [−σ;σ]. Arms are evaluated according to their expected reward x⊤θ∗ and
we denote by x∗ = argmaxx∈X x

⊤θ∗ the best arm in X . Also, we use Π(θ) = argmaxx∈X x
⊤θ

to refer to the best arm corresponding to an arbitrary parameter θ. Let Δ(x, x′) = (x − x′)⊤θ∗ be
the value gap between two arms, then we denote byΔ(x) = Δ(x∗, x) the gap of x w.r.t. the optimal
arm and by Δmin = minx∈X Δ(x) the minimum gap, where Δmin > 0. We also introduce the sets
Y = {y = x − x′, ∀x, x′ ∈ X} and Y∗ = {y = x∗ − x,∀x ∈ X} containing all the directions
obtained as the difference of two arms (or an arm and the optimal arm) and we redefine accordingly
the gap of a direction as Δ(y) = Δ(x, x′) whenever y = x− x′.
The problem. We study the best-arm identification problem. Let x̂(n) be the estimated best arm
returned by a bandit algorithm after n steps. We evaluate the quality of x̂(n) by the simple regret
Rn = (x∗ − x̂(n))⊤θ∗. While different settings can be defined (see [8] for an overview), here we
focus on the (ǫ, δ)-best-arm identification problem (the so-called PAC setting), where given ǫ and
δ ∈ (0, 1), the objective is to design an allocation strategy and a stopping criterion so that when
the algorithm stops, the returned arm x̂(n) is such that P

�
Rn ≥ ǫ

�
≤ δ, while minimizing the

needed number of steps. More specifically, we will focus on the case of ǫ = 0 and we will provide
high-probability bounds on the sample complexity n.

The multi-armed bandit case. In MAB, the complexity of best-arm identification is characterized
by the gaps between arm values, following the intuition that the more similar the arms, the more pulls
are needed to distinguish between them. More formally, the complexity is given by the problem-
dependent quantity HMAB =

�K
i=1

1
Δ2

i

i.e., the inverse of the pairwise gaps between the best arm
and the suboptimal arms. In the fixed budget case,HMAB determines the probability of returning the
wrong arm [2], while in the fixed confidence case, it characterizes the sample complexity [7].

Technical tools. Unlike in the multi-arm bandit scenario where pulling one arm does not provide
any information about other arms, in a linear model we can leverage the rewards observed over time
to estimate the expected reward of all the arms in X . Let xn = (x1, . . . , xn) ∈ Xn be a sequence
of arms and (r1, . . . , rn) the corresponding observed (random) rewards. An unbiased estimate of
θ∗ can be obtained by ordinary least-squares (OLS) as θ̂n = A−1

xn
bxn

, where Axn
=

�n
t=1 xtx

⊤
t ∈

R
d×d and bxn

=
�n

t=1 xtrt ∈ R
d. For any fixed sequence xn, through Azuma’s inequality, the

prediction error of the OLS estimate is upper-bounded in high-probability as follows.
Proposition 1. Let c = 2σ

√
2 and c′ = 6/π2. For every fixed sequence xn, we have1

P

�
∀n ∈ N,∀x ∈ X ,

��x⊤θ∗ − x⊤θ̂n
�� ≤ c||x||A−1

xn

�
log(c′n2K/δ)

�
≥ 1− δ. (1)

While in the previous statement xn is fixed, a bandit algorithm adapts the allocation in response to
the rewards observed over time. In this case a different high-probability bound is needed.

Proposition 2 (Thm. 2 in [1]). Let θ̂ηn be the solution to the regularized least-squares problem with
regularizer η and let �Aη

x
= ηId + Ax. Then for all x ∈ X and every adaptive sequence xn such

that at any step t, xt only depends on (x1, r1, . . . , xt−1, rt−1), w.p. 1− δ, we have
��x⊤θ∗ − x⊤θ̂ηn

�� ≤ ||x||(�Aη
xn)−1

�
σ

�
d log

�1 + nL2/η

δ

�
+ η1/2||θ∗||

�
. (2)

The crucial difference w.r.t. Eq. 1 is an additional factor
√
d, the price to pay for adapting xn to the

samples. In the sequel we will often resort to the notion of design (or “soft” allocation) λ ∈ Dk,
which prescribes the proportions of pulls to arm x and Dk denotes the simplex X . The counterpart
of the design matrix A for a design λ is the matrix Λλ =

�
x∈X λ(x)xx

⊤. From an allocation xn

we can derive the corresponding design λxn
as λxn

(x) = Tn(x)/n, where Tn(x) is the number of
times arm x is selected in xn, and the corresponding design matrix is Axn

= nΛλxn
.

1Whenever Prop.1 is used for all directions y ∈ Y , then the logarithmic term becomes log(c′n2K2/δ)
because of an additional union bound. For the sake of simplicity, in the sequel we always use logn(K

2/δ).

2

3 The Complexity of the Linear Best-Arm Identification Problem

θ
∗

x3

x1

x2

0
C(x3)

C(x1) = C∗

C(x2)

Figure 1: The cones corresponding to three
arms (dots) in R

2. Since θ∗ ∈ C(x1), then
x∗ = x1. The confidence set S∗(xn) (in
green) is aligned with directions x1−x2 and
x1 − x3. Given the uncertainty in S∗(xn),
both x1 and x3 may be optimal.

As reviewed in Sect. 2, in the MAB case the complexity
of the best-arm identification task is characterized by the
reward gaps between the optimal and suboptimal arms.
In this section, we propose an extension of the notion of
complexity to the case of linear best-arm identification.
In particular, we characterize the complexity by the per-
formance of an oracle with access to the parameter θ∗.

Stopping condition. Let C(x)={θ ∈ R
d, x ∈ Π(θ)} be

the set of parameters θ which admit x as an optimal arm.
As illustrated in Fig. 1, C(x) is the cone defined by the
intersection of half-spaces such that C(x) = ∩x′∈X {θ ∈
R

d, (x − x′)⊤θ ≥ 0} and all the cones together form a
partition of the Euclidean space Rd. We assume that the
oracle knows the cone C(x∗) containing all the param-
eters for which x∗ is optimal. Furthermore, we assume
that for any allocation xn, it is possible to construct a confidence set S∗(xn) ⊆ R

d such that
θ∗ ∈ S∗(xn) and the (random) OLS estimate θ̂n belongs to S∗(xn) with high probability, i.e.,
P
�
θ̂n ∈ S∗(xn)

�
≥ 1 − δ. As a result, the oracle stopping criterion simply checks whether the

confidence set S∗(xn) is contained in C(x∗) or not. In fact, whenever for an allocation xn the set
S∗(xn) overlaps the cones of different arms x ∈ X , there is ambiguity in the identity of the arm
Π(θ̂n). On the other hand when all possible values of θ̂n are included with high probability in the
“right” cone C(x∗), then the optimal arm is returned.

Lemma 1. Let xn be an allocation such that S∗(xn) ⊆ C(x∗). Then P
�
Π(θ̂n) = x∗

�
≤ δ.

Arm selection strategy. From the previous lemma2 it follows that the objective of an arm selection
strategy is to define an allocation xn which leads to S∗(xn) ⊆ C(x∗) as quickly as possible.3 Since
this condition only depends on deterministic objects (S∗(xn) and C(x∗)), it can be computed inde-
pendently from the actual reward realizations. From a geometrical point of view, this corresponds
to choosing arms so that the confidence set S∗(xn) shrinks into the optimal cone C(x∗) within the
smallest number of pulls. To characterize this strategy we need to make explicit the form of S∗(xn).
Intuitively speaking, the more S∗(xn) is “aligned” with the boundaries of the cone, the easier it is
to shrink it into the cone. More formally, the condition S∗(xn) ⊆ C(x∗) is equivalent to

∀x ∈ X , ∀θ ∈ S∗(xn), (x
∗ − x)⊤θ ≥ 0 ⇔ ∀y ∈ Y∗, ∀θ ∈ S∗(xn), y

⊤(θ∗ − θ) ≤ Δ(y).

Then we can simply use Prop. 1 to directly control the term y⊤(θ∗ − θ) and define

S∗(xn) =
�
θ ∈ R

d, ∀y ∈ Y∗, y⊤(θ∗ − θ) ≤ c||y||A−1

xn

�
logn(K

2/δ)
�
. (3)

Thus the stopping condition S∗(xn) ⊆ C(x∗) is equivalent to the condition that, for any y ∈ Y∗,

c||y||A−1

xn

�
logn(K

2/δ) ≤ Δ(y). (4)

From this condition, the oracle allocation strategy simply follows as

x
∗
n = argmin

xn

max
y∈Y∗

c||y||A−1

xn

�
logn(K

2/δ)

Δ(y)
= argmin

xn

max
y∈Y∗

||y||A−1

xn

Δ(y)
. (5)

Notice that this strategy does not return an uniformly accurate estimate of θ∗ but it rather pulls arms
that allow to reduce the uncertainty of the estimation of θ∗ over the directions of interest (i.e., Y∗)
below their corresponding gaps. This implies that the objective of Eq. 5 is to exploit the global linear
assumption by pulling any arm in X that could give information about θ∗ over the directions in Y∗,
so that directions with small gaps are better estimated than those with bigger gaps.

2For all the proofs in this paper, we refer the reader to the long version of the paper [18].
3Notice that by definition of the confidence set and since θn → θ∗ as n → ∞, any strategy repeatedly

pulling all the arms would eventually meet the stopping condition.

3

Sample complexity. We are now ready to define the sample complexity of the oracle, which corre-
sponds to the minimum number of steps needed by the allocation in Eq. 5 to achieve the stopping
condition in Eq. 4. From a technical point of view, it is more convenient to express the complexity of
the problem in terms of the optimal design (soft allocation) instead of the discrete allocation xn. Let
ρ∗(λ) = maxy∈Y∗ ||y||2

Λ−1

λ

/Δ2(y) be the square of the objective function in Eq. 5 for any design

λ ∈ Dk. We define the complexity of a linear best-arm identification problem as the performance
achieved by the optimal design λ∗ = argminλ ρ

∗(λ), i.e.

HLB = min
λ∈Dk

max
y∈Y∗

||y||2
Λ−1

λ

Δ2(y)
= ρ∗(λ∗). (6)

This definition of complexity is less explicit than in the case of HMAB but it contains similar ele-
ments, notably the inverse of the gaps squared. Nonetheless, instead of summing the inverses over
all the arms, HLB implicitly takes into consideration the correlation between the arms in the term
||y||2

Λ−1

λ

, which represents the uncertainty in the estimation of the gap between x∗ and x (when
y = x∗ − x). As a result, from Eq. 4 the sample complexity becomes

N∗ = c2HLB logn(K
2/δ), (7)

where we use the fact that, if implemented over n steps, λ∗ induces a design matrix Aλ∗ = nΛλ∗

and maxy ||y||2A−1

λ∗

/Δ2(y) = ρ∗(λ∗)/n. Finally, we bound the range of the complexity.

Lemma 2. Given an arm set X ⊆ R
d and a parameter θ∗, the complexity HLB (Eq. 6) is such that

max
y∈Y∗

||y||2/(LΔ2
min) ≤ HLB ≤ 4d/Δ2

min. (8)

Furthermore, if X is the canonical basis, the problem reduces to a MAB andHMAB≤HLB≤2HMAB.

The previous bounds show that Δmin plays a significant role in defining the complexity of the
problem, while the specific shape of X impacts the numerator in different ways. In the worst case
the full dimensionality d appears (upper-bound), and more arm-set specific quantities, such as the
norm of the arms L and of the directions Y∗, appear in the lower-bound.

4 Static Allocation Strategies
Input: decision space X ∈ R

d, confidence δ > 0
Set: t = 0; Y = {y = (x− x′);x = x′ ∈ X};
while Eq. 11 is not true do

if G-allocation then
xt = argmin

x∈X

max
x′∈X

x′⊤(A+ xx⊤)−1x′

else if XY-allocation then
xt = argmin

x∈X

max
y∈Y

y⊤(A+ xx⊤)−1y

end if
Update θ̂t = A−1

t bt, t = t+ 1
end while
Return arm Π(θ̂t)

Figure 2: Static allocation algorithms

The oracle stopping condition (Eq. 4) and allo-
cation strategy (Eq. 5) cannot be implemented in
practice since θ∗, the gaps Δ(y), and the direc-
tions Y∗ are unknown. In this section we investi-
gate how to define algorithms that only rely on the
information available from X and the samples col-
lected over time. We introduce an empirical stop-
ping criterion and two static allocations.

Empirical stopping criterion. The stopping con-
dition S∗(xn) ⊆ C(x∗) cannot be tested since
S∗(xn) is centered in the unknown parameter θ∗
and C(x∗) depends on the unknown optimal arm
x∗. Nonetheless, we notice that given X , for each
x ∈ X the cones C(x) can be constructed beforehand. Let �S(xn) be a high-probability confidence
set such that for any xn, θ̂n ∈ �S(xn) and P(θ∗ ∈ �S(xn)) ≥ 1 − δ. Unlike S∗, �S can be directly
computed from samples and we can stop whenever there exists an x such that �S(xn) ⊆ C(x).
Lemma 3. Let xn = (x1, . . . , xn) be an arbitrary allocation sequence. If after n steps there exists
an arm x ∈ X such that �S(xn) ⊆ C(x) then P

�
Π(θ̂n) = x∗

�
≤ δ.

Arm selection strategy. Similarly to the oracle algorithm, we should design an allocation strategy
that guarantees that the (random) confidence set �S(xn) shrinks in one of the cones C(x) within the
fewest number of steps. Let �Δn(x, x

′) = (x − x′)⊤θ̂n be the empirical gap between arms x, x′.
Then the stopping condition �S(xn) ⊆ C(x) can be written as

∃x ∈ X ,∀x′ ∈ X ,∀θ ∈ �S(xn), (x− x′)⊤θ ≥ 0

⇔ ∃x ∈ X ,∀x′ ∈ X , ∀θ ∈ �S(xn), (x− x′)⊤(θ̂n − θ) ≤ �Δn(x, x
′). (9)

4

This suggests that the empirical confidence set can be defined as

�S(xn) =
�
θ ∈ R

d, ∀y ∈ Y, y⊤(θ̂n − θ) ≤ c||y||A−1

xn

�
logn(K

2/δ)
�
. (10)

Unlike S∗(xn), �S(xn) is centered in θ̂n and it considers all directions y ∈ Y . As a result, the
stopping condition in Eq. 9 could be reformulated as

∃x ∈ X ,∀x′ ∈ X , c||x− x′||A−1

xn

�
logn(K

2/δ) ≤ �Δn(x, x
′). (11)

Although similar to Eq. 4, unfortunately this condition cannot be directly used to derive an alloca-
tion strategy. In fact, it is considerably more difficult to define a suitable allocation strategy to fit a
random confidence set �S into a cone C(x) for an x which is not known in advance. In the following
we propose two allocations that try to achieve the condition in Eq. 11 as fast as possible by imple-
menting a static arm selection strategy, while we present a more sophisticated adaptive strategy in
Sect. 5. The general structure of the static allocations in summarized in Fig. 2.

G-Allocation Strategy. The definition of the G-allocation strategy directly follows from the ob-
servation that for any pair (x, x′) ∈ X 2 we have that ||x − x′||A−1

xn
≤ 2maxx′′∈X ||x′′||A−1

xn
. This

suggests that an allocation minimizing maxx∈X ||x||A−1

xn
reduces an upper bound on the quantity

tested in the stopping condition in Eq. 11. Thus, for any fixed n, we define the G-allocation as

x
G
n = argmin

xn

max
x∈X

||x||A−1

xn
. (12)

We notice that this formulation coincides with the standard G-optimal design (hence the name of
the allocation) defined in experimental design theory [15, Sect. 9.2] to minimize the maximal mean-
squared prediction error in linear regression. The G-allocation can be interpreted as the design that
allows to estimate θ∗ uniformly well over all the arms in X . Notice that the G-allocation in Eq. 12
is well defined only for a fixed number of steps n and it cannot be directly implemented in our case,
since n is unknown in advance. Therefore we have to resort to a more “incremental” implementation.
In the experimental design literature a wide number of approximate solutions have been proposed to
solve the NP -hard discrete optimization problem in Eq. 12 (see [4, 17] for some recent results and
[18] for a more thorough discussion). For any approximate G-allocation strategy with performance
no worse than a factor (1+ β) of the optimal strategy xG

n , the sample complexityN
G is bounded as

follows.
Theorem 1. If the G-allocation strategy is implemented with a β-approximate method and the
stopping condition in Eq. 11 is used, then

P

�
NG ≤ 16c2d(1 + β) logn(K

2/δ)

Δ2
min

∧Π(θ̂NG) = x∗
�
≥ 1− δ. (13)

Notice that this result matches (up to constants) the worst-case value of N∗ given the upper bound
onHLB. This means that, although completely static, theG-allocation is already worst-case optimal.

XY-Allocation Strategy. Despite being worst-case optimal, G-allocation is minimizing a rather
loose upper bound on the quantity used to test the stopping criterion. Thus, we define an alternative
static allocation that targets the stopping condition in Eq. 11 more directly by reducing its left-hand-
side for any possible direction in Y . For any fixed n, we define the XY-allocation as

x
XY
n = argmin

xn

max
y∈Y

||y||A−1

xn
. (14)

XY-allocation is based on the observation that the stopping condition in Eq. 11 requires only the
empirical gaps �Δ(x, x′) to be well estimated, hence arms are pulled with the objective of increasing
the accuracy of directions in Y instead of armsX . This problem can be seen as a transductive variant
of theG-optimal design [19], where the target vectors Y are different from the vectors X used in the
design. The sample complexity of the XY-allocation is as follows.
Theorem 2. If the XY-allocation strategy is implemented with a β-approximate method and the
stopping condition in Eq. 11 is used, then

P

�
NXY ≤ 32c2d(1 + β) logn(K

2/δ)

Δ2
min

∧Π(θ̂NXY) = x∗
�
≥ 1− δ. (15)

Although the previous bound suggests that XY achieves a performance comparable to the G-
allocation, in fact XY may be arbitrarily better than G-allocation (for an example, see [18]).

5

5 XY-Adaptive Allocation Strategy

Input: decision space X ∈R
d; parameter α; confidence δ

Set j=1; �Xj =X ; �Y1=Y; ρ0=1; n0=d(d+ 1) + 1

while | �Xj | > 1 do
ρj = ρj−1

t = 1;A0 = I
while ρj/t ≥ αρj−1(xj−1

nj−1
)/nj−1 do

Select arm xt = argmin
x∈X

max
y∈Y

y⊤(A+ xx⊤)−1y

Update At = At−1 + xtx
⊤
t , t = t+ 1

ρj = max
y∈ �Yj

y⊤A−1

t y

end while
Compute b =

�t

s=1
xsrs; θ̂j = A−1

t b
�Xj+1 = X

for x ∈ X do
if ∃x′ : ||x− x′||

A
−1

t

�
logn(K

2/δ) ≤ �Δj(x
′, x) then

�Xj+1 = �Xj+1 − {x}
end if

end for
�Yj+1 = {y = (x− x′);x, x′ ∈ �Xj+1}

end while
Return Π(θ̂j)

Figure 3: XY-Adaptive allocation algorithm

Fully adaptive allocation strategies.
Although both G- and XY-allocation are
sound since they minimize upper-bounds
on the quantities used by the stopping
condition (Eq. 11), they may be very sub-
optimal w.r.t. the ideal performance of
the oracle introduced in Sec. 3. Typi-
cally, an improvement can be obtained by
moving to strategies adapting on the re-
wards observed over time. Nonetheless,
as reported in Prop. 2, whenever xn is
not a fixed sequence, the bound in Eq. 2
should be used. As a result, a factor

√
d

would appear in the definition of the con-
fidence sets and in the stopping condi-
tion. This directly implies that the sample
complexity of a fully adaptive strategy
would scale linearly with the dimension-
ality d of the problem, thus removing any
advantage w.r.t. static allocations. In fact,
the sample complexity of G- and XY-
allocation already scales linearly with d
and from Lem. 2 we cannot expect to im-
prove the dependency on Δmin. Thus, on the one hand, we need to use the tighter bounds in Eq. 1
and, on the other hand, we require to be adaptive w.r.t. samples. In the sequel we propose a phased
algorithm which successfully meets both requirements using a static allocation within each phase
but choosing the type of allocation depending on the samples observed in previous phases.

Algorithm. The ideal case would be to define an empirical version of the oracle allocation in Eq. 5
so as to adjust the accuracy of the prediction only on the directions of interest Y∗ and according to
their gaps Δ(y). As discussed in Sect. 4 this cannot be obtained by a direct adaptation of Eq. 11. In
the following, we describe a safe alternative to adjust the allocation strategy to the gaps.

Lemma 4. Let xn be a fixed allocation sequence and θ̂n its corresponding estimate for θ∗. If an
arm x ∈ X is such that

∃x′ ∈ X s.t. c||x′ − x||A−1

xn

�
logn(K

2/δ) < �Δn(x
′, x), (16)

then arm x is sub-optimal. Moreover, if Eq. 16 is true, we say that x′ dominates x.

Lem. 4 allows to easily construct the set of potentially optimal arms, denoted �X (xn), by removing
from X all the dominated arms. As a result, we can replace the stopping condition in Eq. 11, by
just testing whether the number of non-dominated arms | �X (xn)| is equal to 1, which corresponds to
the case where the confidence set is fully contained into a single cone. Using �X (xn), we construct
�Y(xn) = {y = x−x′;x, x′ ∈ �X (xn)}, the set of directions along which the estimation of θ∗ needs
to be improved to further shrink �S(xn) into a single cone and trigger the stopping condition. Note
that if xn was an adaptive strategy, then we could not use Lem. 4 to discard arms but we should rely
on the bound in Prop. 2. To avoid this problem, an effective solution is to run the algorithm through
phases. Let j ∈ N be the index of a phase and nj its corresponding length. We denote by �Xj the set
of non-dominated arms constructed on the basis of the samples collected in the phase j − 1. This
set is used to identify the directions �Yj and to define a static allocation which focuses on reducing
the uncertainty of θ∗ along the directions in �Yj . Formally, in phase j we implement the allocation

x
j
nj

= argmin
xnj

max
y∈�Yj

||y||A−1

xnj

, (17)

which coincides with a XY-allocation (see Eq. 14) but restricted on �Yj . Notice that xj
nj
may still

use any arm in X which could be useful in reducing the confidence set along any of the directions in

6

�Yj . Once phase j is over, the OLS estimate θ̂j is computed using the rewards observed within phase
j and then is used to test the stopping condition in Eq. 11. Whenever the stopping condition does
not hold, a new set �Xj+1 is constructed using the discarding condition in Lem. 4 and a new phase is
started. Notice that through this process, at each phase j, the allocation xj

nj
is static conditioned on

the previous allocations and the use of the bound from Prop. 1 is still correct.

A crucial aspect of this algorithm is the length of the phases nj . On the one hand, short phases allow
a high rate of adaptivity, since �Xj is recomputed very often. On the other hand, if a phase is too
short, it is very unlikely that the estimate θ̂j may be accurate enough to actually discard any arm.
An effective way to define the length of a phase in a deterministic way is to relate it to the actual
uncertainty of the allocation in estimating the value of all the active directions in �Yj . In phase j, let
ρj(λ) = maxy∈�Yj

||y||2
Λ−1

λ

, then given a parameter α ∈ (0, 1), we define

nj = min
�
n ∈ N : ρj(λ

x
j
n
)/n ≤ αρj−1(λj−1)/nj−1

�
, (18)

where xj
n is the allocation defined in Eq. 17 and λ

j−1 is the design corresponding to x
j−1
nj−1

, the
allocation performed at phase j − 1. In words, nj is the minimum number of steps needed by
the XY-adaptive allocation to achieve an uncertainty over all the directions of interest which is a
fraction α of the performance obtained in the previous iteration. Notice that given �Yj and ρj−1 this
quantity can be computed before the actual beginning of phase j. The resulting algorithm using the
XY-Adaptive allocation strategy is summarized in Fig. 3.
Sample complexity. Although the XY-Adaptive allocation strategy is designed to approach the
oracle sample complexity N∗, in early phases it basically implements a XY-allocation and no sig-
nificant improvement can be expected until some directions are discarded from �Y . At that point,
XY-adaptive starts focusing on directions which only contain near-optimal arms and it starts ap-
proaching the behavior of the oracle. As a result, in studying the sample complexity ofXY-Adaptive
we have to take into consideration the unavoidable price of discarding “suboptimal” directions. This
cost is directly related to the geometry of the arm space that influences the number of samples needed
before arms can be discarded from X . To take into account this problem-dependent quantity, we in-
troduce a slightly relaxed definition of complexity. More precisely, we define the number of steps
needed to discard all the directions which do not contain x∗, i.e. Y − Y∗. From a geometrical point
of view, this corresponds to the case when for any pair of suboptimal arms (x, x′), the confidence set
S∗(xn) does not intersect the hyperplane separating the cones C(x) and C(x′). Fig. 1 offers a simple
illustration for such a situation: S∗ no longer intercepts the border line between C(x2) and C(x3),
which implies that direction x2 − x3 can be discarded. More formally, the hyperplane containing
parameters θ for which x and x′ are equivalent is simply C(x) ∩ C(x′) and the quantity

M∗ = min{n ∈ N,∀x = x∗, ∀x′ = x∗,S∗(xXY
n) ∩ (C(x) ∩ C(x′)) = ∅} (19)

corresponds to the minimum number of steps needed by the static XY-allocation strategy to discard
all the suboptimal directions. This term together with the oracle complexity N∗ characterizes the
sample complexity of the phases of the XY-adaptive allocation. In fact, the length of the phases is
such that either they correspond to the complexity of the oracle or they can never last more than the
steps needed to discard all the sub-optimal directions. As a result, the overall sample complexity of
the XY-adaptive algorithm is bounded as in the following theorem.
Theorem 3. If the XY-Adaptive allocation strategy is implemented with a β-approximate method
and the stopping condition in Eq. 11 is used, then

P

�
N ≤ (1 + β)max{M∗, 16α N

∗}
log(1/α)

log
�c

�
logn(K

2/δ)

Δmin

�
∧Π(θ̂N) = x∗

�
≥ 1− δ. (20)

We first remark that, unlike G and XY , the sample complexity of XY-Adaptive does not have any
direct dependency on d andΔmin (except in the logarithmic term) but it rather scales with the oracle
complexity N∗ and the cost of discarding suboptimal directionsM∗. Although this additional cost
is probably unavoidable, one may have expected that XY-Adaptive may need to discard all the
suboptimal directions before performing as well as the oracle, thus having a sample complexity of
O(M∗+N∗). Instead, we notice thatN scales with themaximum ofM∗ andN∗, thus implying that
XY-Adaptive may actually catch up with the performance of the oracle (with only a multiplicative
factor of 16/α) whenever discarding suboptimal directions is less expensive than actually identifying
the best arm.

7

6 Numerical Simulations
We illustrate the performance ofXY-Adaptive and compare it to theXY-Oracle strategy (Eq. 5), the
static allocations XY and G, as well as with the fully-adaptive version of XY where �X is updated
at each round and the bound from Prop.2 is used. For a fixed confidence δ = 0.05, we compare the
sampling budget needed to identify the best arm with probability at least 1 − δ. We consider a set
of arms X ∈ R

d, with |X | = d+ 1 including the canonical basis (e1, . . . , ed) and an additional arm
xd+1 = [cos(ω) sin(ω) 0 . . . 0]⊤. We choose θ∗ = [2 0 0 . . . 0]⊤, and fix ω = 0.01, so that
Δmin = (x1 − xd+1)⊤θ∗ is much smaller than the other gaps. In this setting, an efficient sampling
strategy should focus on reducing the uncertainty in the direction ỹ = (x1 − xd+1) by pulling the
arm x2 = e2 which is almost aligned with ỹ. In fact, from the rewards obtained from x2 it is easier
to decrease the uncertainty about the second component of θ∗, that is precisely the dimension which
allows to discriminate between x1 and xd+1. Also, we fix α = 1/10, and the noise ε ∼ N (0, 1).
Each phase begins with an initialization matrix A0, obtained by pulling once each canonical arm. In
Fig. 4 we report the sampling budget of the algorithms, averaged over 100 runs, for d = 2 . . . 10.

d=2 d=3 d=4 d=5 d=6 d=7 d=8 d=9 d=10
0

0.5

1

1.5

2

2.5

3

3.5
x 105

Dimension of the input space

N
um

be
r o

f S
am

pl
es

Fully adaptive
G
XY
XY−Adaptive
XY−Oracle

Figure 4: The sampling budget needed to identify
the best arm, when the dimension grows from R

2

to R10.

The results. The numerical results show that XY-
Adaptive is effective in allocating the samples to
shrink the uncertainty in the direction ỹ. Indeed,
XY-adaptive identifies the most important direction
after few phases and is able to perform an allocation
which mimics that of the oracle. On the contrary,
XY and G do not adjust to the empirical gaps and
consider all directions as equally important. This
behavior forces XY and G to allocate samples until
the uncertainty is smaller thanΔmin in all directions.
Even though the Fully-adaptive algorithm also iden-
tifies the most informative direction rapidly, the

√
d

term in the bound delays the discarding of the arms
and prevents the algorithm from gaining any advan-
tage compared to XY and G. As shown in Fig. 4,
the difference between the budget of XY-Adaptive and the static strategies increases with the num-
ber of dimensions. In fact, while additional dimensions have little to no impact on XY-Oracle and
XY-Adaptive (the only important direction remains ỹ independently from the number of unknown
features of θ∗), for the static allocations more dimensions imply more directions to be considered
and more features of θ∗ to be estimated uniformly well until the uncertainty falls below Δmin.

7 Conclusions
In this paper we studied the problem of best-arm identification with a fixed confidence, in the linear
bandit setting. First we offered a preliminary characterization of the problem-dependent complexity
of the best arm identification task and shown its connection with the complexity in the MAB setting.
Then, we designed and analyzed efficient sampling strategies for this problem. The G-allocation
strategy allowed us to point out a close connection with optimal experimental design techniques, and
in particular to the G-optimality criterion. Through the second proposed strategy, XY-allocation,
we introduced a novel optimal design problem where the testing arms do not coincide with the arms
chosen in the design. Lastly, we pointed out the limits that a fully-adaptive allocation strategy might
have in the linear bandit setting and proposed a phased-algorithm, XY-Adaptive, that learns from
previous observations, without suffering from the dimensionality of the problem. Since this is one of
the first works that analyze pure-exploration problems in the linear-bandit setting, it opens the way
for an important number of similar problems already studied in the MAB setting. For instance, we
can investigate strategies to identify the best-linear arm when having a limited budget or study the
best-arm identification when the set of arms is very large (or infinite). Some interesting extensions
also emerge from the optimal experimental design literature, such as the study of sampling strategies
for meeting the G-optimality criterion when the noise is heterosckedastic, or the design of efficient
strategies for satisfying other related optimality criteria, such as V-optimality.

Acknowledgments This work was supported by the French Ministry of Higher Education and Re-
search, Nord-Pas de Calais Regional Council and FEDER through the “Contrat de Projets Etat Re-
gion 2007–2013", and European Community’s Seventh Framework Programme under grant agree-
ment no 270327 (project CompLACS).

8

References
[1] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear

stochastic bandits. In Proceedings of the 25th Annual Conference on Neural Information Pro-
cessing Systems (NIPS), 2011.

[2] Jean-Yves Audibert, Sébastien Bubeck, and Rémi Munos. Best arm identification in multi-
armed bandits. In Proceedings of the 23rd Conference on Learning Theory (COLT), 2010.

[3] Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Ma-
chine Learning Research, 3:397–422, 2002.

[4] Mustapha Bouhtou, Stephane Gaubert, and Guillaume Sagnol. Submodularity and randomized
rounding techniques for optimal experimental design. Electronic Notes in Discrete Mathemat-
ics, 36:679–686, 2010.

[5] Sébastien Bubeck, Rémi Munos, and Gilles Stoltz. Pure exploration in multi-armed bandits
problems. In Proceedings of the 20th International Conference on Algorithmic Learning The-
ory (ALT), 2009.

[6] Sébastien Bubeck, Tengyao Wang, and Nitin Viswanathan. Multiple identifications in multi-
armed bandits. In Proceedings of the International Conference in Machine Learning (ICML),
pages 258–265, 2013.

[7] Eyal Even-Dar, Shie Mannor, and YishayMansour. Action elimination and stopping conditions
for the multi-armed bandit and reinforcement learning problems. J. Mach. Learn. Res., 7:1079–
1105, December 2006.

[8] Victor Gabillon, Mohammad Ghavamzadeh, and Alessandro Lazaric. Best arm identification:
A unified approach to fixed budget and fixed confidence. In Proceedings of the 26th Annual
Conference on Neural Information Processing Systems (NIPS), 2012.

[9] Victor Gabillon, Mohammad Ghavamzadeh, Alessandro Lazaric, and Sébastien Bubeck.
Multi-bandit best arm identification. In Proceedings of the 25th Annual Conference on Neural
Information Processing Systems (NIPS), pages 2222–2230, 2011.

[10] Matthew D. Hoffman, Bobak Shahriari, and Nando de Freitas. On correlation and budget
constraints in model-based bandit optimization with application to automatic machine learning.
In Proceedings of the 17th International Conference on Artificial Intelligence and Statistics
(AISTATS), pages 365–374, 2014.

[11] Kevin G. Jamieson, Matthew Malloy, Robert Nowak, and Sébastien Bubeck. lil’ UCB : An
optimal exploration algorithm for multi-armed bandits. In Proceeding of the 27th Conference
on Learning Theory (COLT), 2014.

[12] Emilie Kaufmann and Shivaram Kalyanakrishnan. Information complexity in bandit subset
selection. In Proceedings of the 26th Conference on Learning Theory (COLT), pages 228–251,
2013.

[13] Jack Kiefer and Jacob Wolfowitz. The equivalence of two extremum problems. Canadian
Journal of Mathematics, 12:363–366, 1960.

[14] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. A contextual-bandit approach to
personalized news article recommendation. In Proceedings of the 19th International Confer-
ence on World Wide Web (WWW), pages 661–670, 2010.

[15] Friedrich Pukelsheim. Optimal Design of Experiments. Classics in Applied Mathematics.
Society for Industrial and Applied Mathematics, 2006.

[16] Herbert Robbins. Some aspects of the sequential design of experiments. Bulletin of the Amer-
ican Mathematical Society, pages 527–535, 1952.

[17] Guillaume Sagnol. Approximation of a maximum-submodular-coverage problem involving
spectral functions, with application to experimental designs. Discrete Appl. Math., 161(1-
2):258–276, January 2013.

[18] Marta Soare, Alessandro Lazaric, and Rémi Munos. Best-Arm Identification in Linear Bandits.
Technical report, http://arxiv.org/abs/1409.6110.

[19] Kai Yu, Jinbo Bi, and Volker Tresp. Active learning via transductive experimental design. In
Proceedings of the 23rd International Conference on Machine Learning (ICML), pages 1081–
1088, 2006.

9

