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Abstract

We describe a seriation algorithm for ranking a set of n items given pairwise
comparisons between these items. Intuitively, the algorithm assigns similar rank-
ings to items that compare similarly with all others. It does so by constructing a
similarity matrix from pairwise comparisons, using seriation methods to reorder
this matrix and construct a ranking. We first show that this spectral seriation al-
gorithm recovers the true ranking when all pairwise comparisons are observed
and consistent with a total order. We then show that ranking reconstruction is
still exact even when some pairwise comparisons are corrupted or missing, and
that seriation based spectral ranking is more robust to noise than other scoring
methods. An additional benefit of the seriation formulation is that it allows us to
solve semi-supervised ranking problems. Experiments on both synthetic and real
datasets demonstrate that seriation based spectral ranking achieves competitive
and in some cases superior performance compared to classical ranking methods.

1 Introduction

We study the problem of ranking a set of n items given pairwise comparisons between these items.
In practice, the information about pairwise comparisons is usually incomplete, especially in the case
of a large set of items, and the data may also be noisy, that is some pairwise comparisons could be
incorrectly measured and incompatible with the existence of a total ordering.

Ranking is a classic problem but its formulations vary widely. For example, website ranking methods
such as PageRank [Page et al., 1998] and HITS [Kleinberg, 1999] seek to rank web pages based on
the hyperlink structure of the web, where links do not necessarily express consistent preference
relationships (e.g. a can link to b and b can link c, and c can link to a). The setting we study here
goes back at least to [Kendall and Smith, 1940] and seeks to reconstruct a ranking between items
from pairwise comparisons reflecting a total ordering.

In this case, the directed graph of all pairwise comparisons, where every pair of vertices is connected
by exactly one of two possible directed edges, is usually called a tournament graph in the theoretical
computer science literature or a “round robin” in sports, where every player plays every other player
once and each preference marks victory or defeat. The motivation for this formulation often stems
from the fact that in many applications, e.g. music, images, and movies, preferences are easier to
express in relative terms (e.g. a is better than b) rather than absolute ones (e.g. a should be ranked
fourth, and b seventh).
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Assumptions about how the pairwise preference information is obtained also vary widely. A subset
of preferences is measured adaptively in [Ailon, 2011; Jamieson and Nowak, 2011], while [Negah-
ban et al., 2012], for example, assume that preferences are observed iteratively, and [Freund et al.,
2003] extract them at random. In other settings, the full preference matrix is observed, but is per-
turbed by noise: in e.g. [Bradley and Terry, 1952; Luce, 1959; Herbrich et al., 2006], a parametric
model is assumed over the set of permutations, which reformulates ranking as a maximum likelihood
problem.

Loss function and algorithmic approaches vary as well. Kenyon-Mathieu and Schudy [2007], for
example, derive a PTAS for the minimum feedback arc set problem on tournaments, i.e. the problem
of finding a ranking that minimizes the number of upsets (a pair of players where the player ranked
lower on the ranking beats the player ranked higher). In practice, the complexity of this method is
relatively high, and other authors [see e.g. Keener, 1993; Negahban et al., 2012] have been using
spectral methods to produce more efficient algorithms (each pairwise comparison is understood as a
link pointing to the preferred item). Simple scoring methods such as the point difference rule [Huber,
1963; Wauthier et al., 2013] produce efficient estimates at very low computational cost. Ranking
has also been approached as a prediction problem, i.e. learning to rank [Schapire and Singer, 1998],
with [Joachims, 2002] for example using support vector machines to learn a score function. Finally,
in the Bradley-Terry-Luce framework, the maximum likelihood problem is usually solved using
fixed point algorithms or EM-like majorization-minimization techniques [Hunter, 2004] for which
no precise computational complexity bounds are known.

Here, we show that the ranking problem is directly related to another classical ordering problem,
namely seriation: we are given a similarity matrix between a set of n items and assume that the items
can be ordered along a chain such that the similarity between items decreases with their distance
within this chain (i.e. a total order exists). The seriation problem then seeks to reconstruct the
underlying linear ordering based on unsorted, possibly noisy, pairwise similarity information. Atkins
et al. [1998] produced a spectral algorithm that exactly solves the seriation problem in the noiseless
case, by showing that for similarity matrices computed from serial variables, the ordering of the
second eigenvector of the Laplacian matrix (a.k.a. the Fiedler vector) matches that of the variables.
In practice, this means that spectral clustering exactly reconstructs the correct ordering provided
items are organized in a chain. Here, adapting these results to ranking produces a very efficient
polynomial-time ranking algorithm with provable recovery and robustness guarantees. Furthermore,
the seriation formulation allows us to handle semi-supervised ranking problems. Fogel et al. [2013]
show that seriation is equivalent to the 2-SUM problem and study convex relaxations to seriation
in a semi-supervised setting, where additional structural constraints are imposed on the solution.
Several authors [Blum et al., 2000; Feige and Lee, 2007] have also focused on the directly related
Minimum Linear Arrangement (MLA) problem, for which excellent approximation guarantees exist
in the noisy case, albeit with very high polynomial complexity.

The main contributions of this paper can be summarized as follows. We link seriation and ranking by
showing how to construct a consistent similarity matrix based on consistent pairwise comparisons.
We then recover the true ranking by applying the spectral seriation algorithm in [Atkins et al., 1998]
to this similarity matrix (we call this method SerialRank in what follows). In the noisy case, we
then show that spectral seriation can perfectly recover the true ranking even when some of the
pairwise comparisons are either corrupted or missing, provided that the pattern of errors is relatively
unstructured. We show in particular that, in a regime where a high proportion of comparions are
observed, some incorrectly, the spectral solution is more robust to noise than classical scoring based
methods. Finally, we use the seriation results in [Fogel et al., 2013] to produce semi-supervised
ranking solutions.

The paper is organized as follows. In Section 2 we recall definitions related to seriation, and link
ranking and seriation by showing how to construct well ordered similarity matrices from well ranked
items. In Section 3 we apply the spectral algorithm of [Atkins et al., 1998] to reorder these similarity
matrices and reconstruct the true ranking in the noiseless case. In Section 4 we then show that this
spectral solution remains exact in a noisy regime where a random subset of comparisons is corrupted.
Finally, in Section 5 we illustrate our results on both synthetic and real datasets, and compare ranking
performance with classical maximum likelihood, spectral and scoring based approaches. Auxiliary
technical results are detailed in Appendix A.
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2 Seriation, Similarities & Ranking

In this section we first introduce the seriation problem, i.e. reordering items based on pairwise
similarities. We then show how to write the problem of ranking given pairwise comparisons as a
seriation problem.

2.1 The Seriation Problem

The seriation problem seeks to reorder n items given a similarity matrix between these items, such
that the more similar two items are, the closer they should be. This is equivalent to supposing that
items can be placed on a chain where the similarity between two items decreases with the distance
between these items in the chain. We formalize this below, following [Atkins et al., 1998].

Definition 2.1 We say that the matrix A 2 S
n

is an R-matrix (or Robinson matrix) if and only if it

is symmetric and A
i,j

 A
i,j+1

and A
i+1,j

 A
i,j

in the lower triangle, where 1  j < i  n.

Another way to formulate R-matrix conditions is to impose A
ij

 A
kl

if |i � j|  |k � l| off-
diagonal, i.e. the coefficients of A decrease as we move away from the diagonal. We also introduce
a definition for strict R-matrices A, whose rows/columns cannot be permuted without breaking the
R-matrix monotonicity conditions. We call reverse identity permutation the permutation that puts
rows and columns {1, . . . , n} of a matrix A in reverse order {n, n� 1, . . . , 1}.

Definition 2.2 An R-matrix A 2 S
n

is called strict-R if and only if the identity and reverse identity

permutations of A are the only permutations producing R-matrices.

Any R-matrix with only strict R-constraints is a strict R-matrix. Following [Atkins et al., 1998], we
will say that A is pre-R if there is a permutation matrix ⇧ such that ⇧A⇧

T is a R-matrix. Given
a pre-R matrix A, the seriation problem consists in finding a permutation ⇧ such that ⇧A⇧

T is a
R-matrix. Note that there might be several solutions to this problem. In particular, if a permutation
⇧ is a solution, then the reverse permutation is also a solution. When only two permutations of A
produce R-matrices, A will be called pre-strict-R.

2.2 Constructing Similarity Matrices from Pairwise Comparisons

Given an ordered input pairwise comparison matrix, we now show how to construct a similarity
matrix which is strict-R when all comparisons are given and consistent with the identity ranking
(i.e. items are ranked in the increasing order of indices). This means that the similarity between
two items decreases with the distance between their ranks. We will then be able to use the spectral
seriation algorithm by [Atkins et al., 1998] described in Section 3 to recover the true ranking from a
disordered similarity matrix.

We first explain how to compute a pairwise similarity from binary comparisons between items by
counting the number of matching comparisons. Another formulation allows to handle the general-
ized linear model.

2.2.1 Similarities from Pairwise Comparisons

Suppose we are given a matrix of pairwise comparisons C 2 {�1, 0, 1}n⇥n such that C
i,j

+C
j,i

= 0

for every i 6= j and

C
i,j

=

(
1 if i is ranked higher than j
0 if i and j are not compared or in a draw
�1 if j is ranked higher than i

(1)

and, by convention, we define C
i,i

= 1 for all i 2 {1, . . . , n} (C
i,i

values have no effect in the
ranking method presented in algorithm SerialRank). We also define the pairwise similarity matrix
Smatch as

Smatch

i,j

=

nX

k=1

✓
1 + C

i,k

C
j,k

2

◆
. (2)
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Since C
i,k

C
j,k

= 1 if C
i,k

and C
j,k

have same signs, and C
i,k

C
j,k

= �1 if they have opposite
signs, Smatch

i,j

counts the number of matching comparisons between i and j with other reference
items k. If i or j is not compared with k, then C

i,k

C
j,k

= 0 and the term (1 + C
i,k

C
j,k

)/2 has an
average effect on the similarity of 1/2. The intuition behind this construction is easy to understand
in a tournament setting: players that beat the same players and are beaten by the same players should
have a similar ranking. We can write Smatch in the following equivalent form

Smatch

=

1

2

�
n11T

+ CCT

�
. (3)

Without loss of generality, we assume in the following propositions that items are ranked in in-
creasing order of their indices (identity ranking). In the general case, we simply replace the strict-R

property by the pre-strict-R property.

The next result shows that when all comparisons are given and consistent with the identity ranking,
then the similarity matrix Smatch is a strict R-matrix.

Proposition 2.3 Given all pairwise comparisons C
i,j

2 {�1, 0, 1} between items ranked according

to the identity permutation (with no ties), the similarity matrix Smatch

constructed as given in (2) is

a strict R-matrix and

Smatch

ij

= n� (max{i, j}�min{i, j}) (4)
for all i, j = 1, . . . , n.

2.2.2 Similarities in the Generalized Linear Model

Suppose that paired comparisons are generated according to a generalized linear model (GLM),
i.e. we assume that the outcomes of paired comparisons are independent and for any pair of distinct
items, item i is observed to be preferred over item j with probability

P
i,j

= H(⌫
i

� ⌫
j

) (5)
where ⌫ 2 Rn is a vector of strengths or skills parameters and H : R ! [0, 1] is a function that
is increasing on R and such that H(�x) = 1 � H(x) for all x 2 R, and lim

x!�1 H(x) = 0

and lim

x!1 H(x) = 1. A well known special instance of the generalized linear model is the
Bradley-Terry-Luce model for which H(x) = 1/(1 + e�x

), for x 2 R.

Let m
i,j

be the number of times items i and j were compared, Cs

i,j

2 {�1, 1} be the outcome of
comparison s and Q be the matrix of corresponding empirical probabilities, i.e. if m

i,j

> 0 we have

Q
i,j

=

1

m
i,j

mi,jX

s=1

Cs

i,j

+ 1

2

and Q
i,j

= 1/2 in case m
i,j

= 0. We then define the similarity matrix Sglm from the observations
Q as

Sglm

i,j

=

nX

k=1

{mi,kmj,k>0}

✓
1�

|Q
i,k

�Q
j,k

|

2

◆
+

{mi,kmj,k=0}

2

. (6)

Since the comparisons are independent we have that Q
i,j

converges to P
i,j

as m
i,j

goes to infinity
and

Sglm

i,j

!

nX

k=1

✓
1�

|P
i,k

� P
j,k

|

2

◆
.

The result below shows that this limit similarity matrix is a strict R-matrix when the variables are
properly ordered.

Proposition 2.4 If the items are ordered according to the order in decreasing values of the skill

parameters, in the limit of large number of observations, the similarity matrix Sglm

is a strict R

matrix.

Notice that we recover the original definition of Smatch in the case of binary probabilities, though
it does not fit in the Generalized Linear Model. Note also that these definitions can be directly
extended to the setting where multiple comparisons are available for each pair and aggregated in
comparisons that take fractional values (e.g. in a tournament setting where participants play several
times against each other).
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Algorithm 1 Using Seriation for Spectral Ranking (SerialRank)
Input: A set of pairwise comparisons C

i,j

2 {�1, 0, 1} or [�1, 1].
1: Compute a similarity matrix S as in §2.2
2: Compute the Laplacian matrix

L
S

= diag(S1)� S (SerialRank)

3: Compute the Fiedler vector of S.
Output: A ranking induced by sorting the Fiedler vector of S (choose either increasing or decreas-

ing order to minimize the number of upsets).

3 Spectral Algorithms

We first recall how the spectral clustering approach can be used to recover the true ordering in seri-
ation problems by computing an eigenvector, with computational complexity O(n2

log n) [Kuczyn-
ski and Wozniakowski, 1992]. We then apply this method to the ranking problem.

3.1 Spectral Seriation Algorithm

We use the spectral computation method originally introduced in [Atkins et al., 1998] to solve the
seriation problem based on the similarity matrices defined in the previous section. We first recall the
definition of the Fiedler vector.

Definition 3.1 The Fiedler value of a symmetric, nonnegative and irreducible matrix A is the small-

est non-zero eigenvalue of its Laplacian matrix L
A

= diag(A1)�A. The corresponding eigenvec-

tor is called Fiedler vector and is the optimal solution to min{yTL
A

y : y 2 Rn, yT1 = 0, kyk
2

=

1}.

The main result from [Atkins et al., 1998], detailed below, shows how to reorder pre-R matrices in a
noise free case.

Proposition 3.2 [Atkins et al., 1998, Th. 3.3] Let A 2 S
n

be an irreducible pre-R-matrix with a

simple Fiedler value and a Fiedler vector v with no repeated values. Let ⇧

1

2 P (respectively, ⇧

2

)

be the permutation such that the permuted Fiedler vector ⇧

1

v is strictly increasing (decreasing).

Then ⇧

1

A⇧

T

1

and ⇧

2

A⇧

T

2

are R-matrices, and no other permutations of A produce R-matrices.

3.2 SerialRank: a Spectral Ranking Algorithm

In Section 2, we showed that similarities Smatch and Sglm are pre-strict-R when all comparisons
are available and consistent with an underlying ranking of items. We now use the spectral seriation
method in [Atkins et al., 1998] to reorder these matrices and produce an output ranking. We call this
algorithm SerialRank and prove the following result.

Proposition 3.3 Given all pairwise comparisons for a set of totally ordered items and assuming

there are no ties between items, performing algorithm SerialRank, i.e. sorting the Fiedler vector of

the matrix Smatch

defined in (3) recovers the true ranking of items.

Similar results apply for Sglm when we are given enough comparisons in the Generalized Linear
Model. This last result guarantees recovery of the true ranking of items in the noiseless case. In the
next section, we will study the impact of corrupted or missing comparisons on the inferred ranking
of items.

3.3 Hierarchical Ranking

In a large dataset, the goal may be to rank only a subset of top rank items. In this case, we can
first perform spectral ranking (cheap) and then refine the ranking of the top set of items using either
the SerialRank algorithm on the top comparison submatrix, or another seriation algorithm such as
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the convex relaxation in [Fogel et al., 2013]. This last method would also allow us to solve semi-
supervised ranking problems, given additional information on the structure of the solution.

4 Robustness to Corrupted and Missing Comparisons

In this section we study the robustness of SerialRank using Smatch with respect to noisy and missing
pairwise comparisons. We will see that noisy comparisons cause ranking ambiguities for the stan-
dard point score method and that such ambiguities can be lifted by the spectral ranking algorithm.
We show in particular that the SerialRank algorithm recovers the exact ranking when the pattern of
errors is random and errors are not too numerous.

We define here the point score w
i

of an item i, also known as point-difference, or row-sum, as w
i

=P
n

k=1

C
k,i

which corresponds to the number of wins minus the number of losses in a tournament
setting.

Proposition 4.1 Given all pairwise comparisons C
s,t

2 {�1, 1} between items ranked according

to their indices, suppose the signs of m comparisons indexed (i
1

, j
1

), . . . , (i
m

, j
m

) are switched.

1. For the case of one corrupted comparison, if j
1

� i
1

> 2 then the spectral ranking recovers

the true ranking whereas the standard point score method induces ties between the pairs of

items (i
1

, i
1

+ 1) and (j
1

� 1, j
1

).

2. For the general case of m � 1 corrupted comparisons, suppose that the following condition

holds true

|i� j| > 2, for all i, j 2 {i
1

, . . . , i
m

, j
1

, . . . , j
m

} such that i 6= j, (7)

then, Smatch

is a strict R-matrix, and thus the spectral ranking recovers the true ranking

whereas the standard point score method induces ties between 2m pairs of items.

For the case of one corrupted comparison, note that the separation condition on the pair of items
(i, j) is necessary. When the comparison C

i,j

between two adjacent items according to the true
ranking is corrupted, no ranking method can break the resulting tie. For the case of arbitrary number
of corrupted comparisons, condition (7) is a sufficient condition only.

Using similar arguments, we can also study conditions for recovering the true ranking in the case
with missing comparisons. These scenarios are actually slightly less restrictive than the noisy cases
and are covered in the supplementary material. We now estimate the number of randomly corrupted
entries that can be tolerated for perfect recovery of the true ranking.

Proposition 4.2 Given a comparison matrix for a set of n items with m corrupted comparisons se-

lected uniformly at random from the set of all possible item pairs. Algorithm SerialRank guarantees

that the probability of recovery p(n,m) satisfies p(n,m) � 1 � �, provided that m = O(

p

�n). In

particular, this implies that p(n,m) = 1� o(1) provided that m = o(
p

n).

Shift by +1 

Shift by -1 

i i+1 jj-1

i
i+1

j
j-1

Strict R-constraints 

Figure 1: The matrix of pairwise comparisons C (far left) when the rows are ordered according to
the true ranking. The corresponding similarity matrix Smatch is a strict R-matrix (center left). The
same Smatch similarity matrix with comparison (3,8) corrupted (center right). With one corrupted
comparison, Smatch keeps enough strict R-constraints to recover the right permutation. In the noise-
less case, the difference between all coefficients is at least one and after introducing an error, the
coefficients inside the green rectangles still enforce strict R-constraints (far right).
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5 Numerical Experiments

We conducted numerical experiments using both synthetic and real datasets to compare the perfor-
mance of SerialRank with several classical ranking methods.

Synthetic Datasets The first synthetic dataset consists of a binary matrix of pairwise comparisons
derived from a given ranking of n items with uniform, randomly distributed corrupted or missing
entries. A second synthetic dataset consists of a full matrix of pairwise comparisons derived from
a given ranking of n items, with added uncertainty for items which are sufficiently close in the
true ranking of items. Specifically, given a positive integer m, we let C

i,j

= 1 if i < j � m,
C

i,j

⇠ Unif[�1, 1] if |i�j|  m, and C
i,j

= �1 if i > j+m. In Figure 2, we measure the Kendall ⌧
correlation coefficient between the true ranking and the retrieved ranking, when varying either the
percentage of corrupted comparisons or the percentage of missing comparisons. Kendall’s ⌧ counts
the number of agreeing pairs minus the number of disagreeing pairs between two rankings, scaled
by the total number of pairs, so that it takes values between -1 and 1. Experiments were performed
with n = 100 and reported Kendall ⌧ values were averaged over 50 experiments, with standard
deviation less than 0.02 for points of interest (i.e. here with Kendall ⌧ > 0.8).
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Figure 2: Kendall ⌧ (higher is better) for SerialRank (SR, full red line), row-sum (PS, [Wauthier
et al., 2013] dashed blue line), rank centrality (RC [Negahban et al., 2012] dashed green line), and
maximum likelihood (BTL [Bradley and Terry, 1952], dashed magenta line). In the first synthetic
dataset, we vary the proportion of corrupted comparisons (top left), the proportion of observed com-
parisons (top right) and the proportion of observed comparisons, with 20% of comparisons being
corrupted (bottom left). We also vary the parameter m in the second synthetic dataset (bottom right).

Real Datasets The first real dataset consists of pairwise comparisons derived from outcomes in
the TopCoder algorithm competitions. We collected data from 103 competitions among 2742 coders
over a period of about one year. Pairwise comparisons are extracted from the ranking of each com-
petition and then averaged for each pair. TopCoder maintains ratings for each participant, updated
in an online scheme after each competition, which were also included in the benchmarks. To mea-
sure performance in Figure 3, we compute the percentage of upsets (i.e. comparisons disagreeing
with the computed ranking), which is closely related to the Kendall ⌧ (by an affine transformation if
comparisons were coming from a consistent ranking). We refine this metric by considering only the
participants appearing in the top k, for various values of k, i.e. computing

l
k

=

1

|C

k

|

X

i,j2Ck

{r(i)>r(j)} {Ci,j<0}, (8)
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where C are the pairs (i, j) that are compared and such that i, j are both ranked in the top k, and r(i)
is the rank of i. Up to scaling, this is the loss considered in [Kenyon-Mathieu and Schudy, 2007].
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Figure 3: Percentage of upsets (i.e. disagreeing comparisons, lower is better) defined in (8), for
various values of k and ranking methods, on TopCoder (left) and football data (right).

Semi-Supervised Ranking We illustrate here how, in a semi-supervised setting, one can interac-
tively enforce some constraints on the retrieved ranking, using e.g. the semi-supervised seriation
algorithm in [Fogel et al., 2013]. We compute rankings of England Football Premier League teams
for season 2013-2014 (cf. figure 4 in Appendix for previous seasons). Comparisons are defined as
the averaged outcome (win, loss, or tie) of home and away games for each pair of teams. As shown
in Table 1, the top half of SerialRank ranking is very close to the official ranking calculated by
sorting the sum of points for each team (3 points for a win, 1 point for a tie). However, there are
significant variations in the bottom half, though the number of upsets is roughly the same as for
the official ranking. To test semi-supervised ranking, suppose for example that we are not satisfied
with the ranking of Aston Villa (last team when ranked by the spectral algorithm), we can explicitly
enforce that Aston Villa appears before Cardiff, as in the official ranking. In the ranking based on
the semi-supervised corresponding seriation problem, Aston Villa is not last anymore, though the
number of disagreeing comparisons remains just as low (cf. Figure 3, right).

Table 1: Ranking of teams in the England premier league season 2013-2014.
Official Row-sum RC BTL SerialRank Semi-Supervised
Man City (86) Man City Liverpool Man City Man City Man City
Liverpool (84) Liverpool Arsenal Liverpool Chelsea Chelsea
Chelsea (82) Chelsea Man City Chelsea Liverpool Liverpool
Arsenal (79) Arsenal Chelsea Arsenal Arsenal Everton
Everton (72) Everton Everton Everton Everton Arsenal
Tottenham (69) Tottenham Tottenham Tottenham Tottenham Tottenham
Man United (64) Man United Man United Man United Southampton Man United
Southampton (56) Southampton Southampton Southampton Man United Southampton
Stoke (50) Stoke Stoke Stoke Stoke Newcastle
Newcastle (49) Newcastle Newcastle Newcastle Swansea Stoke
Crystal Palace (45) Crystal Palace Swansea Crystal Palace Newcastle West Brom
Swansea (42) Swansea Crystal Palace Swansea West Brom Swansea
West Ham (40) West Brom West Ham West Brom Hull Crystal Palace
Aston Villa (38) West Ham Hull West Ham West Ham Hull
Sunderland (38) Aston Villa Aston Villa Aston Villa Cardiff West Ham
Hull (37) Sunderland West Brom Sunderland Crystal Palace Fulham
West Brom (36) Hull Sunderland Hull Fulham Norwich
Norwich (33) Norwich Fulham Norwich Norwich Sunderland
Fulham (32) Fulham Norwich Fulham Sunderland Aston Villa
Cardiff (30) Cardiff Cardiff Cardiff Aston Villa Cardiff

Acknowledgments FF, AA and MV would like to acknowledge support from a European Re-
search Council starting grant (project SIPA) and support from the MSR-INRIA joint centre.
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