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Abstract

In sparse principal component analysis we are given noisy observations of a low-
rank matrix of dimension n × p and seek to reconstruct it under additional spar-
sity assumptions. In particular, we assume here that the principal components
v1, . . . ,vr have at most k1, · · · , kq non-zero entries respectively, and study the
high-dimensional regime in which p is of the same order as n.
In an influential paper, Johnstone and Lu [JL04] introduced a simple algorithm
that estimates the support of the principal vectors v1, . . . ,vr by the largest entries
in the diagonal of the empirical covariance. This method can be shown to succeed
with high probability if kq ≤ C1

√
n/ log p, and to fail with high probability if

kq ≥ C2

√
n/ log p for two constants 0 < C1, C2 < ∞. Despite a considerable

amount of work over the last ten years, no practical algorithm exists with provably
better support recovery guarantees.
Here we analyze a covariance thresholding algorithm that was recently proposed
by Krauthgamer, Nadler and Vilenchik [KNV13]. We confirm empirical evidence
presented by these authors and rigorously prove that the algorithm succeeds with
high probability for k of order

√
n. Recent conditional lower bounds [BR13]

suggest that it might be impossible to do significantly better.
The key technical component of our analysis develops new bounds on the norm of
kernel random matrices, in regimes that were not considered before.

1 Introduction

In the spiked covariance model proposed by [JL04], we are given data x1,x2, . . . ,xn with xi ∈ Rp
of the form1:

xi =

r∑
q=1

√
βq uq,i vq + zi , (1)

Here v1, . . . ,vr ∈ Rp is a set of orthonormal vectors, that we want to estimate, while uq,i ∼
N(0, 1) and zi ∼ N(0, Ip) are independent and identically distributed. The quantity βq ∈ R>0

quantifies the signal-to-noise ratio. We are interested in the high-dimensional limit n, p → ∞ with
limn→∞ p/n = α ∈ (0,∞). In the rest of this introduction we will refer to the rank one case, in
order to simplify the exposition, and drop the subscript q = {1, 2, . . . , r}. Our results and proofs
hold for general bounded rank.

The standard method of principal component analysis involves computing the sample covariance
matrix G = n−1

∑n
i=1 xix

T
i and estimates v = v1 by its principal eigenvector vPC(G). It is a

well-known fact that, in the high dimensional asymptotic p/n → α > 0, this yields an inconsistent

1Throughout the paper, we follow the convention of denoting scalars by lowercase, vectors by lowercase
boldface, and matrices by uppercase boldface letters.
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estimate [JL09]. Namely ‖vPC − v‖2 6→ 0 in the high-dimensional asymptotic limit, unless α → 0
(i.e. p/n → 0). Even worse, Baik, Ben-Arous and Péché [BBAP05] and Paul [Pau07] demonstrate
a phase transition phenomenon: if β <

√
α the estimate is asymptotically orthogonal to the signal

〈vPC,v〉 → 0. On the other hand, for β >
√
α, 〈vPC,v〉 remains strictly positive as n, p→∞. This

phase transition phenomenon has attracted considerable attention recently within random matrix
theory [FP07, CDMF09, BGN11, KY13].

These inconsistency results motivated several efforts to exploit additional structural information on
the signal v. In two influential papers, Johnstone and Lu [JL04, JL09] considered the case of a
signal v that is sparse in a suitable basis, e.g. in the wavelet domain. Without loss of generality, we
will assume here that v is sparse in the canonical basis e1, . . . ep. In a nutshell, [JL09] proposes the
following:

1. Order the diagonal entries of the Gram matrix Gi(1),i(1) ≥ Gi(2),i(2) ≥ · · · ≥ Gi(p),i(p),
and let J ≡ {i(1), i(2), . . . , i(k)} be the set of indices corresponding to the k largest
entries.

2. Set to zero all the entries Gi,j of G unless i, j ∈ J , and estimate v with the principal
eigenvector of the resulting matrix.

Johnstone and Lu formalized the sparsity assumption by requiring that v belongs to a weak `q-ball
with q ∈ (0, 1). Instead, here we consider a strict sparsity constraint where v has exactly k non-zero
entries, with magnitudes bounded below by θ/

√
k for some constant θ > 0. The case of θ = 1 was

studied by Amini and Wainwright in [AW09].

Within this model, it was proved that diagonal thresholding successfully recovers the support of
v provided v is sparse enough, namely k ≤ C

√
n/ log p with C = C(α, β) a constant [AW09].

(Throughout the paper we denote by C constants that can change from point to point.) This result is
a striking improvement over vanilla PCA. While the latter requires a number of samples scaling as
the number of parameters2 n & p, sparse PCA via diagonal thresholding achieves the same objective
with a number of samples scaling as the number of non-zero parameters, n & k2 log p.

At the same time, this result is not as optimistic as might have been expected. By searching ex-
haustively over all possible supports of size k (a method that has complexity of order pk) the correct
support can be identified with high probability as soon as n & k log p. On the other hand, no method
can succeed for much smaller n, because of information theoretic obstructions [AW09].

Over the last ten years, a significant effort has been devoted to developing practical algorithms
that outperform diagonal thresholding, see e.g. [MWA05, ZHT06, dEGJL07, dBG08, WTH09]. In
particular, d’Aspremont et al. [dEGJL07] developed a promising M-estimator based on a semidefi-
nite programming (SDP) relaxation. Amini and Wainwright [AW09] carried out an analysis of this
method and proved that, if (i) k ≤ C(β)n/ log p, and (ii) if the SDP solution has rank one, then the
SDP relaxation provides a consistent estimator of the support of v.

At first sight, this appears as a satisfactory solution of the original problem. No procedure can
estimate the support of v from less than k log p samples, and the SDP relaxation succeeds in doing it
from –at most– a constant factor more samples. This picture was upset by a recent, remarkable result
by Krauthgamer, Nadler and Vilenchik [KNV13] who showed that the rank-one condition assumed
by Amini and Wainwright does not hold for

√
n . k . (n/ log p). This result is consistent with

recent work of Berthet and Rigollet [BR13] demonstrating that sparse PCA cannot be performed in
polynomial time in the regime k &

√
n, under a certain computational complexity conjecture for

the so-called planted clique problem.

In summary, the problem of support recovery in sparse PCA demonstrates a fascinating interplay
between computational and statistical barriers.

From a statistical perspective, and disregarding computational considerations, the support of v
can be estimated consistently if and only if k . n/ log p. This can be done, for instance,
by exhaustive search over all the

(
p
k

)
possible supports of v. (See [VL12, CMW+13] for a

minimax analysis.)
2Throughout the introduction, we write f(n) & g(n) as a shorthand of ‘f(n) ≥ C g(n) for a some constant

C = C(β, α)’. Further C denotes a constant that may change from point to point.
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From a computational perspective, the problem appears to be much more difficult. There is rig-
orous evidence [BR13, MW13] that no polynomial algorithm can reconstruct the support
unless k .

√
n. On the positive side, a very simple algorithm (Johnstone and Lu’s diagonal

thresholding) succeeds for k .
√
n/ log p.

Of course, several elements are still missing in this emerging picture. In the present paper we address
one of them, providing an answer to the following question:

Is there a polynomial time algorithm that is guaranteed to solve the sparse PCA
problem with high probability for

√
n/ log p . k .

√
n?

We answer this question positively by analyzing a covariance thresholding algorithm that proceeds,
briefly, as follows. (A precise, general definition, with some technical changes is given in the next
section.)

1. Form the Gram matrix G and set to zero all its entries that are in modulus smaller than
τ/
√
n, for τ a suitably chosen constant.

2. Compute the principal eigenvector v̂1 of this thresholded matrix.

3. Denote by B ⊆ {1, . . . , p} be the set of indices corresponding to the k largest entries of v̂1.

4. Estimate the support of v by ‘cleaning’ the set B. (Briefly, v is estimated by thresholding
Gv̂B with v̂B obtained by zeroing the entries outside B.)

Such a covariance thresholding approach was proposed in [KNV13], and is in turn related to earlier
work by Bickel and Levina [BL08]. The formulation discussed in the next section presents some
technical differences that have been introduced to simplify the analysis. Notice that, to simplify
proofs, we assume k to be known: This issue is discussed in the next two sections.

The rest of the paper is organized as follows. In the next section we provide a detailed description of
the algorithm and state our main results. Our theoretical results assume full knowledge of problem
parameters for ease of proof. In light of this, in Section 3 we discuss a practical implementation
of the same idea that does not require prior knowledge of problem parameters, and is entirely data-
driven. We also illustrate the method through simulations. The complete proofs are available in the
accompanying supplement, in Sections 1, 2 and 3 respectively.

2 Algorithm and main result

For notational convenience, we shall assume hereafter that 2n sample vectors are given (instead of
n): {xi}1≤i≤2n. These are distributed according to the model (1). The number of spikes r will be
treated as a known parameter in the problem.

We will make the following assumptions:

A1 The number of spikes r and the signal strengths β1, . . . , βr are fixed as n, p→∞.
Further β1 > β2 > . . . βr are all distinct.

A2 Let Qq and kq denote the support of vq and its size respectively. We let Q = ∪qQq and
k =

∑
q kq throughout. Then the non-zero entries of the spikes satisfy |vq,i| ≥ θ/

√
kq

for all i ∈ Qq for some θ > 0. Further, for any q, q′ we assume |vq,i/vq′,i| ≤ γ for every
i ∈ Qq ∩ Qq′ , for some constant γ > 1.

As before, we are interested in the high-dimensional limit of n, p → ∞ with p/n → α. A more
detailed description of the covariance thresholding algorithm for the general model (1) is given in
Algorithm 1. We describe the basic intuition for the simpler rank-one case (omitting the subscript
q ∈ {1, 2, . . . , r}), while stating results in generality.

We start by splitting the data into two halves: (xi)1≤i≤n and (xi)n<i≤2n and compute the respective
sample covariance matrices G and G′ respectively. As we will see, the matrix G is used to obtain
a good estimate for the spike v. This estimate, along with the (independent) second part G′, is then
used to construct a consistent estimator for the supports of v.
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Let us focus on the first phase of the algorithm, which aims to obtain a good estimate of v. We
first compute Σ̂ = G − I. For β >

√
α, the principal eigenvector of G, and hence of Σ̂ is

positively correlated with v, i.e. limn→∞〈v̂1(Σ̂),v〉 > 0. However, for β <
√
α, the noise

component in Σ̂ dominates and the two vectors become asymptotically orthogonal, i.e. for instance
limn→∞〈v̂1(Σ̂),v〉 = 0. In order to reduce the noise level, we exploit the sparsity of the spike v.

Denoting by X ∈ Rn×p the matrix with rows x1, . . . xn, by Z ∈ Rn×p the matrix with rows z1,
. . . zn, and letting u = (u1, u2, . . . , un), the model (1) can be rewritten as

X =
√
β u vT + Z . (2)

Hence, letting β′ ≡ β‖u‖2/n ≈ β, and w ≡ √βZTu/n

Σ̂ = β′ vvT + v wT + w vT +
1

n
ZTZ − Ip, . (3)

For a moment, let us neglect the cross terms (vwT + wvT). The ‘signal’ component β′ vvT is
sparse with k2 entries of magnitude β/k, which (in the regime of interest k =

√
n/C) is equivalent

to Cβ/
√
n. The ‘noise’ component ZTZ/n − Ip is dense with entries of order 1/

√
n. Assuming

k/
√
n a small enough constant, it should be possible to remove most of the noise by thresholding

the entries at level of order 1/
√
n. For technical reasons, we use the soft thresholding function

η : R × R≥0 → R, η(z; τ) = sgn(z)(|z| − τ)+. We will omit the second argument wherever it is
clear from context. Classical denoising theory [DJ94, Joh02] provides upper bounds the estimation
error of such a procedure. Note however that these results fall short of our goal. Classical theory
measures estimation error by (element-wise) `p norm, while here we are interested in the resulting
principal eigenvector. This would require bounding, for instance, the error in operator norm.

Since the soft thresholding function η(z; τ/
√
n) is affine when z � τ/

√
n, we would expect that

the following decomposition holds approximately (for instance, in operator norm):

η(Σ̂) ≈ η
(
β′vvT

)
+ η

(
1

n
ZTZ− Ip

)
. (4)

The main technical challenge now is to control the operator norm of the perturbation η(ZTZ/n−Ip).
It is easy to see that η(ZTZ/n − Ip) has entries of variance δ(τ)/n, for δ(τ) → 0 as τ → ∞. If
entries were independent with mild decay, this would imply –with high probability–∥∥∥∥η( 1

n
ZTZ

)∥∥∥∥
2

. Cδ(τ), (5)

for some constant C. Further, the first component in the decomposition (4) is still approximately
rank one with norm of the order of β′ ≈ β. Consequently, with standard linear algebra results on
the perturbation of eigenspaces [DK70], we obtain an error bound ‖v̂ − v‖ . δ(τ)/C ′β

Our first theorem formalizes this intuition and provides a bound on the estimation error in the prin-
cipal components of η(Σ̂).
Theorem 1. Under the spiked covariance model Eq. (1) satisfying Assumption A1, let v̂q denote
the qth eigenvector of η(Σ̂) using threshold τ . For every α, (βq)rq=1 ∈ (0,∞), integer r and every
ε > 0 there exist constants, τ = τ(ε, α, (βq)

r
q=1, r, θ) and 0 < c∗ = c∗(ε, α, (βq)rq=1, r, θ) < ∞

such that, if
∑
q kq =

∑
q |supp(vq)| ≤ c∗

√
n), then

P
{

min(‖v̂q − vq‖ , ‖v̂q + vq‖) ≤ ε ∀q ∈ {1, . . . , r}
}
≥ 1− α

n4
. (6)

Random matrices of the type η(ZTZ/n − Ip) are called inner-product kernel random matrices and
have attracted recent interest within probability theory [EK10a, EK10b, CS12]. In this literature, the
asymptotic eigenvalue distribution of a matrix f(ZTZ/n) is the object of study. Here f : R → R
is a kernel function and is applied entry-wise to the matrix ZTZ/n, with Z a matrix as above.
Unfortunately, these results cannot be applied to our problem for the following reasons:

• The results [EK10a, EK10b] are perturbative and provide conditions under which the spec-
trum of f(ZTZ/n) is close to a rescaling of the spectrum of (ZTZ/n) (with rescaling
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Algorithm 1 Covariance Thresholding
1: Input: Data (xi)1≤i≤2n, parameters r, (kq)q≤r ∈ N, θ, τ, ρ ∈ R≥0;
2: Compute the Gram matrices G ≡∑n

i=1 xix
T
i /n , G′ ≡∑2n

i=n+1 xix
T
i /n;

3: Compute Σ̂ = G− Ip (resp. Σ̂′ = G′ − Ip);
4: Compute the matrix η(Σ̂) by soft-thresholding the entries of Σ̂:

η(Σ̂)ij =


Σ̂ij − τ√

n
if Σ̂ij ≥ τ/

√
n,

0 if −τ/√n < Σ̂ij < τ/
√
n,

Σ̂ij + τ√
n

if Σ̂ij ≤ −τ/
√
n,

5: Let (v̂q)q≤r be the first r eigenvectors of η(Σ̂);
6: Define sq ∈ Rp by sq,i = v̂q,iI(

∣∣v̂q,i ≥ θ/2√kq∣∣);
7: Output: Q̂ = {i ∈ [p] : ∃ q s.t. |(Σ̂′sq)i| ≥ ρ}.

factors depending on the Taylor expansion of f close to 0). We are interested instead in a
non-perturbative regime in which the spectrum of f(ZTZ/n) is very different from the one
of (ZTZ/n) (and the Taylor expansion is trivial).

• [CS12] consider n-dependent kernels, but their results are asymptotic and concern the weak
limit of the empirical spectral distribution of f(ZTZ/n). This does not yield an upper
bound on the spectral norm3 of f(ZTZ/n).

Our approach to prove Theorem 1 follows instead the so-called ε-net method: we develop high
probability bounds on the maximum Rayleigh quotient:

max
y∈Sp−1

〈y, η(ZTZ/n)y〉 = max
y∈Sp−1

∑
i,j

η

( 〈z̃i, z̃j〉
n

;
τ√
n

)
yiyj ,

Here Sp−1 = {y ∈ Rp : ‖y‖ = 1} is the unit sphere and z̃i denote the columns of Z. Since
η(ZTZ/n) is not Lipschitz continuous in the underlying Gaussian variables Z, concentration does
not follow immediately from Gaussian isoperimetry. We have to develop more careful (non-uniform)
bounds on the gradient of η(ZTZ/n) and show that they imply concentration as required.

While Theorem 1 guarantees that v̂ is a reasonable estimate of the spike v in `2 distance (up to
a sign flip), it does not provide a consistent estimator of its support. This brings us to the second
phase of our algorithm. Although v̂ is not even expected to be sparse, it is easy to see that the largest
entries of v̂ should have significant overlap with supp(v). Steps 6, 7 and 8 of the algorithm exploit
this property to construct a consistent estimator Q̂ of the support of the spike v. Our second theorem
guarantees that this estimator is indeed consistent.
Theorem 2. Consider the spiked covariance model of Eq. (1) satisfying Assumptions A1, A2. For
any α, (βq)q≤r ∈ (0,∞), θ, γ > 0 and integer r, there exist constants c∗, τ, ρ dependent on
α, (βq)q≤r, γ, θ, r, such that, if

∑
q kq = |supp(vq)| ≤ c∗

√
n, the Covariance Thresholding al-

gorithm of Table 1 recovers the joint supports of vq with high probability.

Explicitly, there exists a constant C > 0 such that

P
{
Q̂ = ∪qsupp(vq)

}
≥ 1− C

n4
. (7)

Given the results above, it is useful to pause for a few remarks.
Remark 2.1. We focus on a consistent estimation of the joint supports ∪qsupp(vq) of the spikes.
In the rank-one case, this obviously corresponds to the standard support recovery. Once this is
accomplished, estimating the individual supports poses no additional difficulty: indeed, since | ∪q
supp(vq))| = O(

√
n) an extra step with n fresh samples xi restricted to Q̂ yields estimates for vq

3Note that [CS12] also provide a finite n bound for the spectral norm of f(ZTZ/n) via the moment method,
but this bound diverges with n and does not give a result of the type of Eq. (5).
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with `2 error of order
√
k/n. This implies consistent estimation of supp(vq) when vq have entries

bounded below as in Assumption A2.
Remark 2.2. Recovering the signed supports Qq,+ = {i ∈ [p] : vq,i > 0} and Qq,− = {i ∈
[p] : vq,i < 0} is possible using the same technique as recovering the supports supp(vq) above, and
poses no additional difficulty.

Remark 2.3. Assumption A2 requires |vq,i| ≥ θ/
√
kq for all i ∈ Qq . This is a standard requirement

in the support recovery literature [Wai09, MB06]. The second part of assumption A2 guarantees
that when the supports of two spikes overlap, their entries are roughly of the same order. This is
necessary for our proof technique to go through. Avoiding such an assumption altogether remains
an open question.

Our covariance thresholding algorithm assumes knowledge of the correct support sizes kq . Notice
that the same assumption is made in earlier theoretical, e.g. in the analysis of SDP-based recon-
struction by Amini and Wainwright [AW09]. While this assumption is not realistic in applications,
it helps to focus our exposition on the most challenging aspects of the problem. Further, a ballpark
estimate of kq (indeed

∑
q kq) is actually sufficient, with which we use the following steps in lieu of

Steps 7, 8 of Algorithm 1.

7: Define s′q ∈ Rp by

s′q,i =

{
v̂q,i if |v̂q,i| > θ/(2

√
k0)

0 otherwise.
(8)

8: Return

Q̂ = ∪q{i ∈ [p] : |(Σ̂′s′q)i| ≥ ρ} . (9)

The next theorem shows that this procedure is effective even if k0 overestimates
∑
q kq by an order

of magnitude. Its proof is deferred to Section 2.
Theorem 3. Consider the spiked covariance model of Eq. (1). For any α, β ∈ (0,∞), let constants
c∗, τ, ρ be given as in Theorem 2. Further assume k =

∑
q |supp(vq)| ≤ c∗

√
n, and

∑
q k ≤ k0 ≤

20
∑
q kq . Then, the Covariance Thresholding algorithm of Table 1, with the definitions in Eqs. (8)

and (9), recovers the joint supports of vq successfully, i.e.

P
(
Q̂ = ∪qsupp(vq)

)
≥ 1− C

n4
. (10)

3 Practical aspects and empirical results

Specializing to the rank one case, Theorems 1 and 2 show that Covariance Thresholding succeeds
with high probability for a number of samples n & k2, while Diagonal Thresholding requires n &
k2 log p. The reader might wonder whether eliminating the log p factor has any practical relevance
or is a purely conceptual improvement. Figure 1 presents simulations on synthetic data under the
strictly sparse model, and the Covariance Thresholding algorithm of Table 1, used in the proof of
Theorem 2. The objective is to check whether the log p factor has an impact at moderate p. We
compare this with Diagonal Thresholding.

We plot the empirical success probability as a function of k/
√
n for several values of p, with p = n.

The empirical success probability was computed by using 100 independent instances of the problem.
A few observations are of interest: (i) Covariance Thresholding appears to have a significantly
larger success probability in the ‘difficult’ regime where Diagonal Thresholding starts to fail; (ii)
The curves for Diagonal Thresholding appear to decrease monotonically with p indicating that k
proportional to

√
n is not the right scaling for this algorithm (as is known from theory); (iii) In

contrast, the curves for Covariance Thresholding become steeper for larger p, and, in particular,
the success probability increases with p for k ≤ 1.1

√
n. This indicates a sharp threshold for k =

const · √n, as suggested by our theory.

In terms of practical applicability, our algorithm in Table 1 has the shortcomings of requiring knowl-
edge of problem parameters βq, r, kq . Furthermore, the thresholds ρ, τ suggested by theory need not
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Figure 1: The support recovery phase transitions for Diagonal Thresholding (left) and Covariance
Thresholding (center) and the data-driven version of Section 3 (right). For Covariance Threshold-
ing, the fraction of support recovered correctly increases monotonically with p, as long as k ≤ c√n
with c ≈ 1.1. Further, it appears to converge to one throughout this region. For Diagonal Thresh-
olding, the fraction of support recovered correctly decreases monotonically with p for all k of order√
n. This confirms that Covariance Thresholding (with or without knowledge of the support size k)

succeeds with high probability for k ≤ c
√
n, while Diagonal Thresholding requires a significantly

sparser principal component.

be optimal. We next describe a principled approach to estimating (where possible) the parameters of
interest and running the algorithm in a purely data-dependent manner. Assume the following model,
for i ∈ [n]

xi = µ+
∑
q

√
βquq,ivq + σzi,

where µ ∈ Rp is a fixed mean vector, ui have mean 0 and variance 1, and zi have mean 0 and co-
variance Ip. Note that our focus in this section is not on rigorous analysis, but instead to demonstrate
a principled approach to applying covariance thresholding in practice. We proceed as follows:

Estimating µ, σ: We let µ̂ =
∑n
i=1 xi/n be the empirical mean estimate for µ. Further letting

X = X − 1µ̂T we see that pn − (
∑
q kq)n ≈ pn entries of X are mean 0 and variance

σ2. We let σ̂ = MAD(X)/ν where MAD( · ) denotes the median absolute deviation of
the entries of the matrix in the argument, and ν is a constant scale factor. Guided by the
Gaussian case, we take ν = Φ−1(3/4) ≈ 0.6745.

Choosing τ : Although in the statement of the theorem, our choice of τ depends on the SNR
β/σ2, we believe this is an artifact of our analysis. Indeed it is reasonable to threshold
‘at the noise level’, as follows. The noise component of entry i, j of the sample covari-
ance (ignoring lower order terms) is given by σ2〈zi, zj〉/n. By the central limit theo-

rem, 〈zi, zj〉/
√
n

d⇒N(0, 1). Consequently, σ2〈zi, zj〉/n ≈ N(0, σ4/n), and we need to
choose the (rescaled) threshold proportional to

√
σ4 = σ2. Using previous estimates, we

let τ = ν′ · σ̂2 for a constant ν′. In simulations, a choice 3 . ν′ . 4 appears to work well.

Estimating r: We define Σ̂ = X
T
X/n − σ2Ip and soft threshold it to get η(Σ̂) using τ as above.

Our proof of Theorem 1 relies on the fact that η(Σ̂) has r eigenvalues that are separated
from the bulk of the spectrum4. Hence, we estimate r using r̂: the number of eigenvalues
separated from the bulk in η(Σ̂).

Estimating vq: Let v̂q denote the qth eigenvector of η(Σ̂). Our theoretical analysis indicates that
v̂q is expected to be close to vq . In order to denoise v̂q , we assume v̂q ≈ (1− δ)vq + εq ,
where εq is additive random noise. We then threshold vq ‘at the noise level’ to re-
cover a better estimate of vq . To do this, we estimate the standard deviation of the
“noise” ε by σ̂ε = MAD(vq)/ν. Here we set –again guided by the Gaussian heuristic–
ν ≈ 0.6745. Since vq is sparse, this procedure returns a good estimate for the size of the
noise deviation. We let ηH(v̂q) denote the vector obtained by hard thresholding v̂q: set

4The support of the bulk spectrum can be computed numerically from the results of [CS12].
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(ηH(v̂q))i = v̂q,i if |v̂q,i| ≥ ν′σ̂εq
and 0 otherwise. We then let v̂∗q = η(v̂q)/ ‖η(v̂q)‖ and

return v̂∗q as our estimate for vq .

Note that –while different in several respects– this empirical approach shares the same philosophy
of the algorithm in Table 1. On the other hand, the data-driven algorithm presented in this section is
less straightforward to analyze, a task that we defer to future work.

Figure 1 also shows results of a support recovery experiment using the ‘data-driven’ version of
this section. Covariance thresholding in this form also appears to work for supports of size k ≤
const

√
n. Figure 2 shows the performance of vanilla PCA, Diagonal Thresholding and Covariance

Thresholding on the “Three Peak” example of Johnstone and Lu [JL04]. This signal is sparse in
the wavelet domain and the simulations employ the data-driven version of covariance thresholding.
A similar experiment with the “box” example of Johnstone and Lu is provided in the supplement.
These experiments demonstrate that, while for large values of n both Diagonal Thresholding and
Covariance Thresholding perform well, the latter appears superior for smaller values of n.
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Figure 2: The results of Simple PCA, Diagonal Thresholding and Covariance Thresholding (respec-
tively) for the “Three Peak” example of Johnstone and Lu [JL09] (see Figure 1 of the paper). The
signal is sparse in the ‘Symmlet 8’ basis. We use β = 1.4, p = 4096, and the rows correspond to
sample sizes n = 1024, 1625, 2580, 4096 respectively. Parameters for Covariance Thresholding are
chosen as in Section 3, with ν′ = 4.5. Parameters for Diagonal Thresholding are from [JL09]. On
each curve, we superpose the clean signal (dotted).
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