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Abstract

We propose a spiking network model capable of performing both approximate
inference and learning for any hidden Markov model. The lower layer sensory
neurons detect noisy measurements of hidden world states. The higher layer neu-
rons with recurrent connections infer a posterior distribution over world states
from spike trains generated by sensory neurons. We show how such a neuronal
network with synaptic plasticity can implement a form of Bayesian inference sim-
ilar to Monte Carlo methods such as particle filtering. Each spike in the population
of inference neurons represents a sample of a particular hidden world state. The
spiking activity across the neural population approximates the posterior distribu-
tion of hidden state. The model provides a functional explanation for the Poisson-
like noise commonly observed in cortical responses. Uncertainties in spike times
provide the necessary variability for sampling during inference. Unlike previous
models, the hidden world state is not observed by the sensory neurons, and the
temporal dynamics of the hidden state is unknown. We demonstrate how such
networks can sequentially learn hidden Markov models using a spike-timing de-
pendent Hebbian learning rule and achieve power-law convergence rates.

1 Introduction

Humans are able to routinely estimate unknown world states from ambiguous and noisy stimuli,
and anticipate upcoming events by learning the temporal dynamics of relevant states of the world
from incomplete knowledge of the environment. For example, when facing an approaching tennis
ball, a player must not only estimate the current position of the ball, but also predict its trajectory
by inferring the ball’s velocity and acceleration before deciding on the next stroke. Tasks such as
these can be modeled using a hidden Markov model (HMM), where the relevant states of the world
are latent variables X related to sensory observations Z via a likelihood model (determined by the
emission probabilities). The latent states themselves evolve over time in a Markovian manner, the
dynamics being governed by a transition probabilities. In these tasks, the optimal way of combin-
ing such noisy sensory information is to use Bayesian inference, where the level of uncertainty for
each possible state is represented as a probability distribution [1]]. Behavioral and neuropsychophys-
ical experiments [2, 3l 4] have suggested that the brain may indeed maintain such a representation
and employ Bayesian inference and learning in a great variety of tasks in perception, sensori-motor
integration, and sensory adaptation. However, it remains an open question how the brain can se-
quentially infer the hidden state and learn the dynamics of the environment from the noisy sensory
observations.

Several models have been proposed based on populations of neurons to represent probability dis-
tribution [} 16} [7, [8]. These models typically assume a static world state X. To get around this
limitation, firing-rate models [9, [10] have been proposed to used responses in populations of neu-
rons to represent the time-varying posterior distributions of arbitrary hidden Markov models with
discrete states. For the continuous state space, similar models based on line attractor networks [[11]]



have been introduced for implementing the Kalman filter, which assumes all distributions are Gaus-
sian and the dynamics is linear. Bobrowski et al. [12] proposed a spiking network model that can
compute the optimal posterior distribution in continuous time. The limitation of these models is that
model parameters (the emission and transition probabilities) are assumed to be known a priori. Den-
eve [13}114] proposed a model for inference and learning based on the dynamics of a single neuron.
Howeyver, the maximum number of world state in her model is limited to two.

In this paper, we explore a neural implementation of HMMs in networks of spiking neurons that
perform approximate Bayesian inference similar to the Monte Carlo method of particle filtering [15]].
We show how the time-varying posterior distribution P(X;|Z;.;) can be directly represented by
mean spike counts in sub-populations of neurons. Each model neuron in the neuron population
behaves as a coincidence detector, and each spike is viewed as a Monte Carlo sample of a particular
world state. At each time step, the probability of a spike in one neuron is shown to approximate
the posterior probability of the preferred state encoded by the neuron. Nearby neurons within the
same sub-population (analogous to a cortical column) encode the same preferred state. The model
thus provides a concrete neural implementation of sampling ideas previously suggested in [16) [17,
18, [19/ 20]. In addition, we demonstrate how a spike-timing based Hebbian learning rule in our
network can implement an online version of the Expectation-Maximization(EM) algorithm to learn
the emission and transition matrices of HMMs.

2 Review of Hidden Markov Models

For clarity of notation, we briefly review the equations behind a discrete-time “grid-based” Bayesian
filter for a hidden Markov model. Let the hidden state be {X; € X,k € N} with dynamics
Xit1 | (X = a’) ~ f(x|z), where f(z|z’) is the transition probability density, X is a discrete
state space of X}, N is the set of time steps, and “~”" denotes distributed according to. We focus
on estimating X} by constructing its posterior distribution, based only on noisy measurements or
observations {Z} € Z where Z can be discrete or continuous. {Z} are conditional independent
given { X} and are governed by the emission probabilities Zj, | (Xi = x) ~ g(z|z).

The posterior probability P(X) = i|Z1.;) = w,i‘k may be updated in two stages: a prediction stage
(Eq[T) and a measurement update (or correction) stage (Eq2):

P(Xi41=1|Z1) = W;ig+1|k- = 2;21 w£|kf(zi|$j)a (1
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This process is repeated for each time step. These two recursive equations above are the foundation
for any exact or approximate solution to Bayesian filtering, including well-known examples such as
Kalman filtering when the original continuous state space has been discretized into A" bins.

3 Neural Network Model

We now describe the two-layer spiking neural network model we use (depicted in the central panel of
Figure[I(a)). The noisy observation Zj, is not directly observed by the network, but sensed through
an array of Z sensory neurons, The lower layer consists of an array of sensory neurons, each of
which will be activated at time k if the observation Zj, is in the receptive field. The higher layer
consists of an array of inference neurons, whose activities can be defined as:

s(k) = sgn(a(k) x b(k)) 3)
where s(k) describes the binary response of an inference neuron at time k, the sign function
sgn(z) = 1 only when = > 0. a(k) represents the sum of neuron’s recurrent inputs, which is
determined by the recurrent weight matrix W among the inference neurons and the population re-

sponses si_1 from the previous time step. b(k) represents the sum of feedforward inputs, which is
determined by the feed-forward weight matrix M as well as the activities in sensory neurons.

Note that Equation 3| defines the output of an abstract inference neuron which acts as a coincidence
detector and fires if and only if both recurrent and sensory inputs are received. In the supplementary
materials, we show that this abstract model neuron can be implemented using the standard leaky-
integrate-and-fire (LIF) neurons used to model cortical neurons.
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Figure 1: a. Spiking network model for sequential Monte Carlo Bayesian inference. b. Graphical
representation of spike distribution propagation

3.1 Neural Representation of Probability Distributions

Similar to the idea of grid-based filtering, we first divide the inference neurons into X sub-
populations. s = {si,i = 1,...X,l = 1,...,L}. We have s{(k) = 1 if there is a spike in the
[-th neuron of the i-th sub-population at time step k. Each sub-population of £ neurons share the
same preferred world state, there being X’ such sub-populations representing each of X’ preferred
states. One can, for example, view such a neuronal sub-population as a cortical column, within
which neurons encode similar features [21]].

Figure [I(a) illustrates how our neural network encodes a simple hidden Markov model with X =
Z =1,...,100. X) = 50 is a static state and P(Zy|X}) is normally distributed. The network
utilizes 10,000 neurons for the Monte Carlo approximation, with each state preferred by a sub-
population of 100 neurons. At time k, the network observe Z; and the corresponding sensory
neuron whose receptive field contains Zj, is activated and sends inputs to the inference neurons.
Combining with recurrent inputs from the previous time step, the responses in the inference neurons
are updated at each time step. As shown in the raster plot of Figure[I(a)] the spikes across the entire
inference layer population form a Monte-Carlo approximation to the current posterior distribution:

L
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where nzl & is the number of spiking neurons in the ith sub-population at time &, which can also be
regarded as the instantaneous firing rate for sub-population i. Ny = ZzX:l nzl i 18 the total spike
count in the inference layer population. The set {nfﬂk} represents the un-normalized conditional
probabilities of Xy, so that P(X, = i|Z1.;) = Wi = N1/ N

3.2 Bayesian Inference with Stochastic Synaptic Transmission

In this section, we assume the network is given the model parameters in a HMM and there is no
learning in connection weights in the network. To implement the prediction Eq[I]in a spiking
network, we initialize the recurrent connections between the inference neurons as the transition
probabilities: W;; = f(2?|z')/Cw, where Cyy is a scaling constant. We will discuss how our
network learns the HMM parameters from random initial synaptic weights in section 4]

We define the recurrent weight W;; to be the synaptic release probability between the i-th neuron
sub-population and the j-th neuron sub-population in the inference layer. Each neuron that spikes
at time step £ will randomly evoke, with probability W;;, one recurrent excitatory post-synaptic
potential (EPSP) at time step k + 1, after some network delay. We define the number of recurrent
EPSPs received by neuron [ in the j-th sub-population as a] . Thus, a] is the sum of N}, independent
(but not identically distributed) Bernoulli trials:

X L
al(k+1) = Y > esi(k), Vi=1...L (5)

i=110=1



where P(¢} = 1) = W;; and P(¢} = 0) = 1 — Wj;. The sum a] follows the so-called “Poisson
binomial” distribution [22] and in the limit approaches the Poisson distribution:

The detailed analysis of the distribution of @} and the proof of equation@are provided in the supple-
mentary materials.

The definition of model neuron in Eq |3|indicates that recurrent inputs alone are not strong enough
to make the inference neurons fire — these inputs leave the neurons partially activated. We can
view these partially activated neurons as the proposed samples drawn from the prediction density

P(Xk41]Xg). Let n?@ 1k be the number of proposed samples in j-th sub-population, we have

X
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Thus, the prediction probability in equation|I]is represented by the expected number of neurons that
receive recurrent inputs.

When a new observation 7 is received, the network will correct the prediction distribution based
on the current observation. Similar to rejection sampling used in sequential Monte Carlo algo-
rithms [15]], these proposed samples are accepted with a probability proportional to the observation
likelihood P(Zj 1| Xk+1). We assume for simplicity that receptive fields of sensory neurons do not
overlap with each other (in the supplementary materials, we discuss the more general overlapping
case). Again we define the feedforward weight M;; to be the synaptic release probability between
sensory neuron ¢ and inference neurons in the j-th sub-population. A spiking sensory neuron %
causes an EPSP in a neuron in the j-th sub-population with probability A/;;, which is initialized
proportional to the likelihood:

POi(k+1)>1) = g(Ziy1lz") /Cur (8)
where C) is a scaling constant such that M;; = g(Zy41 = 2" | 27)/C.

Finally, an inference neuron fires a spike at time k£ + 1 if and only if it receives both recurrent and
sensory inputs. The corresponding firing probability is then the product of the probabilities of the
two inputs: P(s}(k + 1) = 1) = P(aj(k+ 1) > 1)P(bj(k+ 1) > 1)

Let n2+1‘k+1 = Zle st(k + 1) be the number of spikes in i-th sub-population at time &k + 1, we
have

1 i Nk: i
Eng i {nket] = £CWCM P(Zy41|Z1:6) Wy 111 ©)
i i N iy, i
Var[ng e {nge ] = ECWCMQ(ZHHJ? )Wkt 1k (10)

Equation Q]ensures that the expected spike distribution at time %+ 1 is a Monte Carlo approximation
to the updated posterior probability P(Xj1|Z1.k+1). It also determines how many neurons are
activated at time k£ + 1. To keep the number of spikes at different time steps relatively constant, the
scaling constant C'j;, C'yy and the number of neurons £ could be of the same order of magnitude:
for example, Cyy = £ = 10 % Ny and Cpy(k + 1) = 10 * N /Ny, resulting in a form of divisive
inhibition [23]]. If the overall neural activity is weak at time k, then the global inhibition regulating
M is decreased to allow more spikes at time k + 1. Moreover, approximations in equations [6] and

N2
become exact when ch — 0.
w

3.3 Filtering Examples

Figure illustrates how the model network implements Bayesian inference with spike samples.
The top three rows of circles in the left panel in Figure [I(b)| represent the neural activities in the
inference neurons, approximating respectively the prior, prediction, and posterior distributions in
the right panel. At time k, spikes (shown as filled circles) in the posterior population represent the
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Figure 2: Filtering results for uni-modal (a) and bi-modal posterior distributions ((b) and (c) - see
text for details).

distribution P(X}|Z;.;). With recurrent weights W o f(Xy1|X), spiking neurons send EPSPs
to their neighbors and make them partially activated (shown as half-filled circles in the second row).
The distribution of partially activated neurons is a Monte-Carlo approximation to the prediction
distribution P(X1|Z1.1). When a new observation 7y, arrives, the sensory neuron (filled circles
the bottom row) whose receptive field contains Zj; is activated, and sends feedforward EPSPs to
the inference neurons using synaptic weights M = g(Z|X). The inference neurons at time &+ 1 fire
only if they receive both recurrent and feedforward inputs. With the firing probability proportional to
the product of prediction probability P(X}1|Z1.;) and observation likelihood ¢g(Z1|Xk+1), the
spike distribution at time k + 1 (filled circles in the third row) again represents the updated posterior
P(Xpt1|Z1:111)-

We further tested the filtering results of the proposed neural network with two other example HMMs.
The first example is the classic stochastic volatility model, where X = Z = R. The transition model
of the hidden volatility variable f(Xy4+1|X%) = N(0.91X%,1.0), and the emission model of the
observed price given volatility is g(Z;|Xy) = N(0,0.25exp(X})). The posterior distribution of
this model is uni-modal. In simulation we divided X into 100 bins, and initial spikes N; = 1000.
We plotted the expected volatility with estimated standard deviation from the population posterior
distribution in Figure We found that the neural network does indeed produce a reasonable
estimate of volatility and plausible confidence interval. The second example tests the network’s
ability to approximate bi-modal posterior distributions by comparing the time varying population
posterior distribution with the true one using heat maps (Figures and 2(c)). The vertical axis
represents the hidden state and the horizontal axis represents time steps. The magnitude of the
probability is represented by the color. In this example, X = {1, ..., 8} and there are 20 time steps.

3.4 Convergence Results and Poisson Variability

In this section, we discuss some convergence results for Bayesian filtering using the proposed spik-
ing network and show our population estimator of the posterior probability is a consistent one. Let

]5,2 = n;,lf be the population estimator of the true posterior probability P(X}, = i|Z;.;) at time k.

Suppose the true distribution is known only at initial time £ = 1: ]5{ = wiu. We would like to

investigate how the mean and variance of [:’,2 vary over time. We derived the updating equations for
mean and variance (see supplementary materials) and found two implications. First, the variance of
neural response is roughly proportional to the mean. Thus, rather than representing noise, Poisson
variability in the model occurs as a natural consequence of sampling and sparse coding. Second, the
variance Var[P/] oc 1/Ny. Therefore Var[P}] — 0 as Ny — oo, showing that P/ is a consistent
estimator of wjk‘k. We tested the above two predictions using numerical experiments on arbitrary

HMMs, where we choose X = {1,2,...20}, Z, ~ N(X},5), the transition matrix f(z7|z") first
uniformly drawn from [0, 1], and then normalized to ensure ), f(2/[2") = 1.

In Figures a—c), each data point represents Var[]s,g ] along the vertical axis and F []5; | - E? [Pk’ ]
along the horizontal axis, calculated over 100 trials with the same random transition matrix f, and
k =1,...10,57 = 1,...20. The solid lines represent a least squares power law fit to the data:

Var[P]] = Oy * (E[P]] — E?[P]])“=. For 100 different random transition matrices f, the means



y =0.00355627 * x™13

y=0.028804* X1, 107 | ¥=0.000303182° x' %

1
10° 10° 107" 10° 10°

107 10f 10° 10 10° 107 107 10°

=
> ! ) 0
Elpy - ) Elpl1 - Ep)) Elpl] - E¥0pl)
(a) (b) (©)
1.
"
10
14 =107
o
S 1.3 §
£ ] @
] s a
5 8
g 2 0 @ 10°
3 o
& 11 2
3
1 3
"
10 10 7 g 0
R 100 10° 10° 10* 10 10 10
Size of state space Inital Spike Count Inital Spike Count N,
) © ®

Figure 3: Variance versus Mean of estimator for different initial spike counts

of the exponential term C'r were 1.2863,1.13, and 1.037, with standard deviations 0.13,0.08, and
0.03 respectively, for N7y = 100 and X = 4, 20, and 100. The mean of Cg (;ontinues to approach
1 when X is increased, as shown in figure d). Since Var[P]] oc (E[P]] — E?[P]]) implies
Var[nfc‘k] x E[ni‘k} (see supplementary material for derivation), these results verify the Poisson
variability prediction of our neural network.

The term Cy represents the scaling constant for the variance. Figure [3(e) shows that the mean of
Cy over 100 different transition matrices f (over 100 different trials with the same f) is inversely
proportional to initial spike count Ny, with power law fit Cyy = 1.77Ny 09245 " This indicates that
the variance of p,g converges to 0 if N; — oco. The bias between estimated and true posterior
probability can be calculated as:

| XK '
bias(f) = FT Z Z(E[PL] - w11<|k)2

i=1 k=1

The relationship between the mean of the bias (over 100 different f) versus initial count /Ny is shown
in figure [3[f). We also have an inverse proportionality between bias and N;. Therefore, as the figure
shows, for arbitrary f, the estimator P} is a consistent estimator of wi‘ e

4 On-line parameter learning

In the previous section, we assumed that the model parameters, i.e., the transition probabilities
f(Xk+1|X%) and the emission probabilities g(Zx|X}), are known. In this section, we describe how
these parameters § = {f, g} can be learned from noisy observations {Z}}. Traditional methods
to estimate model parameters are based on the Expectation-Maximization (EM) algorithm, which
maximizes the (log) likelihood of the unknown parameters log Py(Z;.%) given a set of observations
collected previously. However, such an “off-line” approach is biologically implausible because (1)
it requires animals to store all of the observations before learning, and (2) evolutionary pressures
dictate that animals update their belief over 6 sequentially any time a new measurement becomes
available.

We therefore propose an on-line estimation method where observations are used for updating pa-
rameters as they become available and then discarded. We would like to find the parameters 6 that
maximize the log likelihood: log Py(Z1.;) = Zle log Py(Z¢| Z:—1). Our approach is based on re-
cursively calculating the sufficient statistics of 6 using stochastic approximation algorithms and the
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Figure 4: Performance of the Hebbian Learning Rules.

Monte Carlo method, and employs an online EM algorithm obtained by approximating the expected
sufficient statistic T(Qk) using the stochastic approximation (or Robbins-Monoro) procedure. Based
on the detailed derivations described in the supplementary materials, we obtain a Hebbian learning
rule for updating the synaptic weights based on the pre-synaptic and post-synaptic activities:

ME - nilk % (k) +(1— %) x MF~' whenn’, >0 (11
B e ST TR e
i j i
Mg 1k—1  Tkjk Mg 1)k—1 _ ;
Wh = T R, PO e ) X W ey >0 (1)

where 7(k) is the number of pre-synaptic spikes in the i-th sub-population of sensory neurons at
time k, i is the learning rate.

Learning both emission and transition probability matrices at the same time using the online EM
algorithm with stochastic approximation is in general very difficult because there are many local
minima in the likelihood function. To verify the correctness of our learning algorithms individually,
we first divide the learning process into two phases. The first phase involves learning the emission
probability g when the hidden world state is stationary, i.e., W;; = f;; = 6;;. This corresponds to
learning the observation model of static objects at the center of gaze before learning the dynamics
f of objects. After an observation model g is learned, we relax the stationarity constraint, and allow
the spiking network to update the recurrent weights W to learn the arbitrary transition probability f.

Figure ] illustrates the performance of learning rules (T1)) and (I2) for a discrete HMM with X = 4
and Z = 12. X and Z values are spaced equally apart: X € {1,...,4}and Z € {3,1,4,... 41}.
The transition probability matrix f then involves 4 x4 = 16 parameters and the emission probability
matrix g involves 12 x 4 = 48 parameters.

In Figure f[a), we examine the performance of learning rule (TI) for the feedforward weights
MPF, with fixed transition matrix. The true emission probability matrix has the form g =~
N(z7,0%). The solid blue curve shows the mean square error (Frobenius norm) || M* —g|| . =

> i (MZ — gi;)? between the learned feedforward weights M* and the true emission probabil-

ity matrix g over trials with different g,. The dotted lines show =+ 1 standard deviation for MSE
based on 10 different trials. oz varied from trial to trial and was drawn uniformly between 0.2
and 0.4, representing different levels of observation noises. The initial spike distribution was uni-
form nf)‘o = né‘O,Vi, 7 = 1..., X and the initial estimate ng = % The learning rate was set

to v = %, although a small constant learning rate such as v, = 107° also gives rise to similar
learning results. A notable feature in Figure [f(a) is that the average MSE exhibits a fast power-
law decrease. The red solid line in Figure @fa) represents the power-law fit to the average MSE:
MSE(k) o< k=1, Furthermore, the standard deviation of MSE approaches zero as k grows large.



Figure [[(a) thus shows the asymptotic convergence of equation (IT) irrespective of the o of the
true emission matrix g.

We next examined the performance of learning rule (12| for the recurrent weights W*, given the
learned emission probability matrix ¢ (the true transition probabilities f are unknown to the net-
work). The initial estimator WZ%- = % Similarly, Performance was evaluated by calculating the

mean square error |[W" — f|| Ry j(Wiﬁ- — fij)? between the learned recurrent weight W*
and the true f. Different randomly chosen transition matrices f were tested. When oz = 0.04, the
observation noise is %% = 12% of the separation between two observed states. Hidden state identi-

1/3
fication in this case is éelatively easy. The red solid line in figure f[(b) represents the power-law fit to
the average MSE: M SE(k) oc k=936, Similar convergence results can still be obtained for higher
0z,e.g., 0z = 0.4 (figure c)). In this case, hidden state identification is much more difficult as
the observation noise is now 1.2 times the separation between two observed states. This difficulty
is reflected in a slower asymptotic convergence rate, with a power-law fit M SE(k) o k=21, as
indicated by the red solid line in figure dc).

Finally, we show the results for learning both emission and transition matrices simultaneously in
figure f[d,e). In this experiment, the true emission and transition matrices are deterministic, the
weight matrices are initialized as the sum of the true one and a uniformly random one: WZ-(;- o<

fij + € and Mioj o gi; + € where € is a uniform distributed noise between 0 and 1 /Nx. Although
the asymptotic convergence rate for this case is much slower, it still exhibits desired power-law
convergences in both M SEyy (k) o< k%92 and MSEy; (k) o< k=% over 100 trials starting with
different initial weight matrices.

5 Discussion

Our model suggests that, contrary to the commonly held view, variability in spiking does not re-
flect “noise” in the nervous system but captures the animal’s uncertainty about the outside world.
This suggestion is similar to some previous models [[17, |19} [20]], including models linking firing rate
variability to probabilistic representations [16} [8] but differs in the emphasis on spike-based repre-
sentations, time-varying inputs, and learning. In our model, a probability distribution over a finite
sample space is represented by spike counts in neural sub-populations. Treating spikes as random
samples requires that neurons in a pool of identical cells fire independently. This hypothesis is sup-
ported by a recent experimental findings [21] that nearby neurons with similar orientation tuning and
common inputs show little or no correlation in activity. Our model offers a functional explanation
for the existence of such decorrelated neuronal activity in the cortex.

Unlike many previous models of cortical computation, our model treats synaptic transmission be-
tween neurons as a stochastic process rather than a deterministic event. This acknowledges the
inherent stochastic nature of neurotransmitter release and binding. Synapses between neurons usu-
ally have only a small number of vesicles available and a limited number of post-synaptic receptors
near the release sites. Recent physiological studies [24] have shown that only 3 NMDA receptors
open on average per release during synaptic transmission. These observations lend support to the
view espoused by the model that synapses should be treated as probabilistic computational units
rather than as simple scalar parameters as assumed in traditional neural network models.

The model for learning we have proposed builds on prior work on online learning [25, [26]]. The
online algorithm used in our model for estimating HMM parameters involves three levels of approx-
imation. The first level involves performing a stochastic approximation to estimate the expected
complete-data sufficient statistics over the joint distribution of all hidden states and observations.
Cappe and Moulines [26] showed that under some mild conditions, such an approximation produces
a consistent, asymptotically efficient estimator of the true parameters. The second approximation
comes from the use of filtered rather than smoothed posterior distributions. Although the conver-
gence reported in the methods section is encouraging, a rigorous proof of convergence remains to
be shown. The asymptotic convergence rate using only the filtered distribution is about one third
the convergence rate obtained for the algorithms in [25] and [26], where the smoothed distribution
is used. The third approximation results from Monte-Carlo sampling of the posterior distribution.
As discussed in the methods section, the Monte Carlo approximation converges in the limit of large
numbers of particles (spikes).
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