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Abstract

This paper studies the problem of rank aggregation under the Plackett-Luce model.
The goal is to infer a global ranking and related scores of the items, based on par-
tial rankings provided by multiple users over multiple subsets of items. A question
of particular interest is how to optimally assign items to users for ranking and how
many item assignments are needed to achieve a target estimation error. Without
any assumptions on how the items are assigned to users, we derive an oracle lower
bound and the Cramér-Rao lower bound of the estimation error. We prove an up-
per bound on the estimation error achieved by the maximum likelihood estimator,
and show that both the upper bound and the Cramér-Rao lower bound inversely de-
pend on the spectral gap of the Laplacian of an appropriately defined comparison
graph. Since random comparison graphs are known to have large spectral gaps,
this suggests the use of random assignments when we have the control. Precisely,
the matching oracle lower bound and the upper bound on the estimation error im-
ply that the maximum likelihood estimator together with a random assignment is
minimax-optimal up to a logarithmic factor. We further analyze a popular rank-
breaking scheme that decompose partial rankings into pairwise comparisons. We
show that even if one applies the mismatched maximum likelihood estimator that
assumes independence (on pairwise comparisons that are now dependent due to
rank-breaking), minimax optimal performance is still achieved up to a logarithmic
factor.

1 Introduction

Given a set of individual preferences from multiple decision makers or judges, we address the prob-
lem of computing a consensus ranking that best represents the preference of the population col-
lectively. This problem, known as rank aggregation, has received much attention across various
disciplines including statistics, psychology, sociology, and computer science, and has found nu-
merous applications including elections, sports, information retrieval, transportation, and marketing
[1, 2, 3, 4]. While consistency of various rank aggregation algorithms has been studied when a
growing number of sampled partial preferences is observed over a fixed number of items [5, 6],
little is known in the high-dimensional setting where the number of items and number of observed
partial rankings scale simultaneously, which arises in many modern datasets. Inference becomes
even more challenging when each individual provides limited information. For example, in the well
known Netflix challenge dataset, 480,189 users submitted ratings on 17,770 movies, but on average
a user rated only 209 movies. To pursue a rigorous study in the high-dimensional setting, we assume
that users provide partial rankings over subsets of items generated according to the popular Plackett-
Luce (PL) model [7] from some hidden preference vector over all the items and are interested in
estimating the preference vector (see Definition 1).

Intuitively, inference becomes harder when few users are available, or each user is assigned few
items to rank, meaning fewer observations. The first goal of this paper is to quantify the number of
item assignments needed to achieve a target estimation error. Secondly, in many practical scenarios
such as crowdsourcing, the systems have the control over the item assignment. For such systems, a
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natural question of interest is how to optimally assign the items for a given budget on the total num-
ber of item assignments. Thirdly, a common approach in practice to deal with partial rankings is to
break them into pairwise comparisons and apply the state-of-the-art rank aggregation methods spe-
cialized for pairwise comparisons [8, 9]. It is of both theoretical and practical interest to understand
how much the performance degrades when rank breaking schemes are used.

Notation. For any set S, let |S| denote its cardinality. Let sn1 = {s1, . . . , sn} denote a set with
n elements. For any positive integer N , let [N ] = {1, . . . , N}. We use standard big O notations,
e.g., for any sequences {an} and {bn}, an = Θ(bn) if there is an absolute constant C > 0 such that
1/C ≤ an/bn ≤ C. For a partial ranking σ over S, i.e., σ is a mapping from [|S|] to S, let σ−1

denote the inverse mapping. All logarithms are natural unless the base is explicitly specified. We
say a sequence of events {An} holds with high probability if P[An] ≥ 1− c1n−c2 for two positive
constants c1, c2.

1.1 Problem setup

We describe our model in the context of recommender systems, but it is applicable to other systems
with partial rankings. Consider a recommender system with m users indexed by [m] and n items
indexed by [n]. For each item i ∈ [n], there is a hidden parameter θ∗i measuring the underlying
preference. Each user j, independent of everyone else, randomly generates a partial ranking σj
over a subset of items Sj ⊆ [n] according to the PL model with the underlying preference vector
θ∗ = (θ∗1 , . . . , θ

∗
n).

Definition 1 (PL model). A partial ranking σ : [|S|] → S is generated from {θ∗i , i ∈ S} under
the PL model in two steps: (1) independently assign each item i ∈ S an unobserved value Xi,
exponentially distributed with mean e−θ

∗
i ; (2) select σ so that Xσ(1) ≤ Xσ(2) ≤ · · · ≤ Xσ(|S|).

The PL model can be equivalently described in the following sequential manner. To generate a
partial ranking σ, first select σ(1) in S randomly from the distribution eθ

∗
i /
(∑

i′∈S e
θ∗
i′
)
; secondly,

select σ(2) in S \ {σ(1)} with the probability distribution eθ
∗
i /
(∑

i′∈S\{σ(1)} e
θ∗
i′
)
; continue the

process in the same fashion until all the items in S are assigned. The PL model is a special case of
the following class of models.

Definition 2 (Thurstone model, or random utility model (RUM) ). A partial ranking σ : [|S|] → S
is generated from {θ∗i , i ∈ S} under the Thurstone model for a given CDF F in two steps: (1)
independently assign each item i ∈ S an unobserved utility Ui, with CDF F (c− θ∗i ); (2) select σ so
that Uσ(1) ≥ Uσ(2) ≥ · · · ≥ Uσ(|S|).

To recover the PL model from the Thurstone model, take F to be the CDF for the standard Gumbel
distribution: F (c) = e−(e−c). Equivalently, take F to be the CDF of − log(X) such that X has the
exponential distribution with mean one. For this choice of F, the utility Ui having CDF F (c− θ∗i ),

is equivalent to Ui = − log(Xi) such that Xi is exponentially distributed with mean e−θ
∗
i . The

corresponding partial permutation σ is such that Xσ(1) ≤ Xσ(2) ≤ · · · ≤ Xσ(|S|), or equivalently,
Uσ(1) ≥ Uσ(2) ≥ · · · ≥ Uσ(|S|). (Note the opposite ordering of X’s and U ’s.)

Given the observation of all partial rankings {σj}j∈[m] over the subsets {Sj}j∈[m] of items, the
task is to infer the underlying preference vector θ∗. For the PL model, and more generally for the
Thurstone model, we see that θ∗ and θ∗ + a1 for any a ∈ R are statistically indistinguishable,
where 1 is an all-ones vector. Indeed, under our model, the preference vector θ∗ is the equivalence
class [θ∗] = {θ : ∃a ∈ R, θ = θ∗ + a1}. To get a unique representation of the equivalence
class, we assume

∑n
i=1 θ

∗
i = 0. Then the space of all possible preference vectors is given by

Θ = {θ ∈ Rn :
∑n
i=1 θi = 0}. Moreover, if θ∗i − θ∗i′ becomes arbitrarily large for all i′ 6= i, then

with high probability item i is ranked higher than any other item i′ and there is no way to estimate
θi to any accuracy. Therefore, we further put the constraint that θ∗ ∈ [−b, b]n for some b ∈ R
and define Θb = Θ ∩ [−b, b]n. The parameter b characterizes the dynamic range of the underlying
preference. In this paper, we assume b is a fixed constant. As observed in [10], if b were scaled with
n, then it would be easy to rank items with high preference versus items with low preference and
one can focus on ranking items with close preference.
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We denote the number of items assigned to user j by kj := |Sj | and the average number of assigned
items per use by k = 1

m

∑m
j=1 kj ; parameter k may scale with n in this paper. We consider two

scenarios for generating the subsets {Sj}mj=1: the random item assignment case where the Sj’s are
chosen independently and uniformly at random from all possible subsets of [n] with sizes given by
the kj’s, and the deterministic item assignment case where the Sj’s are chosen deterministically.

Our main results depend on the structure of a weighted undirected graph G defined as follows.
Definition 3 (Comparison graph G). Each item i ∈ [n] corresponds to a vertex i ∈ [n]. For any pair
of vertices i, i′, there is a weighted edge between them if there exists a user who ranks both items i
and i′; the weight equals

∑
j:i,i′∈Sj

1
kj−1 .

Let A denote the weighted adjacency matrix of G. Let di =
∑
j Aij , so di is the number of users

who rank item i, and without loss of generality assume d1 ≤ d2 ≤ · · · ≤ dn. LetD denote the n×n
diagonal matrix formed by {di, i ∈ [n]} and define the graph Laplacian L as L = D − A. Observe
that L is positive semi-definite and the smallest eigenvalue of L is zero with the corresponding
eigenvector given by the normalized all-one vector. Let 0 = λ1 ≤ λ2 ≤ · · · ≤ λn denote the
eigenvalues of L in ascending order.

Summary of main results. Theorem 1 gives a lower bound for the estimation error that scales as∑n
i=2

1
di

. The lower bound is derived based on a genie-argument and holds for both the PL model
and the more general Thurstone model. Theorem 2 shows that the Cramér-Rao lower bound scales
as
∑n
i=2

1
λi

. Theorem 3 gives an upper bound for the squared error of the maximum likelihood (ML)
estimator that scales as mk logn

(λ2−
√
λn)2

. Under the full rank breaking scheme that decomposes a k-way

comparison into
(
k
2

)
pairwise comparisons, Theorem 4 gives an upper bound that scales as mk logn

λ2
2

.

If the comparison graph is an expander graph, i.e., λ2 ∼ λn and mk = Ω(n log n), our lower and
upper bounds match up to a log n factor. This follows from the fact that

∑
i λi =

∑
i di = mk,

and for expanders mk = Θ(nλ2). Since the Erdős-Rényi random graph is an expander graph with
high probability for average degree larger than log n, when the system is allowed to choose the
item assignment, we propose a random assignment scheme under which the items for each user are
chosen independently and uniformly at random. It follows from Theorem 1 that mk = Ω(n) is
necessary for any item assignment scheme to reliably infer the underlying preference vector, while
our upper bounds imply that mk = Ω(n log n) is sufficient with the random assignment scheme and
can be achieved by either the ML estimator or the full rank breaking or the independence-preserving
breaking that decompose a k-way comparison into bk/2c non-intersecting pairwise comparisons,
proving that rank breaking schemes are also nearly optimal.

1.2 Related Work

There is a vast literature on rank aggregation, and here we can only hope to cover a fraction of them
we see most relevant. In this paper, we study a statistical learning approach, assuming the observed
ranking data is generated from a probabilistic model. Various probabilistic models on permutations
have been studied in the ranking literature (see, e.g., [11, 12]). A nonparametric approach to mod-
eling distributions over rankings using sparse representations has been studied in [13]. Most of the
parametric models fall into one of the following three categories: noisy comparison model, distance
based model, and random utility model. The noisy comparison model assumes that there is an un-
derlying true ranking over n items, and each user independently gives a pairwise comparison which
agrees with the true ranking with probability p > 1/2. It is shown in [14] that O(n log n) pairwise
comparisons, when chosen adaptively, are sufficient for accurately estimating the true ranking.

The Mallows model is a distance-based model, which randomly generates a full ranking σ over n
items from some underlying true ranking σ∗ with probability proportional to e−βd(σ,σ∗), where β is
a fixed spread parameter and d(·, ·) can be any permutation distance such as the Kemeny distance.
It is shown in [14] that the true ranking σ∗ can be estimated accurately given O(log n) independent
full rankings generated under the Mallows model with the Kemeny distance.

In this paper, we study a special case of random utility models (RUMs) known as the Plackett-Luce
(PL) model. It is shown in [7] that the likelihood function under the PL model is concave and the
ML estimator can be efficiently found using a minorization-maximization (MM) algorithm which is
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a variation of the general EM algorithm. We give an upper bound on the error achieved by such
an ML estimator, and prove that this is matched by a lower bound. The lower bound is derived by
comparing to an oracle estimator which observes the random utilities of RUM directly. The Bradley-
Terry (BT) model is the special case of the PL model where we only observe pairwise comparisons.
For the BT model, [10] proposes RankCentrality algorithm based on the stationary distribution of a
random walk over a suitably defined comparison graph and shows Ω(npoly(log n)) randomly chosen
pairwise comparisons are sufficient to accurately estimate the underlying parameters; one corollary
of our result is a matching performance guarantee for the ML estimator under the BT model. More
recently, [15] analyzed various algorithms including RankCentrality and the ML estimator under a
general, not necessarily uniform, sampling scheme.

In a PL model with priors, MAP inference becomes computationally challenging. Instead, an effi-
cient message-passing algorithm is proposed in [16] to approximate the MAP estimate. For a more
general family of random utility models, Soufiani et al. in [17, 18] give a sufficient condition under
which the likelihood function is concave, and propose a Monte-Carlo EM algorithm to compute the
ML estimator for general RUMs. More recently in [8, 9], the generalized method of moments to-
gether with the rank-breaking is applied to estimate the parameters of the PL model and the random
utility model when the data consists of full rankings.

2 Main results

In this section, we present our theoretical findings and numerical experiments.

2.1 Oracle lower bound

In this section, we derive an oracle lower bound for any estimator of θ∗. The lower bound is con-
structed by considering an oracle who reveals all the hidden scores in the PL model as side informa-
tion and holds for the general Thurstone models.
Theorem 1. Suppose σm1 are generated from the Thurstone model for some CDF F. For any esti-
mator θ̂,

inf
θ̂

sup
θ∗∈Θb

E[||θ̂ − θ∗||22] ≥ 1

2I(µ) + 2π2

b2(d1+d2)

n∑
i=2

1

di
≥ 1

2I(µ) + 2π2

b2(d1+d2)

(n− 1)2

mk
,

where µ is the probability density function of F , i.e., µ = F ′ and I(µ) =
∫ (µ′(x))

2

µ(x) dx; the second
inequality follows from the Jensen’s inequality. For the PL model, which is a special case of the
Thurstone models with F being the standard Gumbel distribution, I(µ) = 1.

Theorem 1 shows that the oracle lower bound scales as
∑n
i=2

1
di

. We remark that the summation
begins with 1/d2. This makes some sense, in view of the fact that the parameters θ∗i need to sum
to zero. For example, if d1 is a moderate value and all the other di’s are very large, then with the
hidden scores as side information, we may be able to accurately estimate θ∗i for i 6= 1 and therefore
accurately estimate θ∗1 . The oracle lower bound also depends on the dynamic range b and is tight for
b = 0, because a trivial estimator that always outputs the all-zero vector achieves the lower bound.

Comparison to previous work Theorem 1 implies that mk = Ω(n) is necessary for any item
assignment scheme to reliably infer θ∗, i.e., ensuring E[||θ̂−θ∗||22] = o(n). It provides the first con-
verse result on inferring the parameter vector under the general Thurstone models to our knowledge.
For the Bradley-Terry model, which is a special case of the PL model where all the partial rankings
reduce to the pairwise comparisons, i.e., k = 2, it is shown in [10] that m = Ω(n) is necessary
for the random item assignment scheme to achieve the reliable inference based on the information-
theoretic argument. In contrast, our converse result is derived based on the Bayesian Cramé-Rao
lower bound [19], applies to the general models with any item assignment, and is considerably
tighter if di’s are of different orders.

2.2 Cramér-Rao lower bound

In this section, we derive the Cramér-Rao lower bound for any unbiased estimator of θ∗.
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Theorem 2. Let kmax = maxj∈[m] kj and U denote the set of all unbiased estimators of θ∗, i.e.,
θ̂ ∈ U if and only if E[θ̂|θ∗ = θ] = θ,∀θ ∈ Θb. If b > 0, then

inf
θ̂∈U

sup
θ∗∈Θb

E[‖θ̂ − θ∗‖22] ≥

(
1− 1

kmax

kmax∑
`=1

1

`

)−1
n∑
i=2

1

λi
≥

(
1− 1

kmax

kmax∑
`=1

1

`

)−1

(n− 1)2

mk
,

where the second inequality follows from the Jensen’s inequality.

The Cramér-Rao lower bound scales as
∑n
i=2

1
λi

. When G is disconnected, i.e., all the items can be
partitioned into two groups such that no user ever compares an item in one group with an item in
the other group, λ2 = 0 and the Cramér-Rao lower bound is infinity, which is valid (and of course
tight) because there is no basis for gauging any item in one connected component with respect to any
item in the other connected component and the accurate inference is impossible for any estimator.
Although the Cramér-Rao lower bound only holds for any unbiased estimator, we suspect that a
lower bound with the same scaling holds for any estimator, but we do not have a proof.

2.3 ML upper bound

In this section, we study the ML estimator based on the partial rankings. The ML estimator of θ∗ is
defined as θ̂ML ∈ arg maxθ∈Θb

L(θ), where L(θ) is the log likelihood function given by

L(θ) = logPθ[σm1 ] =

m∑
j=1

kj−1∑
`=1

[
θσj(`) − log

(
exp(θσj(`)) + · · ·+ exp(θσj(kj))

)]
. (1)

As observed in [7], L(θ) is concave in θ and thus the ML estimator can be efficiently computed
either via the gradient descent method or the EM type algorithms.

The following theorem gives an upper bound on the error rates inversely dependent on λ2. Intu-
itively, by the well-known Cheeger’s inequality, if the spectral gap λ2 becomes larger, then there are
more edges across any bi-partition of G, meaning more pairwise comparisons are available between
any bi-partition of movies, and therefore θ∗ can be estimated more accurately.
Theorem 3. Assume λn ≥ C log n for a sufficiently large constant C in the case with k > 2. Then
with high probability,

‖θ̂ML − θ∗‖2 ≤

{
4(1 + e2b)2λ−1

2

√
m log n If k = 2,

8e4b
√

2mk logn
λ2−16e2b

√
λn logn

If k > 2.

We compare the above upper bound with the Cramér-Rao lower bound given by Theorem 2. Notice
that

∑n
i=1 λi = mk and λ1 = 0. Therefore, mk

λ2
2
≥
∑n
i=2

1
λi

and the upper bound is always
larger than the Cramér-Rao lower bound. When the comparison graph G is an expander and mk =
Ω(n log n), by the well-known Cheeger’s inequality, λ2 ∼ λn = Ω(log n) , the upper bound is only
larger than the Cramér-Rao lower bound by a logarithmic factor. In particular, with the random item
assignment scheme, we show that λ2, λn ∼ mk

n if mk ≥ C log n and as a corollary of Theorem 3,
mk = Ω(n log n) is sufficient to ensure ‖θ̂ML−θ∗‖2 = o(

√
n), proving the random item assignment

scheme with the ML estimation is minimax-optimal up to a log n factor.
Corollary 1. Suppose Sm1 are chosen independently and uniformly at random among all possible
subsets of [n]. Then there exists a positive constant C > 0 such that if m ≥ Cn log n when k = 2
and mk ≥ Ce2b log n when k > 2, then with high probability

‖θ̂ML − θ∗‖2 ≤

 4(1 + e2b)2
√

n2 logn
m , if k = 2,

32e4b
√

2n2 logn
mk , if k > 2.

Comparison to previous work Theorem 3 provides the first finite-sample error rates for inferring
the parameter vector under the PL model to our knowledge. For the Bradley-Terry model, which
is a special case of the PL model with k = 2, [10] derived the similar performance guarantee by
analyzing the rank centrality algorithm and the ML estimator. More recently, [15] extended the
results to the non-uniform sampling scheme of item pairs, but the performance guarantees obtained
when specialized to the uniform sampling scheme require at least m = Ω(n4 log n) to ensure ‖θ̂ −
θ∗‖2 = o(

√
n), while our results only require m = Ω(n log n).
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2.4 Rank breaking upper bound

In this section, we study two rank-breaking schemes which decompose partial rankings into pairwise
comparisons.
Definition 4. Given a partial ranking σ over the subset S ⊂ [n] of size k, the independence-
preserving breaking scheme (IB) breaks σ into bk/2c non-intersecting pairwise comparisons of form
{it, i′t, yt}

bk/2c
t=1 such that {is, i′s} ∩ {it, i′t} = ∅ for any s 6= t and yt = 1 if σ−1(it) < σ−1(i′t) and

0 otherwise. The random IB chooses {it, i′t}
bk/2c
t=1 uniformly at random among all possibilities.

If σ is generated under the PL model, then the IB breaks σ into independent pairwise comparisons
generated under the PL model. Hence, we can first break partial rankings σm1 into independent pair-
wise comparisons using the random IB and then apply the ML estimator on the generated pairwise
comparisons with the constraint that θ ∈ Θb, denoted by θ̂IB. Under the random assignment scheme,
as a corollary of Theorem 3, mk = Ω(n log n) is sufficient to ensure ‖θ̂IB− θ∗‖2 = o(

√
n), proving

the random item assignment scheme with the random IB is minimax-optimal up to a log n factor in
view of the oracle lower bound in Theorem 1.
Corollary 2. Suppose Sm1 are chosen independently and uniformly at random among all possible
subsets of [n] with size k. There exists a positive constant C > 0 such that if mk ≥ Cn log n, then
with high probability,

‖θ̂IB − θ∗‖2 ≤ 4(1 + e2b)2

√
2n2 log n

mk
.

Definition 5. Given a partial ranking σ over the subset S ⊂ [n] of size k, the full breaking scheme

(FB) breaks σ into all
(
k
2

)
possible pairwise comparisons of form {it, i′t, yt}

(k
2)
t=1 such that yt = 1 if

σ−1(it) < σ−1(i′t) and 0 otherwise.

If σ is generated under the PL model, then the FB breaks σ into pairwise comparisons which are not
independently generated under the PL model. We pretend the pairwise comparisons induced from
the full breaking are all independent and maximize the weighted log likelihood function given by

L(θ) =

m∑
j=1

1

2(kj − 1)

∑
i,i′∈Sj

(
θiI{σ−1

j (i)<σ−1
j (i′)} + θi′I{σ−1

j (i)>σ−1
j (i′)} − log

(
eθi + eθi′

))
(2)

with the constraint that θ ∈ Θb. Let θ̂FB denote the maximizer. Notice that we put the weight 1
kj−1

to adjust the contributions of the pairwise comparisons generated from the partial rankings over
subsets with different sizes.
Theorem 4. With high probability, ‖θ̂FB−θ∗‖2 ≤ 2(1+e2b)2

√
mk logn
λ2

. Furthermore, suppose Sm1
are chosen independently and uniformly at random among all possible subsets of [n]. There exists
a positive constant C > 0 such that if mk ≥ Cn log n, then with high probability, ‖θ̂FB − θ∗‖2 ≤
4(1 + e2b)2

√
n2 logn
mk .

Theorem 4 shows that the error rates of θ̂FB inversely depend on λ2. When the comparison graph G
is an expander, i.e., λ2 ∼ λn, the upper bound is only larger than the Cramér-Rao lower bound by a
logarithmic factor. The similar observation holds for the ML estimator as shown in Theorem 3. With
the random item assignment scheme, Theorem 4 imply that the FB only need mk = Ω(n log n)
to achieve the reliable inference, which is optimal up to a log n factor in view of the oracle lower
bound in Theorem 1.

Comparison to previous work The rank breaking schemes considered in [8, 9] breaks the full
rankings according to rank positions while our schemes break the partial rankings according to the
item indices. The results in [8, 9] establish the consistency of the generalized method of moments
under the rank breaking schemes when the data consists of full rankings. In contrast, Corollary 2 and
Theorem 4 apply to the more general setting with partial rankings and provide the finite-sample error
rates, proving the optimality of the random IB and FB with the random item assignment scheme.
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2.5 Numerical experiments

Suppose there are n = 1024 items and θ∗ is uniformly distributed over [−b, b]. We first generate
d full rankings over 1024 items according to the PL model with parameter θ∗. Then for each fixed
k ∈ {512, 256, . . . , 2}, we break every full ranking σ into n/k partial rankings over subsets of
size k as follows: Let {Sj}n/kj=1 denote a partition of [n] generated uniformly at random such that

Sj ∩ Sj′ = ∅ for j 6= j′ and |Sj | = k for all j; generate {σj}n/kj=1 such that σj is the partial ranking
over set Sj consistent with σ. In this way, in total we get m = dn/k k-way comparisons which
are all independently generated from the PL model. We apply the minorization-maximization (MM)
algorithm proposed in [7] to compute the ML estimator θ̂ML based on the k-way comparisons and
the estimator θ̂FB based on the pairwise comparisons induced by the FB. The estimation error is
measured by the rescaled mean square error (MSE) defined by log2

(
mk
n2 ‖θ̂ − θ∗‖22

)
.

We run the simulation with b = 2 and d = 16, 64. The results are depicted in Fig. 1. We also plot

the Cramér-Rao (CR) limit given by log2

(
1− 1

k

∑k
l=1

1
l

)−1

as per Theorem 2. The oracle lower
bound in Theorem 1 implies that the rescaled MSE is at least 0. We can see that the rescaled MSE of
the ML estimator θ̂ML is close to the CR limit and approaches the oracle lower bound as k becomes
large, suggesting the ML estimator is minimax-optimal. Furthermore, the rescaled MSE of θ̂FB under
FB is approximately twice larger than the CR limit, suggesting that the FB is minimax-optimal up
to a constant factor.

1 2 3 4 5 6 7 8 9 10
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FB (d=64)
d=16
d=64
CR Limit

Figure 1: The error rate based on nd/k k-way comparisons with and without full breaking.

Finally, we point out that when d = 16 and log2(k) = 1, the MSE returned by the MM algorithm
is infinity. Such singularity occurs for the following reason. Suppose we consider a directed com-
parison graph with nodes corresponding to items such that for each (i, j), there is a directed edge
(i → j) if item i is ever ranked higher than j. If the graph is not strongly connected, i.e., if there
exists a partition of the items into two groupsA andB such that items inA are always ranked higher
than items in B, then if all {θi : i ∈ A} are increased by a positive constant a, and all {θi : i ∈ B}
are decreased by another positive constant a′ such that all {θi, i ∈ [n]} still sum up to zero, the log
likelihood (1) must increase; thus, the log likelihood has no maximizer over the parameter space
Θ, and the MSE returned by the MM algorithm will diverge. Theoretically, if b is a constant and
d exceeds the order of log n, the directed comparison graph will be strongly connected with high
probability and so such singularity does not occur in our numerical experiments when d ≥ 64. In
practice we can deal with this singularity issue in three ways: 1) find the strongly connected com-
ponents and then run MM in each component to come up with an estimator of θ∗ restricted to each
component; 2) introduce a proper prior on the parameters and use Bayesian inference to come up
with an estimator (see [16]); 3) add to the log likelihood objective function a regularization term
based on ‖θ‖2 and solve the regularized ML using the gradient descent algorithms (see [10]).
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3 Proofs

We sketch the proof of our two upper bounds given by Theorem 3 and Theorem 4. The proofs of
other results can be found in the supplementary file. We introduce some additional notations used
in the proof. For a vector x, let ‖x‖2 denote the usual l2 norm. Let 1 denote the all-one vector
and 0 denote the all-zero vector with the appropriate dimension. Let Sn denote the set of n × n
symmetric matrices with real-valued entries. For X ∈ Sn, let λ1(X) ≤ λ2(X) ≤ · · · ≤ λn(X)
denote its eigenvalues sorted in increasing order. Let Tr(X) =

∑n
i=1 λi(X) denote its trace and

‖X‖ = max{−λ1(X), λn(X)} denote its spectral norm. For two matrices X,Y ∈ Sn, we write
X ≤ Y if Y −X is positive semi-definite, i.e., λ1(Y −X) ≥ 0. Recall thatL(θ) is the log likelihood
function. Let∇L(θ) denote its gradient and H(θ) ∈ Sn denote its Hessian matrix.

3.1 Proof of Theorem 3

The main idea of the proof is inspired from the proof of [10, Theorem 4]. We first introduce several
key auxiliary results used in the proof. Observe that Eθ∗ [∇L(θ∗)] = 0. The following lemma upper
bounds the deviation of∇L(θ∗) from its mean.

Lemma 1. With probability at least 1− 2e2

n ,

‖∇L(θ∗)‖2 ≤
√

2mk log n (3)

Observed that −H(θ) is positive semi-definite with the smallest eigenvalue equal to zero. The
following lemma lower bounds its second smallest eigenvalue.
Lemma 2. Fix any θ ∈ Θb. Then

λ2 (−H(θ)) ≥

{
e2b

(1+e2b)2
λ2 If k = 2,

1
4e4b

(
λ2 − 16e2b

√
λn log n

)
If k > 2,

(4)

where the inequality holds with probability at least 1− n−1 in the case with k > 2.

Proof of Theorem 3. Define ∆ = θ̂ML − θ∗. It follows from the definition that ∆ is orthogonal to
the all-one vector. By the definition of the ML estimator, L(θ̂ML) ≥ L(θ∗) and thus

L(θ̂ML)− L(θ∗)− 〈∇L(θ∗),∆〉 ≥ −〈∇L(θ∗),∆〉 ≥ −‖∇L(θ∗)‖2‖∆‖2, (5)
where the last inequality holds due to the Cauchy-Schwartz inequality. By the Taylor expansion,
there exists a θ = aθ̂ML + (1− a)θ∗ for some a ∈ [0, 1] such that

L(θ̂ML)− L(θ∗)− 〈∇L(θ∗),∆〉 =
1

2
∆>H(θ)∆ ≤ −1

2
λ2(−H(θ))‖∆‖22, (6)

where the last inequality holds because the Hessian matrix −H(θ) is positive semi-definite with
H(θ)1 = 0 and ∆>1 = 0. Combining (5) and (6),

‖∆‖2 ≤ 2‖∇L(θ∗)‖2/λ2(−H(θ)). (7)
Note that θ ∈ Θb by definition. The theorem follows by Lemma 1 and Lemma 2.

3.2 Proof of Theorem 4

It follows from the definition of L(θ) given by (2) that

∇iL(θ∗) =
∑
j:i∈Sj

1

kj − 1

∑
i′∈Sj :i′ 6=i

[
I{σ−1

j (i)<σ−1
j (i′)} −

exp(θ∗i )

exp(θ∗i ) + exp(θ∗i′)

]
, (8)

which is a sum of di independent random variables with mean zero and bounded by 1. By Ho-
effding’s inequality, |∇iL(θ∗)| ≤

√
di log n with probability at least 1 − 2n−2. By union bound,

‖∇L(θ∗)‖2 ≤
√
mk log n with probability at least 1− 2n−1. The Hessian matrix is given by

H(θ) = −
m∑
j=1

1

2(kj − 1)

∑
i,i′∈Sj

(ei − ei′)(ei − ei′)>
exp(θi + θi′)

[exp(θi) + exp(θi′)]
2 .

If |θi| ≤ b,∀i ∈ [n], exp(θi+θi′ )

[exp(θi)+exp(θi′ )]
2 ≥ e2b

(1+e2b)2
. It follows that −H(θ) ≥ e2b

(1+e2b)2
L for θ ∈ Θb

and the theorem follows from (7).
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