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Abstract

We combine the ideas behind trees and Gaussian graphical models to form a new
nonparametric family of graphical models. Our approach is to attach nonpara-
normal “blossoms”, with arbitrary graphs, to a collection of nonparametric trees.
The tree edges are chosen to connect variables that most violate joint Gaussianity.
The non-tree edges are partitioned into disjoint groups, and assigned to tree nodes
using a nonparametric partial correlation statistic. A nonparanormal blossom is
then “grown” for each group using established methods based on the graphical
lasso. The result is a factorization with respect to the union of the tree branches
and blossoms, defining a high-dimensional joint density that can be efficiently es-
timated and evaluated on test points. Theoretical properties and experiments with
simulated and real data demonstrate the effectiveness of blossom trees.

1 Introduction

Let p∗(x) be a probability density on Rd corresponding to a random vectorX = (X1, . . . , Xd). The
undirected graphG = (V,E) associated with p∗ has d = |V | vertices corresponding toX1, . . . , Xd,
and missing edges (i, j) 6∈ E whenever Xi and Xj are conditionally independent given the other
variables. The undirected graph is a useful way of exploring and modeling the distribution.

In this paper we are concerned with building graphical models for continuous variables, under
weaker assumptions than those imposed by existing methods. If p∗(x) > 0 is strictly positive,
the Hammersley-Clifford theorem implies that the density has the form

p∗(x) ∝
∏

C∈C
ψC(xC) = exp

(∑

C∈C
fC(xC)

)
. (1.1)

In this expression, C denotes the set of cliques in the graph, and ψC(xC) = exp(fC(xC)) > 0
denotes arbitrary potential functions. This represents a very large and rich set of nonparametric
graphical models. The fundamental difficulty is that it is in general intractable to compute the
normalizing constant. A compromise must be made to achieve computationally tractable inference,
typically involving strong assumptions on the functions fC , on the graph G = {C}, or both.

The default model for graphical modeling of continuous data is the multivariate Gaussian. When
the Gaussian has covariance matrix Σ, the graph is encoded in the sparsity pattern of the precision
matrix Ω = Σ−1. Specifically, edge (i, j) is missing if and only if Ωij = 0. Recent work has
focused on sparse estimates of the precision matrix [8, 10]. In particular, an efficient algorithm for
computing the estimator using a graphical version of the lasso is developed in [3]. The nonpara-
normal [5], a form of Gaussian copula, weakens the Gaussian assumption by imposing Gaussianity
on the transformed random vector f(X) = (f1(X1), . . . , fd(Xd)), where each fj is a monotonic
function. This allows arbitrary single variable marginal probability distributions in the model [5].
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Both the Gaussian graphical model and the nonparanormal maintain tractable inference without
placing limitations on the independence graph. But they are limited in their ability to flexibly model
the bivariate and higher order marginals. At another extreme, forest-structured graphical models
permit arbitrary bivariate marginals, but maintain tractability by restricting to acyclic graphs. An
nonparametric approach based on forests and trees is developed in [7] as a nonparametric method
for estimating the density in high-dimensional settings. However, the ability to model complex
independence graphs is compromised.

In this paper we bring together the Gaussian, nonparanormal, and forest graphical models, using
what we call blossom tree graphical models. Informally, a blossom tree consists of a forest of trees,
and a collection of subgraphs–the blossoms—possibly containing many cycles. The vertex sets
of the blossoms are disjoint, and each blossom contains at most one node of a tree. We estimate
nonparanormal graphical models over the blossoms, and nonparametric bivariate densities over the
branches (edges) of the trees. Using the properties of the nonparanormal, these components can
be combined, or factored, to give a valid joint density for X = (X1, . . . , Xd). The details of our
construction are given in Section 2. We develop an estimation procedure for blossom tree graphi-
cal models, including an algorithm for selecting tree branches, partition the remaining vertices into
potential blossoms, and then estimating the graphical structures of the blossoms. Since an objec-
tive is to relax the Gaussian assumption, our criterion for selecting tree branches is deviation from
Gaussianity. Toward this end, we use the negentropy, showing that it has strong statistical properties
in high dimensions. In order to partition the nodes into blossoms, we employ a nonparametric par-
tial correlation statistic. We use a data-splitting scheme to select the optimal blossom tree structure
based on held-out risk.

In the following section, we present the details of our method, including definitions of blossom tree
graphs, the associated family of graphical models, and our estimation methods. In Sections 3 and 4,
we present experiments with simulated and real data. Finally, we conclude in Section 5. Statistical
properties, detailed proofs, and further experimental results are collected in a supplement.

2 Blossom Tree Graphs and Estimation Methods

To unify the Gaussian, nonparanormal and forest graphical models we make the following definition.

Definition 2.1. A blossom tree on a node set V = {1, 2, . . . , d} is a graph G = (V,E), together
with a decomposition of the edge set E as E = F ∪ {∪B∈BB} satisfying the following properties:

1. F is acyclic;

2. V (B) ∩ V (B′) = ∅, for B,B′ ∈ B with B 6= B′, where V (B) denotes the vertex set of
B.

3. |V (B) ∩ V (F )| ≤ 1 for each B ∈ B;

4. V (F ) ∪⋃B V (B) = V .

The subgraphs B ∈ B are called blossoms. The unique node ρ(B) ∈ V (B) ∩ V (F ), which may be
empty, is called the pedicel of the blossom. The set of pedicels is denoted P(F ) ⊂ V (F ).

Property 1 says that the set of edges F forms a union of trees—a forest. Property 2 says that distinct
blossoms share no vertices or edges in common. Property 3 says that each blossom is connected to at
most one tree node. Property 4 says that every node in the graph is either in a tree or a blossom. Note
that the blossoms are not required to be connected, but must have at most one vertex in common
with the forest—this is the pedicel node.
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(a) blossom tree (b) violation (c) blossom tree (d) violation

Figure 1: Four graphs, two blossom trees. The tree edges are colored blue, the blossom edges are
colored black, and pedicels are orange. Graphs (a) and (c) correspond to blossom trees. Graphs (b)
and (d) violate the restriction that each blossom has only a single pedicel, or attachment to a tree.

Suppose that p(x) = p(x1, . . . , xd) is the density of a distribution that has an independence graph
given by a blossom tree F ∪ {∪BB}. Then from the blossom tree properties we have that

p(x) = p(XV (F ))
∏

B∈B
p(XV (B) |XV (F )) (2.1)

= p(XV (F ))
∏

B∈B
p(XV (B) |Xρ(B)) (2.2)

= p(XV (F ))
∏

B∈B

p(XV (B))

p(Xρ(B))
(2.3)

=
∏

(s,t)∈F

p(Xs, Xt)

p(Xs)p(Xt)

∏

s∈V (F )

p(Xs)
∏

B∈B

p(XV (B))

p(Xρ(B))
(2.4)

=
∏

(s,t)∈F

p(Xs, Xt)

p(Xs)p(Xt)

∏

s∈V (F )\P(F )

p(Xs)
∏

B∈B
p(XV (B)). (2.5)

The first equality follows from disjointness of the blossoms. The second equality follows from the
existence of a single pedicel node attaching the blossom to a tree. The fourth equality follows from
the standard factorization of forests, and the last equality follows from the fact that each non-empty
pedicel for a blossom is unique. We call the set of distributions that factor in this way the family of
blossom tree graphical models.

A key property of the nonparanormal [5] is that the single node marginal probabilities p(Xs) are
arbitrary. This property allows us to form graphical models where each blossom distribution satisfies
XV (B) ∼ NPN(µB ,ΣB , fB), while enforcing that the single node marginal of the pedicel ρ(B)
agrees with the marginals of this node defined by the forest. This allows us to define and estimate
distributions that are consistent with the factorization (2.5).

Let X(1), . . . , X(n) be n i.i.d. Rd-valued data vectors sampled from p∗(x) where X(l) =

(X
(l)
1 , . . . , X

(l)
d ). Our goal is to derive a method for high-dimensional undirected graph estima-

tion and density estimation, using a family of semiparametric estimators based on the blossom tree
structure. Let FB denote the blossom tree structure F ∪ {∪BB}. Our estimation procedure is the
following.

First, randomly partition the dataX(1), . . . , X(n) into two setsD1 andD2 of sample size n1 and n2.
Then apply the following steps.

1. UsingD1, estimate the bivariate densities p∗(xi, xj) using kernel density estimation. Also,
estimate the covariance Σij for each pair of variables. Apply Kruskal’s algorithm on the
estimated pairwise negentropy matrix to construct a family of forests {F̂ (k)} with k =
0, . . . , d− 1 edges;

2. Using D1, for each forest F̂ (k) obtained in Step 1, build the blossom tree-structured graph
F̂

(k)

B̂
. The forest structure F̂ (k) is modeled by nonparametric kernel density estimators,

while each blossom B̂
(k)
i is modeled by the graphical lasso or nonparanormal. A family of
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graphs is obtained by computing regularization paths for the blossoms, using the graphical
lasso.

3. Using D2, choose F̂ (k̂)

B̂
from this family of blossom tree models that maximizes the held-

out log-likelihood.

The details of each step are presented below.

2.1 Step 1: Construct A Family of Forests

In information theory and statistics, negentropy is used as a measure of distance to normality. The
negentropy is zero for Gaussian densities and is always nonnegative. The negentropy between vari-
ables Xi and Xj is defined as

J(Xi;Xj) = H(φ(xi, xj))−H(p∗(xi, xj)), (2.6)

where H(·) denotes the differential entropy of a density, and φ(xi, xj) is an Gaussian density with
the same mean and covariance matrix as p∗(xi, xj).

Kruskal’s algorithm [4] is a greedy algorithm to find a maximum weight spanning tree of a weighted
graph. At each step it includes an edge connecting the pair of nodes with the maximum weight
among all unvisited pairs, if doing so does not form a cycle. The algorithm also results in the best
k-edge weighted forest after k < d edges have been included.

In our setting, we define the weight w(i, j) of nodes i and j as the negentropy between Xi and Xj ,
and use Kruskal’s algorithm to build the maximum weight spanning forest F̂ (k) with k edges where
k < d. In such a way, the pairs of nodes that are less likely to be a bivariate Gaussian are included
in the forest and then are modeled nonparametrically.

Since the true density p∗ is unknown, we replace the population negentropy J(Xi;Xj) by the esti-
mate

Ĵn1
(Xi;Xj) = H(φ̂n1

(xi, xj))− Ĥ(p̂n1
(xi, xj)), (2.7)

where φ̂n1
(xi, xj) is an estimate of the Gaussian density φ(xi, xj) for Xi and Xj using D1,

p̂n1
(xi, xj) is a bivariate kernel density estimate for Xi and Xj , and Ĥ(·) denotes the empirical

differential entropy. In particular, let Σij be the covariance matrix of Xi and Xj . Denote Σ̂ijn1
as the

empirical covariance matrix of Xi and Xj based on D1, then the plug-in estimate

H(φ̂n1
(xi, xj)) = 1 + log(2π) +

1

2
logdet(Σ̂ijn1

). (2.8)

LetK(·) be a univariate kernel function. Then given an evaluation point (xi, xj), the bivariate kernel
density estimate for (Xi, Xj) based on observations {X(l)

i , X
(l)
j }l∈D1

is given by

p̂n1(xi, xj) =
1

n1

∑

l∈D1

1

h2ih2j
K

(
X

(l)
i − xi
h2i

)
K

(
X

(l)
j − xj
h2j

)
, (2.9)

where h2i and h2j are bandwidth parameters for (Xi, Xj). To compute the empirical differential
entropy Ĥ(p̂n1(xi, xj)), we numerically evaluate a two-dimensional integral.

Once the estimated negentropy matrix
[
Ĵn1

(Xi;Xj)
]
d×d

is obtained, we apply Kruskal’s algorithm

to construct a family of forests {F̂ (k)}k=0...d−1.

2.2 Step 2: Build and Model the Blossom Tree Graphs

Suppose that we have a forest-structured graph F with |V (F )| < d vertices. Then for each remain-
ing non-forest node, we need to determine which blossom it belongs to. We exploit the following
basic fact.
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Proposition 2.1. Suppose that X ∼ p∗ is a density for a blossom tree graphical model with forest
F . Let i 6∈ V (F ) and s ∈ V (F ). Then node i is not in a blossom attached to tree node s if and only
if

Xi ⊥⊥ Xs |Xt for some node t ∈ V (F ) such that (s, t) ∈ E(F ). (2.10)

We use this property, together with a measure of partial correlation, in order to partition the non-
forest nodes into blossoms. Partial correlation measures the degree of association between two
random variables, with the effect of a set of controlling random variables removed. Traditionally,
the partial correlation between variablesXi andXs given a controlling variableXt is the correlation
between the residuals εi\t and εs\t resulting from the linear regression of Xi with Xt and of Xs

with Xt, respectively. However, if the underlying joint Gaussian or nonparanormal assumption is
not satisfied, linear regression cannot remove all of the effects of the controlling variable.

We thus use a nonparametric version of partial correlation. Following [1], supposeXi = g(Xt)+εi\t
and Xs = h(Xt)+εs\t, for certain functions g and h such that E(εi\t |Xt) = 0 and E(εs\t |Xt) =
0. Define the nonparametric partial correlation as

ρis·t = E(εi\tεs\t)
/√

E(ε2i\t)E(ε2s\t). (2.11)

It is shown in [1] that if Xi ⊥⊥ Xs |Xt, then ρis·t = 0. We thus conclude the following.

Proposition 2.2. If ρis·t 6= 0 for all t such that (s, t) ∈ E(F ), node i is in a blossom attached to
node s.

Let ĝ and ĥ be local polynomial estimators of g and h, and ε̂(l)i\t = X
(l)
i − ĝ(X

(l)
t ), ε̂(l)s\t = X

(l)
s −

ĥ(X
(l)
t ) for any l ∈ D1, then an estimate of ρis·t is given by

ρ̂is·t =
∑

l∈D1

(ε̂
(l)
i\t ε̂

(l)
s\t)
/√∑

l∈D1

(ε̂
(l)
i\t)

2
∑

l∈D1

(ε̂
(l)
s\t)

2. (2.12)

Based on Proposition 2.2, for each forest F̂ (k) obtained in Step 1, we then assign each non-forest
node i to the blossom with the pedicel given by

ŝi = argmax
s∈V (F̂ (k))

min
{t: (s,t)∈E(F̂ (k))}

|ρ̂is·t|. (2.13)

After iterating over all non-forest nodes, we obtain a blossom tree-structured graph F̂ (k)

B̂
. Then

the forest structure is nonparametrically modeled by the bivariate and univariate kernel density es-
timations, while each blossom is modeled with the graphical lasso or nonparanormal. In particular,
when k = 0 that there is no forest node, our method is reduced to modeling the entire graph by the
graphical lasso or nonparanormal.

Alternative testing procedures based on nonparametric partial correlations could be adopted for par-
titioning nodes into blossoms. However, such methods may have large computational cost, and low
power for small sample sizes.

Note that while each non-forest node is associated with a pedicel in this step, after graph estimation
for the blossoms, the node may well become disconnected from the forest.

2.3 Step 3: Optimize the Blossom Tree Graphs

The full blossom tree graph F̂ (d−1)
B̂

obtained in Steps 1 and 2 might result in overfitting in the density
estimate. Thus we need to choose an optimal graph with the number of forest edges k ≤ d − 1.
Besides, the tuning parameters involved in the fitting of each blossom by the graphical lasso or
nonparanormal also induce a bias-variance tradeoff.
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To optimize the blossom tree structures over {F̂ (k)

B̂
}k=0...d−1, we choose the complexity parameter

k̂ as the one that maximizes the log-likelihood on D2, using the factorization (2.5):

k̂ = argmax
k∈{0,...,d−1}

1

n2

∑

l∈D2

log


 ∏

(i,j)∈E(F̂ (k))

p̂n1
(X

(l)
i , X

(l)
j )

p̂n1(X
(l)
i )p̂n1

(X
(l)
j )
·

∏

s∈V (F̂ (k))\P(F̂ (k))

p̂n1
(X(l)

s )
k∏

i=1

φ̂
λ
(k)
i
n1

(
X

(l)

V (B̂
(k)
i )

)

 , (2.14)

where φ̂λ
(k)
i
n1 is the density estimate for blossoms by the graphical lasso or nonparanormal, with the

tuning parameter λ(k)i selected to maximize the held-out log-likelihood. That is, the complexity of
each blossom is also optimized on D2.

Thus the final blossom tree density estimator is given by

p
F̂

(k̂)

B̂

(x) =
∏

(i,j)∈E(F̂ (k̂))

p̂n1(xi, xj)

p̂n1
(xi)p̂n1

(xj)

∏

s∈V (F̂ (k̂))\P(F̂ (k̂))

p̂n1(X(l)
s )

k̂∏

i=1

φ̂
λ
(k̂)
i
n1 (x

B̂
(k̂)
i

). (2.15)

In practice, Step 3 can be carried out simultaneously with Steps 1 and 2. Whenever a new edge is
added to the current forest in Kruskal’s algorithm, the blossoms are re-constructed and re-modeled.
Then the held-out log-likelihood of the obtained density estimator can be immediately computed.
In addition, since there are no overlapping nodes between different blossoms, the sparsity tuning
parameters are selected separately for each blossom, which reduces the computational cost consid-
erably.

3 Analysis of Simulated Data

Here we present numerical results based on simulations. We compare the blossom tree density
estimator with the graphical lasso [3] and forest density estimator [7]. To evaluate the performance
of these estimators, we compute and compare the log-likelihood of each method on held-out data.

We simulate high-dimensional data which are consistent with an undirected graph. We generate mul-
tivariate non-Gaussian data using a sequence of mixtures of two Gaussian distributions with contrary
correlation and equal weights. Then a subset of variables are chosen to generate the blossoms that
are distributed as multivariate Gaussians. In dimensional d = 80, we sample n1 = n2 = 400 data
points from this synthetic distribution.

A typical run showing the held-out log-likelihood and estimated graphs is provided in Figures 2 and
3. The term “trunk” is used to represent the edge added to the forest in a blossom tree graph. We can
see that the blossom tree density estimator is superior to other methods in terms of generalization
performance. In particular, the graphical lasso is unable to uncover the edges that are generated
nonparametrically. This is expected, since different blossoms have zero correlations among each
other and are thus regarded as independent by the algorithm of graphical lasso. For the modeling of
the variables that are contained in a blossom and are thus multivariate Gaussian distributed, there is
an efficiency loss in the forest density estimator, compared to the graphical lasso. This illustrates the
advantage of blossom tree density estimator. As is seen from the number of selected edges by each
method shown in Figure 2, the blossom tree density estimator selects a graph with a similar sparsity
pattern as the true graph.

4 Analysis of Cell Signalling Data

We analyze a flow cytometry dataset on d = 11 proteins from [9]. A subset of n = 853 cells were
chosen. A nonparanormal transformation was estimated and the observations, for each variable,
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Figure 2: Results on simulations. Left: Held-out log-likelihood of the graphical lasso (horizontal
dotted line), forest density estimator (horizontal dashed line), and blossom tree density estimator
(circles); Right: Number of selected edges by these methods. The horizontal solid line indicates the
number of edges in the true graph, and the solid triangle indicates the best blossom tree graph. The
first circle for blossom tree refers to the 1-trunk case.

true glasso

forest forest−blossom

true glasso

forest forest−blossom

true glasso

forest forest−blossom

true glasso

forest forest−blossom

(a) true (b) glasso (c) forest (d) blossom tree

Figure 3: Results on simulations. Graph (a) corresponds to the true graph. Graphs (b), (c) and (d)
correspond to the estimated graphs by the graphical lasso, forest density estimator, and blossom tree
density estimator, respectively. The tree edges are colored red, and the blossom edges are colored
black.

were replaced by their respective normal scores, subject to a Winsorized truncation [5]. We study
the associations among the proteins using the graphical lasso, forest density estimator, and blossom
tree forest density estimator. The maximum held-out log-likelihood for glasso, forest, and blossom
tree are -14.3, -13.8, and -13.7, respectively. We can see that blossom tree is slighter better than
forest in terms of the generalization performance, both of which outperform glasso. Results of
estimated graphs are provided in Figures 4. When the maximum of held-out log-likelihood curve
is achieved, glasso selects 28 edges, forest selects 7 edges, and blossom tree selects 10 edges. The
two graphs uncovered by forest and blossom tree agree on most edges, although the latter contains
cycles.

5 Conclusion

We have proposed a combination of tree-based graphical models and Gaussian graphical models to
form a new nonparametric approach for high dimensional data. Blossom tree models relax the nor-
mality assumption and increase statistical efficiency by modeling the forest with nonparametric ker-
nel density estimators and modeling each blossom with the graphical lasso or nonparanormal. Our
experimental results indicate that this method can be a practical alternative to standard approaches
to graph and density estimation.
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(a) graph reported in [9] (b) glasso (c) forest (d) blossom tree

Figure 4: Results on cell signalling data. Graph (a) refers to the fitted graph reported in [9]. Graphs
(b), (c) and (d) correspond to the estimated graphs by the graphical lasso, forest density estimator,
and blossom tree density estimator, respectively.
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