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Abstract

We propose a new method named calibrated multivariate regression (CMR) for
fitting high dimensional multivariate regression models. Compared to existing
methods, CMR calibrates the regularization for each regression task with respect
to its noise level so that it is simultaneously tuning insensitive and achieves an
improved finite-sample performance. Computationally, we develop an efficient
smoothed proximal gradient algorithm which has a worst-case iteration complex-
ity O(1/✏), where ✏ is a pre-specified numerical accuracy. Theoretically, we prove
that CMR achieves the optimal rate of convergence in parameter estimation. We
illustrate the usefulness of CMR by thorough numerical simulations and show
that CMR consistently outperforms other high dimensional multivariate regres-
sion methods. We also apply CMR on a brain activity prediction problem and find
that CMR is as competitive as the handcrafted model created by human experts.

1 Introduction

Given a design matrix X 2 Rn⇥d and a response matrix Y 2 Rn⇥m, we consider a multivariate
linear model Y = XB0

+ Z, where B0

2 Rd⇥m is an unknown regression coefficient matrix and
Z 2 Rn⇥m is a noise matrix [1]. For a matrix A = [Ajk] 2 Rd⇥m, we denote Aj⇤ = (Aj1, ...,
Ajm) 2 Rm and A⇤k = (A

1k, ...,Adk)
T
2 Rd to be its jth row and kth column respectively. We

assume that all Zi⇤’s are independently sampled from an m-dimensional Gaussian distribution with
mean 0 and covariance matrix ⌃ 2 Rm⇥m.

We can represent the multivariate linear model as an ensemble of univariate linear regression models:
Y⇤k = XB0

⇤k+Z⇤k, k = 1, ...,m. Then we get a multi-task learning problem [3, 2, 26]. Multi-task
learning exploits shared common structure across tasks to obtain improved estimation performance.
In the past decade, significant progress has been made towards designing a variety of modeling
assumptions for multivariate regression.

A popular assumption is that all the regression tasks share a common sparsity pattern, i.e., many
B0

j⇤’s are zero vectors. Such a joint sparsity assumption is a natural extension of that for univariate
linear regressions. Similar to the L

1

-regularization used in Lasso [23], we can adopt group regular-
ization to obtain a good estimator of B0 [25, 24, 19, 13]. Besides the aforementioned approaches,
there are other methods that aim to exploit the covariance structure of the noise matrix Z [7, 22]. For
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instance, [22] assume that all Zi⇤’s follow a multivariate Gaussian distribution with a sparse inverse
covariance matrix ⌦ = ⌃�1. They propose an iterative algorithm to estimate sparse B0 and ⌦ by
maximizing the penalized Gaussian log-likelihood. Such an iterative procedure is effective in many
applications, but the theoretical analysis is difficult due to its nonconvex formulation.

In this paper, we assume an uncorrelated structure for the noise matrix Z, i.e., ⌃ =

diag(�2

1

,�2

2

, . . . ,�2

m�1

,�2

m). Under this setting, we can efficiently solve the resulting estimation
problem with a convex program as follows

bB = argmin

B

1

p

n
||Y �XB||

2

F

+ �||B||

1,p, (1.1)

where � > 0 is a tuning parameter, and ||A||

F

=

q

P

j,k A
2

jk is the Frobenius norm of a ma-

trix A. Popular choices of p include p = 2 and p = 1: ||B||

1,2 =

Pd
j=1

q

Pm
k=1

B2

jk and

||B||

1,1 =

Pd
j=1

max

1km |Bjk|. Computationally, the optimization problem in (1.1) can be
efficiently solved by some first order algorithms [11, 12, 4].

The problem with the uncorrelated noise structure is amenable to statistical analysis. Under suit-
able conditions on the noise and design matrices, let �

max

= maxk �k, if we choose � =

2c · �
max

�

p

log d+m1�1/p
�

, for some c > 1, then the estimator bB in (1.1) achieves the opti-
mal rates of convergence1 [13], i.e., there exists some universal constant C such that with high
probability, we have

1

p

m
||

bB�B0

||

F

 C · �
max

 

r

s log d

nm
+

r

sm1�2/p

n

!

,

where s is the number of rows with non-zero entries in B0. However, the estimator in (1.1) has two
drawbacks: (1) All the tasks are regularized by the same tuning parameter �, even though different
tasks may have different �k’s. Thus more estimation bias is introduced to the tasks with smaller �k’s
to compensate the tasks with larger �k’s. In another word, these tasks are not calibrated. (2) The
tuning parameter selection involves the unknown parameter �

max

. This requires tuning the regular-
ization parameter over a wide range of potential values to get a good finite-sample performance.

To overcome the above two drawbacks , we formulate a new convex program named calibrated
multivariate regression (CMR). The CMR estimator is defined to be the solution of the following
convex program:

bB = argmin

B
||Y �XB||

2,1 + �||B||

1,p, (1.2)

where ||A||

2,1 =

P

k

q

P

j A
2

jk is the nonsmooth L
2,1 norm of a matrix A = [Ajk] 2 Rd⇥m.

This is a multivariate extension of the square-root Lasso [5]. Similar to the square-root Lasso, the
tuning parameter selection of CMR does not involve �

max

. Moreover, the L
2,1 loss function can

be viewed as a special example of the weighted least square loss, which calibrates each regression
task (See more details in §2). Thus CMR adapts to different �k’s and achieves better finite-sample
performance than the ordinary multivariate regression estimator (OMR) defined in (1.1).

Since both the loss and penalty functions in (1.2) are nonsmooth, CMR is computationally more
challenging than OMR. To efficiently solve CMR, we propose a smoothed proximal gradient (SPG)
algorithm with an iteration complexity O(1/✏), where ✏ is the pre-specified accuracy of the objec-
tive value [18, 4]. Theoretically, we provide sufficient conditions under which CMR achieves the
optimal rates of convergence in parameter estimation. Numerical experiments on both synthetic and
real data show that CMR universally outperforms existing multivariate regression methods. For a
brain activity prediction task, prediction based on the features selected by CMR significantly out-
performs that based on the features selected by OMR, and is even competitive with that based on the
handcrafted features selected by human experts.

Notations: Given a vector v = (v
1

, . . . , vd)
T

2 Rd, for 1  p  1, we define the Lp-vector

norm of v as ||v||p =

⇣

Pd
j=1

|vj |
p
⌘

1/p

if 1  p < 1 and ||v||p = max

1jd |vj | if p = 1.

1The rate of convergence is optimal when p = 2, i.e., the regularization function is ||B||
1,p
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Given two matrices A = [Ajk] and C = [Cjk] 2 Rd⇥m, we define the inner product of A

and C as hA,Ci =

Pd
j=1

Pm
k=1

AjkCjk = tr(ATC), where tr(A) is the trace of a matrix A.
We use A⇤k = (A

1k, ...,Adk)
T and Aj⇤ = (Aj1, ...,Ajm) to denote the kth column and jth

row of A. Let S be some subspace of Rd⇥m, we use AS to denote the projection of A onto S:
AS = argminC2S ||C � A||

2

F

. Moreover, we define the Frobenius and spectral norms of A as
||A||

F

=

p

hA,Ai and ||A||

2

=  
1

(A),  
1

(A) is the largest singular value of A. In addition,
we define the matrix block norms as ||A||

2,1 =

Pm
k=1

||A⇤k||2, ||A||

2,1 = max

1km ||A⇤k||2,
||A||

1,p =

Pd
j=1

||Aj⇤||p, and ||A||1,q = max

1jd ||Aj⇤||q , where 1  p  1 and 1  q  1.
It is easy to verify that ||A||

2,1 is the dual norm of ||A||

2,1. Let 1/1 = 0, then if 1/p+ 1/q = 1,
||A||1,q and ||A||

1,p are also dual norms of each other.

2 Method

We solve the multivariate regression problem by the following convex program,
bB = argmin

B
||Y �XB||

2,1 + �||B||

1,p. (2.1)

The only difference between (2.1) and (1.1) is that we replace the L
2

-loss function by the nonsmooth
L
2,1-loss function. The L

2,1-loss function can be viewed as a special example of the weighted square
loss function. More specifically, we consider the following optimization problem,

bB = argmin

B

m
X

k=1

1

�k
p

n
||Y⇤k �XB⇤k||

2

2

+ �||B||

1,p, (2.2)

where 1

�k
p
n

is a weight assigned to calibrate the kth regression task. Without prior knowledge on
�k’s, we use the following replacement of �k’s,

e�k =

1

p

n
||Y⇤k �XB⇤k||2, k = 1, ...,m. (2.3)

By plugging (2.3) into the objective function in (2.2), we get (2.1). In another word, CMR calibrates
different tasks by solving a penalized weighted least square program with weights defined in (2.3).

The optimization problem in (2.1) can be solved by the alternating direction method of multipliers
(ADMM) with a global convergence guarantee [20]. However, ADMM does not take full advantage
of the problem structure in (2.1). For example, even though the L

2,1 norm is nonsmooth, it is
nondifferentiable only when a task achieves exact zero residual, which is unlikely in applications.
In this paper, we apply the dual smoothing technique proposed by [18] to obtain a smooth surrogate
function so that we can avoid directly evaluating the subgradient of the L

2,1 loss function. Thus we
gain computational efficiency like other smooth loss functions.

We consider the Fenchel’s dual representation of the L
2,1 loss:

||Y �XB||

2,1 = max

||U||2,11

hU,Y �XBi. (2.4)

Let µ > 0 be a smoothing parameter. The smooth approximation of the L
2,1 loss can be obtained

by solving the following optimization problem

||Y �XB||µ = max

||U||2,11

hU,Y �XBi �

µ

2

||U||

2

F

, (2.5)

where ||U||

2

F

is the proximity function. Due to the fact that ||U||

2

F

 m||U||

2

2,1, we obtain the
following uniform bound by combing (2.4) and (2.5),

||Y �XB||

2,1 �
mµ

2

 ||Y �XB||µ  ||Y �XB||

2,1. (2.6)

From (2.6), we see that the approximation error introduced by the smoothing procedure can be
controlled by a suitable µ. Figure 2.1 shows several two-dimensional examples of the L

2

norm
smoothed by different µ’s. The optimization problem in (2.5) has a closed form solution bUB with
bUB

⇤k = (Y⇤k �XB⇤k)/max {||Y⇤k �XB⇤k||2, µ}.

The next lemma shows that ||Y �XB||µ is smooth in B with a simple form of gradient.
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(a) µ = 0 (b) µ = 0.1 (c) µ = 0.25 (d) µ = 0.5

Figure 2.1: The L
2

norm (µ = 0) and its smooth surrogates with µ = 0.1, 0.25, 0.5. A larger µ
makes the approximation more smooth, but introduces a larger approximation error.

Lemma 2.1. For any µ > 0, ||Y �XB||µ is a convex and continuously differentiable function in

B. In addition, Gµ
(B)—the gradient of ||Y �XB||µ w.r.t. B—has the form

Gµ
(B) =

@
⇣

h

bUB,Y �XBi+ µ||bUB
||

2

F

/2
⌘

@B
= �XT

bUB. (2.7)

Moreover, let � = ||X||

2

2

, then we have that Gµ
(B) is Lipschitz continuous in B with the Lipschitz

constant �/µ, i.e., for any B0, B00
2 Rd⇥m

,

||Gµ
(B0

)�Gµ
(B00

)||

F

= ||hX, bUB0
�

bUB00
i||

F



1

µ
||XTX(B0

�B00
)||

F



�

µ
||B0

�B00
||

F

.

Lemma 2.1 is a direct result of Theorem 1 in [18] and implies that ||Y�XB||µ has good computa-
tional structure. Therefore we apply the smooth proximal gradient algorithm to solve the smoothed
version of the optimization problem as follows,

eB = argmin

B
||Y �XB||µ + �||B||

1,p. (2.8)

We then adopt the fast proximal gradient algorithm to solve (2.8) [4]. To derive the algorithm,
we first define three sequences of auxiliary variables {A(t)

}, {V(t)
}, and {H(t)

} with A(0)

=

H(0)

= V(0)

= B(0), a sequence of weights {✓t = 2/(t + 1)}, and a nonincreasing sequence of
step-sizes {⌘t > 0}. For simplicity, we can set ⌘t = µ/�. In practice, we use the backtracking
line search to dynamically adjust ⌘t to boost the performance. At the tth iteration, we first take
V(t)

= (1 � ✓t)B
(t�1)

+ ✓tA
(t�1). We then consider a quadratic approximation of ||Y �XH||µ

as

Q
⇣

H,V(t), ⌘t

⌘

= ||Y �XV(t)
||µ + hGµ

(V(t)
),H�V(t)

i+

1

2⌘t
||H�V(t)

||

2

F

.

Consequently, let eH(t)
= V(t)

� ⌘tG
µ
(V(t)

), we take

H(t)
= argmin

H
Q
⇣

H,V(t), ⌘t

⌘

+ �||H||

1,p = argmin

H

1

2⌘t
||H�

eH(t)
||

2

F

+ �||H||

1,p. (2.9)

When p = 2, (2.9) has a closed form solution H
(t)
j⇤ =

eHj⇤ · max

n

1� ⌘t�/|| eHj⇤||2, 0
o

. More
details about other choices of p in the L

1,p norm can be found in [11] and [12]. To ensure that the
objective value is nonincreasing, we choose

B(t)
= argmin

B2{H(t), B(t�1)}
||Y �XB||µ + �||B||

1,p. (2.10)

At last, we take A(t)
= B(t�1)

+

1

✓t
(H(t)

�B(t�1)

). The algorithm stops when ||H(t)
�V(t)

||

F

 ",
where " is the stopping precision.

The numerical rate of convergence of the proposed algorithm with respect to the original optimiza-
tion problem (2.1) is presented in the following theorem.
Theorem 2.2. Given a pre-specified accuracy ✏ and let µ = ✏/m, after t = 2

p

m�||B(0)

�

bB||

F

/✏�

1 = O (1/✏) iterations, we have ||Y �XB(t)
||

2,1 + �||B(t)
||

1,p  ||Y �XbB||

2,1 + �||bB||

1,p + ✏.

The proof of Theorem 2.2 is provided in Appendix A.1. This result achieves the minimax optimal
rate of convergence over all first order algorithms [18].
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3 Statistical Properties

For notational simplicity, we define a re-scaled noise matrix W = [Wik] 2 Rn⇥m with Wik =

Zik/�k, where EZ2

ik = �2

k. Thus W is a random matrix with all entries having mean 0 and variance
1. We define G0 to be the gradient of ||Y �XB||

2,1 at B = B0. It is easy to see that

G0

⇤k =

XTZ⇤k
||Z⇤k||2

=

XTW⇤k�k
||W⇤k�k||2

=

XTW⇤k
||W⇤k||2

does not depend on the unknown quantities �k for all k = 1, ...,m. G0

⇤k works as an important
pivotal in our analysis. Moreover, our analysis exploits the decomposability of the L

1,p norm [17].
More specifically, we assume that B0 has s rows with all zero entries and define

S =

�

C 2 Rd⇥m
| Cj⇤ = 0 for all j such that B0

j⇤ = 0
 

, (3.1)

N =

�

C 2 Rd⇥m
| Cj⇤ = 0 for all j such that B0

j⇤ 6= 0
 

. (3.2)

Note that we have B0

2 S and the L
1,p norm is decomposable with respect to the pair (S,N ), i.e.,

||A||

1,p = ||AS ||1,p + ||AN ||

1,p.

The next lemma shows that when � is suitably chosen, the solution to the optimization problem in
(2.1) lies in a restricted set.
Lemma 3.1. Let B0

2 S and

bB be the optimum to (2.1), and 1/p + 1/q = 1. We denote the

estimation error as

b� =

bB�B0

. If � � c||G0

||1,q for some c > 1, we have

b� 2 Mc :=

⇢

� 2 Rd⇥m
| ||�N ||

1,p 

c+ 1

c� 1

||�S ||1,p

�

. (3.3)

The proof of Lemma 3.1 is provided in Appendix B.1. To prove the main result, we also need to
assume that the design matrix X satisfies the following condition.
Assumption 3.1. Let B0

2 S , then there exist positive constants  and c > 1 such that

  min

�2Mc\{0}

||X�||

F

p

n||�||

F

.

Assumption 3.1 is the generalization of the restricted eigenvalue conditions for analyzing univariate
sparse linear models [17, 15, 6], Many common examples of random design satisfy this assumption
[13, 21].

Note that Lemma 3.1 is a deterministic result of the CMR estimator for a fixed �. Since G is
essentially a random matrix, we need to show that � � cR⇤

(G0

) holds with high probability to
deliver a concrete rate of convergence for the CMR estimator in the next theorem.
Theorem 3.2. We assume that each column of X is normalized as m1/2�1/p

kX⇤jk2 =

p

n for all

j = 1, ..., d. Then for some universal constant c
0

and large enough n, taking

� =

2c(m1�1/p
+

p

log d)
p

1� c
0

, (3.4)

with probability at least 1� 2 exp(�2 log d)� 2 exp

�

�nc2
0

/8 + logm
�

, we have

1

p

m
||

bB�B0

||

F



16c�
max

2(c� 1)

r

1 + c
0

1� c
0

 

r

sm1�2/p

n
+

r

s log d

nm

!

.

The proof of Theorem 3.2 is provided in Appendix B.2. Note that when we choose p = 2, the
column normalization condition is reduced to kX⇤jk2 =

p

n. Meanwhile, the corresponding error
bound is further reduced to

1

p

m
||

bB�B0

||

F

= OP

 

r

s

n
+

r

s log d

nm

!

,

which achieves the minimax optimal rate of convergence presented in [13]. See Theorem 6.1 in [13]
for more technical details. From Theorem 3.2, we see that CMR achieves the same rates of conver-
gence as the noncalibrated counterpart, but the tuning parameter � in (3.4) does not involve �k’s.
Therefore CMR not only calibrates all the regression tasks, but also makes the tuning parameter
selection insensitive to �

max

.
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4 Numerical Simulations

To compare the finite-sample performance between the calibrated multivariate regression (CMR)
and ordinary multivariate regression (OMR), we generate a training dataset of 200 samples. More
specifically, we use the following data generation scheme: (1) Generate each row of the design
matrix Xi⇤, i = 1, ..., 200, independently from a 800-dimensional normal distribution N(0,⌃)

where ⌃jj = 1 and ⌃j` = 0.5 for all ` 6= j.(2) Let k = 1, . . . , 13, set the regression coefficient
matrix B0

2 R800⇥13 as B0

1k = 3, B0

2k = 2, B0

4k = 1.5, and B0

jk = 0 for all j 6= 1, 2, 4. (3)
Generate the random noise matrix Z = WD, where W 2 R200⇥13 with all entries of W are
independently generated from N(0, 1), and D is either of the following matrices

DI = �
max

· diag

⇣

2

0/4, 2�1/4, · · · , 2�11/4, 2�12/4
⌘

2 R13⇥13

DH = �
max

· I 2 R13⇥13.

We generate a validation set of 200 samples for the regularization parameter selection and a testing
set of 10,000 samples to evaluate the prediction accuracy.

In numerical experiments, we set �
max

= 1, 2, and 4 to illustrate the tuning insensitivity
of CMR. The regularization parameter � of both CMR and OMR is chosen over a grid ⇤ =

�

2

40/4�0, 2
39/4�0, · · · , 2

�17/4�0, 2
�18/4�0

 

, where �0 =

p

log d +

p

m. The optimal regular-
ization parameter b� is determined by the prediction error as b� = argmin�2⇤ ||

eY �

eXbB�
||

2

F

, where
bB� denotes the obtained estimate using the regularization parameter �, and eX and eY denote the
design and response matrices of the validation set.

Since the noise level �k’s are different in regression tasks, we adopt the following three crite-
ria to evaluate the empirical performance: Pre. Err. =

1

10000

||Y � XbB||

F

, Adj. Pre. Err. =

1

10000m ||(Y � XbB)D�1

||

2

F

, and Est. Err. = 1

m ||

bB � B0

||

2

F

, where X and Y denotes the design
and response matrices of the testing set.

All simulations are implemented by MATLAB using a PC with Intel Core i5 3.3GHz CPU and 16GB
memory. CMR is solved by the proposed smoothing proximal gradient algorithm, where we set the
stopping precision " = 10

�4, the smoothing parameter µ = 10

�4. OMR is solved by the monotone
fast proximal gradient algorithm, where we set the stopping precision " = 10

�4. We set p = 2, but
the extension to arbitrary p > 2 is straightforward.

We first compare the smoothed proximal gradient (SPG) algorithm with the ADMM algorithm (the
detailed derivation of ADMM can be found in Appendix A.2). We adopt the backtracking line search
to accelerate both algorithms with a shrinkage parameter ↵ = 0.8. We set �

max

= 2 for the adopted
multivariate linear models. We conduct 200 simulations. The results are presented in Table 4.1. The
SPG and ADMM algorithms attain similar objective values, but SPG is up to 4 times faster than
ADMM. Both algorithms also achieve similar estimation errors.

We then compare the statistical performance between CMR and OMR. Tables 4.2 and 4.3 summa-
rize the results averaged over 200 replicates. In addition, we also present the results of the oracle
estimator, which is obtained by solving (2.2), since we know the true values of �k’s. Note that the
oracle estimator is only for comparison purpose, and it is not a practical estimator. Since CMR
calibrates the regularization for each task with respect to �k, CMR universally outperforms OMR,
and achieves almost the same performance as the oracle estimator when we adopt the scale matrix
DI to generate the random noise. Meanwhile, when we adopt the scale matrix DH , where all �k’s
are the same, CMR and OMR achieve similar performance. This further implies that CMR can be a
safe replacement of OMR for multivariate regressions.

In addition, we also examine the optimal regularization parameters for CMR and OMR over all
replicates. We visualize the distribution of all 200 selected b�’s using the kernel density estimator.
In particular, we adopt the Gaussian kernel, and the kernel bandwidth is selected based on the 10-
fold cross validation. Figure 4.1 illustrates the estimated density functions. The horizontal axis
corresponds to the rescaled regularization parameter as log

⇣

b�p
log d+

p
m

⌘

. We see that the optimal
regularization parameters of OMR significantly vary with different �

max

. In contrast, the optimal
regularization parameters of CMR are more concentrated. This is inconsistent with our claimed
tuning insensitivity.

6



Table 4.1: Quantitive comparison of the computational performance between SPG and ADMM with
the noise matrices generated using DI . The results are averaged over 200 replicates with standard
errors in parentheses. SPG and ADMM attain similar objective values, but SPG is up to about 4
times faster than ADMM.

� Algorithm Timing (second) Obj. Val. Num. Ite. Est. Err.

2�0
SPG 2.8789(0.3141) 508.21(3.8498) 493.26(52.268) 0.1213(0.0286)

ADMM 8.4731(0.8387) 508.22(3.7059) 437.7(37.4532) 0.1215(0.0291)

�0
SPG 3.2633(0.3200) 370.53(3.6144) 565.80(54.919) 0.0819(0.0205)

ADMM 11.976(1.460) 370.53(3.4231) 600.94(74.629) 0.0822(0.0233)

0.5�0
SPG 3.7868(0.4551) 297.24(3.6125) 652.53(78.140) 0.1399(0.0284)

ADMM 18.360(1.9678) 297.25(3.3863) 1134.0(136.08) 0.1409(0.0317)

Table 4.2: Quantitive comparison of the statistical performance between CMR and OMR with the
noise matrices generated using DI . The results are averaged over 200 simulations with the standard
errors in parentheses. CMR universally outperforms OMR, and achieves almost the same perfor-
mance as the oracle estimator.

�
max

Method Pre. Err. Adj. Pre.Err Est. Err.

1
Oracle 5.8759(0.0834) 1.0454(0.0149) 0.0245(0.0086)
CMR 5.8761(0.0673) 1.0459(0.0123) 0.0249(0.0071)
OMR 5.9012(0.0701) 1.0581(0.0162) 0.0290(0.0091)

2
Oracle 23.464(0.3237) 1.0441(0.0148) 0.0926(0.0342)
CMR 23.465(0.2598) 1.0446(0.0121) 0.0928(0.0279)
OMR 23.580(0.2832) 1.0573(0.0170) 0.1115(0.0365)

4
Oracle 93.532(0.8843) 1.0418(0.0962) 0.3342(0.1255)
CMR 93.542(0.9794) 1.0421(0.0118) 0.3346(0.1063)
OMR 94.094(1.0978) 1.0550(0.0166) 0.4125(0.1417)

Table 4.3: Quantitive comparison of the statistical performance between CMR and OMR with the
noise matrices generated using DH . The results are averaged over 200 simulations with the standard
errors in parentheses. CMR and OMR achieve similar performance.

�
max

Method Pre. Err. Adj. Pre.Err Est. Err.

1 CMR 13.565(0.1408) 1.0435(0.0108) 0.0599(0.0164)
OMR 13.697(0.1554) 1.0486(0.0142) 0.0607(0.0128)

2 CMR 54.171(0.5771) 1.0418(0.0110) 0.2252(0.0649)
OMR 54.221(0.6173) 1.0427(0.0118) 0.2359(0.0821)

4 CMR 215.98(2.104) 1.0384(0.0101) 0.80821(0.25078)
OMR 216.19(2.391) 1.0394(0.0114) 0.81957(0.31806)
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(a) The noise matrices are generated using DI
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(b) The noise matrices are generated using DH

Figure 4.1: The distributions of the selected regularization parameters using the kernel density esti-
mator. The numbers in the parentheses are �

max

’s. The optimal regularization parameters of OMR
are spreader with different �

max

than those of CMR and the oracle estimator.
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5 Real Data Experiment

We apply CMR on a brain activity prediction problem which aims to build a parsimonious model to
predict a person’s neural activity when seeing a stimulus word. As is illustrated in Figure 5.1, for
a given stimulus word, we first encode it into an intermediate semantic feature vector using some
corpus statistics. We then model the brain’s neural activity pattern using CMR. Creating such a
predictive model not only enables us to explore new analytical tools for the fMRI data, but also
helps us to gain deeper understanding on how human brain represents knowledge [16].

(b) model for predicting fMRI brain activity pattern 

Predict fMRI brain activity patterns in response to text stimulus

!"#$%&'()*'

?+',%,-.& Model

!"#$%)/01'2

!"#$%0334'&

%50//'.& !"#$%50//'.&

%6)*7*4'& !"#$%6)*7*4'&

89/:4:2%,-.&2

%0334'&

Standard solution 

Linear models

(More restrictive)

Our solution

Nonlinear models

(Less restrictive)

.

;5'%'<3'.)/'+=2%0.'%*-+&:*='&%)+%>")=*5'44%'=%0?%8*)'+*'%@AB

(a) illustration of the data collection procedure

"apple"
predicted 
activities 

for "apple"

stimulus word

intermediate semantic features mapping learned from fMRI data

(Mitchell et al., Science,2008)

Figure 5.1: An illustration of the fMRI brain activity prediction problem [16]. (a) To collect the
data, a human participant sees a sequence of English words and their images. The corresponding
fMRI images are recorded to represent the brain activity patterns; (b) To build a predictive model,
each stimulus word is encoded into intermediate semantic features (e.g. the co-occurrence statistics
of this stimulus word in a large text corpus). These intermediate features can then be used to predict
the brain activity pattern.

Our experiments involves 9 participants, and Table 5.1 summarizes the prediction performance of
different methods on these participants. We see that the prediction based on the features selected by
CMR significantly outperforms that based on the features selected by OMR, and is as competitive
as that based on the handcrafted features selected by human experts. But due to the space limit, we
present the details of the real data experiment in the technical report version.

Table 5.1: Prediction accuracies of different methods (higher is better). CMR outperforms OMR for
8 out of 9 participants, and outperforms the handcrafted basis words for 6 out of 9 participants

Method P. 1 P. 2 P. 3 P. 4 P. 5 P. 6 P. 7 P. 8 P. 9

CMR 0.840 0.794 0.861 0.651 0.823 0.722 0.738 0.720 0.780
OMR 0.803 0.789 0.801 0.602 0.766 0.623 0.726 0.749 0.765

Handcraft 0.822 0.776 0.773 0.727 0.782 0.865 0.734 0.685 0.819

6 Discussions

A related method is the square-root sparse multivariate regression [8]. They solve the convex pro-
gram with the Frobenius loss function and L

1,p regularization function
bB = argmin

B
||Y �XB||

F

+ �||B||

1,p. (6.1)

The Frobenius loss function in (6.1) makes the regularization parameter selection independent of
�
max

, but it does not calibrate different regression tasks. Note that we can rewrite (6.1) as

(

bB, b�) = argmin

B,�

1

p

nm�
||Y �XB||

2

F

+ �||B||

1,p s. t. � =

1

p

nm
||Y �XB||

F

. (6.2)

Since � in (6.2) is not specific to any individual task, it cannot calibrate the regularization. Thus it
is fundamentally different from CMR.
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