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Abstract

Even though heterogeneous databases can be found in a broad variety of applica-
tions, there exists a lack of tools for estimating missing data in such databases. In
this paper, we provide an efficient and robust table completion tool, based on a
Bayesian nonparametric latent feature model. In particular, we propose a general
observation model for the Indian buffet process (IBP) adapted to mixed continuous
(real-valued and positive real-valued) and discrete (categorical, ordinal and count)
observations. Then, we propose an inference algorithm that scales linearly with
the number of observations. Finally, our experiments over five real databases show
that the proposed approach provides more robust and accurate estimates than the
standard IBP and the Bayesian probabilistic matrix factorization with Gaussian
observations.

1 Introduction

A full 90% of all the data in the world has been generated over the last two years and this expansion
rate will not diminish in the years to come [17]. This extreme availability of data explains the great
investment that both the industry and the research community are expending in data science. Data is
usually organized and stored in databases, which are often large, noisy, and contain missing values.
Missing data may occur in diverse applications due to different reasons. For example, a sensor in
a remote sensor network may be damaged and transmit corrupted data or even cease to transmit;
participants in a clinical study may drop out during the course of the study; or users of a recom-
mendation system rate only a small fraction of the available books, movies, or songs. The presence
of missing values can be challenging when the data is used for reporting, information sharing and
decision support, and as a consequence, missing data treatment has captured the attention in diverse
areas of data science such as machine learning, data mining, and data warehousing and management.

Several studies have shown that probabilistic modeling can help to estimate missing values, detect
errors in databases, or provide probabilistic responses to queries [19]. In this paper, we exclusively
focus on the use of probabilistic modeling for missing data estimation, and assume that the data
are missing completely at random (MCAR). There is extensive literature in probabilistic missing
data estimation and imputation in homogeneous databases, where all the attributes that describe
each object in the database present the same (continuous or discrete) nature. Most of the work
assumes that databases contain only either continuous data, usually modeled as Gaussian variables
[21], or discrete, that can be either modeled by discrete likelihoods [9] or simply treated as Gaussian
variables [15, 21]. However, there still exists a lack of work dealing with heterogeneous databases,
which in fact are common in real applications and where the standard approach is to treat all the
attributes, either continuous or discrete, as Gaussian variables. As a motivating example, consider a
database that contains the answers to a survey, including diverse information about the participants
such as age (count data), gender (categorical data), salary (continuous non negative data), etc.
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In this paper, we provide a general Bayesian approach for estimating and replacing the missing data
in heterogeneous databases (being the data MCAR), where the attributes describing each object can
be either discrete, continuous or mixed variables. Specifically, we account for real-valued, positive
real-valued, categorical, ordinal and count data. To this end, we assume that the information in
the database can be stored in a matrix (or table), where each row corresponds to an object and
the columns are the attributes that describe the different objects. We propose a novel Bayesian
nonparametric approach for general table completion based on feature modeling, in which each
object is represented by a set of latent variables and the observations are generated from a distribution
determined by those latent features. Since the number of latent variables needed to explain the data
depends on the specific database, we use the Indian buffet process (IBP) [8], which places a prior
distribution over binary matrices where the number of columns (latent variables) is unbounded.
The standard IBP assumes real-valued observations combined with conjugate likelihood models
that allow for fast inference algorithms [4]. Here, we aim at dealing with heterogeneous databases,
which may contain mixed continuous and discrete observations.

We propose a general observation model for the IBP that accounts for mixed continuous and dis-
crete data, while keeping the properties of conjugate models. This allows us to propose an inference
algorithm that scales linearly with the number of observations. The proposed algorithm does not
only infer the latent variables for each object in the table, but it also provides accurate estimates for
its missing values. Our experiments over five real databases show that our approach for table com-
pletion outperforms, in terms of accuracy, the Bayesian probabilistic matrix factorization (BPMF)
[15] and the standard IBP which assume Gaussian observations. We also observe that the approach
based on treating mixed continuous and discrete data as Gaussian fails in estimating some attributes,
while the proposed approach provides robust estimates for all the missing values regardless of their
discrete or continuous nature.

The main contributions in this paper are: i) A general observation model (for mixed continuous and
discrete data) for the IBP that allows us to derive an inference algorithm that scales linearly with
the number of objects, and its application to build ii) a general and scalable tool to estimate missing
values in heterogeneous databases. An efficient C-code implementation for Matlab of the proposed
table completion tool is also released on the authors website.

2 Related Work
In recent years, probabilistic modeling has become an attractive option for building database man-
agement systems since it allows estimating missing values, detecting errors, visualizing the data, and
providing probabilistic answers to queries [19]. BayesDB,1 for instance, is a database management
system that resorts to Crosscat [18], which originally appeared as a Bayesian approach to model hu-
man categorization of objects. BayesDB provides missing data estimates and probabilistic answer
to queries, but it only considers Gaussian and multinomial likelihood functions.

In the literature, probabilistic low-rank matrix factorization approaches have been broadly applied to
table completion (see, e.g., [14, 15, 21]). In these approaches, the table database X is approximated
by a low-rank matrix representation X ≈ ZB, where Z and B are usually assumed to be Gaussian
distributed. Most of the works in this area have focused on building automatic recommendation
systems, which appears as the most popular application of missing data estimation [14, 15, 21].
More specific models to build recommendation systems can be found in [7, 22], where the authors
assume that the rates each user assign to items are generated by a probabilistic generative model
which, based on the available data, accounts for similarities among users and among items to provide
good estimates of the missing rates.

Probabilistic matrix factorization can also be viewed as latent feature modeling, where each object
is represented by a vector of continuous latent variables. In contrast, the IBP and other latent feature
models (see, e.g., [16]) assume binary latent features to represent each object. Latent feature models
usually assume homogeneous databases with either real [14, 15, 21] or categorical data [9, 12, 13],
and only a few works consider heterogeneous data, such as mixed real and categorical data [16].
However, up to our knowledge, there are no general latent feature models (nor table completion
tools) to directly deal with heterogeneous databases. To fill this gap, in this paper we provide a
general table completion approach for heterogeneous databases, based on a generalized IBP, that
allows for efficient inference.

1http://probcomp.csail.mit.edu/bayesdb/
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3 Model Description
Let us assume a table with N objects, where each object is defined by D attributes. We can store
the data in an N ×D observation matrix X, in which each D-dimensional row vector is denoted by
xn = [x1

n, . . . , x
D
n ] and each entry is denoted by xdn. We consider that column vectors xd (i.e., each

dimension in the observation matrix X) may contain the following types of data:

• Continuous variables:
1. Real-valued, i.e., xdn ∈ <
2. Positive real-valued, i.e., xdn ∈ <+.

• Discrete variables:
1. Categorical data, i.e., xdn takes values in a finite unordered set, e.g., xdn ∈ {‘blue’,

‘red’, ‘black’}.
2. Ordinal data, i.e., xdn takes values in a finite ordered set, e.g., xdn ∈ {‘never’, ‘some-

times’, ‘often’, ‘usually’, ‘always’}.
3. Count data, i.e., xdn ∈ {0, . . . ,∞},

We assume that each observation xdn can be explained by a K-length vector of latent variables
associated to the n-th data point zn = [zn1, . . . , znK ] and a weighting vector2 Bd = [bd1, . . . , b

d
K ]

(being K the number of latent variables), whose elements bdk weight the contribution of k-th the
latent feature to the d-th dimension of X. We gather the latent binary feature vectors zn in a N ×K
matrix Z, which follows an IBP with concentration parameter α, i.e., Z ∼ IBP(α) [8]. We place a
Gaussian distribution with zero mean and covariance matrix σ2

BIK over the weighting vectors Bd.
For convenience, zn is a K-length row vector, while Bd is a K-length column vector.

To accommodate for all kinds of observed random variables described above, we introduce an auxil-
iary Gaussian variable ydn, such that when conditioned on the auxiliary variables, the latent variable
model behaves as a standard IBP with Gaussian observations. In particular, we assume ydn is Gaus-
sian distributed with mean znBd and variance σ2

y , i.e.,

p(ydn|zn,Bd) = N (ydn|znBd, σ2
y),

and assume that there exists a transformation function over the variables ydn to obtain the obser-
vations xdn, mapping the real line < into the observation space. The resulting generative model is
shown in Figure 1, where Z is the IBP latent matrix, and Yd and Bd contain, respectively, the
auxiliary Gaussian variables ydn and the weighting factors bdk for the d-dimension of the data. Ad-
ditionally, Ψd denotes the set of auxiliary random variables needed to obtain the observation vector
xd given Yd, andHd contains the hyper-parameters associated to the random variables in Ψd. This
model assumes that the observations xdn are independent given the latent matrix Z, the weighting
matrices Bd and the auxiliary variables Ψd. Therefore, the likelihood can be factorized as

p(X|Z, {Bd,Ψd}Dd=1) =
D∏
d=1

p(xd|Z,Bd,Ψd) =
D∏
d=1

N∏
n=1

p(xdn|zn,Bd,Ψd).

Note that, if we assume Gaussian observations and set Yd = xd, this model resembles the standard
IBP with Gaussian observations [8]. In addition, conditioned on the variables Yd, we can infer the
latent matrix Z as in the standard IBP. We also remark that auxiliary Gaussian variables to link a
latent model with the observations have been previously used in Gaussian processes for multi-class
classification [6] and for ordinal regression [2]. However, up to our knowledge, this simple approach
has not been used to account for mixed continuous and discrete data, and the existent approaches
for the IBP with discrete observations propose non-conjugate likelihood models and approximate
inference algorithms [12, 13].

3.1 Likelihood Functions

Now, we define the set of transformations that map from the Gaussian variables ydn to the corre-
sponding observations xdn. We consider that each dimension in the table X may contain any of the
discrete or continuous variables detailed above, provide a likelihood function for each kind of data
and, in turn, also a likelihood function for mixed data.

2For convenience, we capitalized here the notation for the weighting vectors Bd.
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Real-valued Data. In this case, we assume that xd = Yd in the model in Figure 1 and consider
the standard approach when dealing with real-valued observations, which consist of assuming a
Gaussian likelihood function. In particular, as in the standard linear-Gaussian IBP [8], we assume
that each observation xdn is distributed as

p(xdn|zn,Bd) = N (xdn|znBd, σ2
y).

Positive Real-valued Data. In order to obtain positive real-valued observations, i.e., xdn ∈ <+, we
apply a transformation over ydn that maps from the real numbers to the positive real numbers, i.e.,

xdn = f(ydn + udn),

where udn is a Gaussian noise variable with variance σ2
u, and f : < → <+ is a monotonic differen-

tiable function. By change of variables, we obtain the likelihood function for positive real-valued
observations as

p(xdn|zn,Bd) =
1√

2π(σ2
y + σ2

u)
exp

{
− 1

2(σ2
y + σ2

u)
(f−1(xdn)− znBd)2

} ∣∣∣∣ ddxdn f−1(xdn)
∣∣∣∣ , (1)

where f−1 : <+ → < is the inverse function of the transformation f(·), i.e, f−1(f(v)) = v. Note
that in this case we resort to the Gaussian variable udn in order to obtain xdn from ydn, and therefore,
Ψd = udd andHd = σ2

u.

Categorical Data. Now we account for categorical observations, i.e., each observation xdn can take
values in the unordered index set {1, . . . , Rd}. Hence, assuming a multinomial probit model, we
can write

xdn = arg max
r∈{1,...,Rd}

ydnr, (2)

being ydnr ∼ N (ydnr|znbdr , σ2
y) where bdr denotes the K-length weighting vector, in which each bdkr

weights the influence of the k-th feature for the observation xdn taking value r. Note that, under this
likelihood model, since we have a Gaussian auxiliary variable ydnr and a weighting factor bdkr for
each possible value of the observation r ∈ {1, . . . , Rd}, we need to gather all the weighting factors
bdkr in a K ×Rd matrix Bd, and all the Gaussian auxiliary variables ydnr in the N ×Rd matrix Yd.

Under this observation model, we can write ydnr = znbdr + udnr, where udnr is a Gaussian noise
variable with variance σ2

y , and therefore, we can obtain the probability of each element xdn taking
value r ∈ {1, . . . , Rd} as [6]

p(xdn = r|zn,Bd) = Ep(u)

[
Rd∏
j=1
j 6=r

Φ
(
u+ zn(bdr − bdj )

)]
, (3)

where subscript r in bdr states for the column in Bd (r ∈ {1, . . . , Rd}), Φ(·) denotes the cumulative
density function of the standard normal distribution and Ep(u)[·] denotes expectation with respect to
the distribution p(u) = N (0, σ2

y).

Ordinal Data. Consider ordinal data, in which each element xdn takes values in the ordered index
set {1, . . . , Rd}. Then, assuming an ordered probit model, we can write

xdn =


1 if ydn ≤ θd1
2 if θd1 < ydn ≤ θd2

...
Rd if θdRd−1 < ydn

(4)

where again ydn is Gaussian distributed with mean znBd and variance σ2
y , and θdr for r ∈

{1, . . . , Rd − 1} are the thresholds that divide the real line into Rd regions. We assume the thresh-
olds θdr are sequentially generated from the truncated Gaussian distribution θdr ∝ N (θdr |0, σ2

θ)I(θdr >
θdr−1), where θd0 = −∞ and θdRd

= +∞. As opposed to the categorical case, now we have a unique
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weighting vector Bd and a unique Gaussian variable ydn for each observation xdn. Hence, the value
of xdn is determined by the region in which ydn falls.

Under the ordered probit model [2], the probability of each element xdn taking value r ∈ {1, . . . , Rd}
can be written as

p(xdn = r|zn,Bd) = Φ

(
θdr − znBd

σy

)
− Φ

(
θdr−1 − znBd

σy

)
. (5)

Let us remark that, if the d-dimension of the observation matrix contains ordinal data, the set of
auxiliary variables reduces to the Gaussian thresholds Ψd = {θd1 , . . . , θdRd−1} andHd = σ2

θ .

Count Data. In count data each observation xdn takes non-negative integer values, i.e., xdn ∈
{0, . . . ,∞}. Then, we assume

xdn = bf(ydn)c, (6)
where bvc returns the floor of v, that is the largest integer that does not exceed v, and f : < → <+

is a monotonic differentiable function that maps from the real numbers to the positive real numbers.
We can therefore write the likelihood function as

p(xdn|zn,Bd) = Φ

(
f−1(xdn + 1)− znBd

σy

)
− Φ

(
f−1(xdn)− znBd

σy

)
(7)

where f−1 : <+ → < is the inverse function of the transformation f(·).

Z

�2
B

↵ Yd

Bd

d = 1, . . . ,D

�2
y

X

 d

Hd

Figure 1: Generalized IBP for mixed continuous and discrete observations.

4 Inference Algorithm
In this section we describe our algorithm for inferring the latent variables given the observation
matrix. Under our model, detailed in Section 3, the probability distribution over the observation
matrix is fully characterized by the latent matrices Z and {Bd}Dd=1 (as well as the auxiliary variables
Ψd). Hence, if we assume the latent vector zn for the n-th datapoint and the weighting factors
Bd (and the auxiliary variables Ψd) to be known, we have a probability distribution over missing
observations xdn from which we can obtain estimates for xdn by sampling from this distribution,3 or
by simply taking either its mean, mode or median value. However, this procedure requires the latent
matrix Z and the latent weighting factors Bd (and Ψd) to be known.

We use Markov Chain Monte Carlo (MCMC) methods, which have been broadly applied to infer
the IBP matrix (see, e.g., in [8, 23, 20]). The proposed inference algorithm is summarized in Algo-
rithm 1. This algorithm exploits the information in the available data to learn the similarities among
the objects (captured in our model by the latent feature matrix Z), and how these latent features
show up in the attributes that describe the objects (captured in our model by Bd). In Algorithm 1,
we first need to update the latent matrix Z. Note that conditioned on {Yd}Dd=1, both the latent
matrix Z and the weighting matrices {Bd}Dd=1 are independent of the observation matrix X. Ad-
ditionally, since {Bd}Dd=1 and {Yd}Dd=1 are Gaussian distributed, we can analytically marginalize
out the weighting matrices {Bd}Dd=1 to obtain p({Yd}Dd=1|Z). Therefore, to infer the matrix Z, we
can apply the collapsed Gibbs sampler which presents better mixing properties than the uncollapsed

3Note that sampling from this distribution might be computationally expensive. In this case, we can easily
obtain samples of xd

n by exploiting the structure of our model. In particular, we can simply sample the auxiliary
Gaussian variables yd

n given zn and Bd, and then obtain an estimate for xd
n by applying the corresponding

transformation, detailed in Section 3.1.
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Algorithm 1 Inference Algorithm.
Input: X
Initialize: initialize Z and {Yd}D

d=1

1: for each iteration do
2: Update Z given {Yd}D

d=1.
3: for d = 1, . . . , D do
4: Sample Bd given Z and Yd according to (8).
5: Sample Yd given X, Z and Bd (as shown in the Supplementary Material).
6: Sample Ψd if needed (as shown in the Supplementary Material).
7: end for
8: end for

Output: Z, {Bd}D
d=1 and {Ψd}D

d=1

Gibbs sampler and, in consequence, is the standard method of choice in the context of the standard
linear-Gaussian IBP [8]. However, this algorithm suffers from a high computational cost (being
complexity per iteration cubic with the number of data points N ), which is prohibitive when dealing
with large databases. In order to solve this limitation, we resort to the accelerated Gibbs sampler [4]
instead. This algorithm presents linear complexity with the number of datapoints and is detailed in
the Supplementary Material.

Second, we need to sample the weighting factors in Bd, which is a K × Rd matrix in the case of
categorical attributes, and a K-length column vector otherwise. We denote each column vector in
Bd by bdr . The posterior over the weighting vectors are given by

p(bdr |ydr ,Z) = N (bdr |P−1λdr ,P
−1), (8)

where P = Z>Z + 1/σ2
BIk and λdr = Z>ydr . Note that the covariance matrix P−1 depend neither

on the dimension d nor on r, so we only need to invert the K ×K matrix P once at each iteration.
We describe in the Supplementary Material how to efficiently compute P after changes in the Z
matrix by rank one updates, without the need of computing the matrix product Z>Z.

Once we have updated Z and Bd, we sample each element in Yd from the distribution
N (ydnr|znbd, σ2

y) if the observation xdn is missing, and from the posterior p(ydnr|xdn, zn,bd) spec-
ified in the Supplementary Material, otherwise. Finally, we sample the auxiliary variables in Ψd

from their posterior distribution (detailed in the Supplementary Material) if necessary. This two lat-
ter steps involve, in the worst case, sampling from a doubly truncated univariate normal distribution
(see the Supplementary Material for further details), for which we make use of the algorithm in [11].

5 Experimental evaluation
We now validate the proposed algorithm for table completion on five real databases, which are
summarized in Table 1. The datasets contain different numbers of instances and attributes, which
cover all the discrete and continuous variables described in Section 3. We compare, in terms of
predictive log-likelihood, the following methods for table completion:

• The proposed general table completion approach denoted by GIBP (detailed in Section 3).
• The standard linear-Gaussian IBP [8] denoted by SIBP, treating all the attributes as Gaus-

sian.
• The Bayesian probabilistic matrix factorization approach [15] denoted by BPMF, that also

treats all the attributes in X as Gaussian distributed.

For the GIBP, we consider for the real positive and the count data the following transformation,
that maps from the real numbers to the real positive numbers, f(x) = log(exp(wx) + 1), where
w is a user hyper-parameter. Before running the SIBP and the BPMF methods we normalize each
column in matrix X to have zero-mean and unit-variance. Then, in order to provide estimates for
the missing data, we denormalize the inferred Gaussian variable. Additionally, since both the SIBP
and the BPMF assume continuous observations, when dealing with discrete data, we estimate each
missing value as the closest integer value to the (denormalized) Gaussian variable.
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Dataset N D Description
Statlog German credit dataset
[5]

1,000 20 (10 C + 4 O
+ 6 N)

Collects information about the credit risks of
the applicants.

QSAR biodegradation dataset
[10]

1,055 41 (2 R + 17 P
+ 4 C + 18 N)

Contains molecular descriptors of biodegrad-
able and non-biodegradable chemicals.

Internet usage survey dataset
[1]

1,006 32 (23 C + 8 O
+ 1 N)

Contains the responses of the participants to a
survey related to the usage of internet.

Wine quality Dataset [3] 6,497 12 (11 P + 1 N) Contains the results of physicochemical tests re-
alized to different wines.

NESARC dataset [13] 43,000 55 C Contains the responses of the participants to a
survey related to personality disorders.

Table 1: Description of datasets. ‘R’ states for real-valued variables, ‘P’ for positive real-valued
variables, ‘C’ for categorical variables, ‘O’ for ordinal variables and ‘N’ for count variables
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(b) QSAR biodegradation.
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(c) Internet usage survey.
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(d) Wine quality.
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Figure 2: Average test log-likelihood per missing datum. The ‘whiskers’ show a standard deviations
from the average test log-likelihood.

In Figure 2, we plot the average predictive log-likelihood per missing value as a function of the
percentage of missing data. Each value in Figure 2 has been obtained by averaging the results in
20 independent sets where the missing values have been randomly chosen. In Figures 2a and 2b,
we cut the plot in 50% because, in these two databases, the discrete attributes present a mode value
that is present for more than 80% of the instances. As a consequence, the SIBP and the BPMF
algorithms assign probability close to one to the mode, which results in an artificial increase in the
average test log-likelihood for larger percentages of missing data. For the BPMF model, we have
used different numbers of latent features (in particular, 10, 20 and 50), although we only show the
best results for each database, specifically, K = 10 for the NESARC and the wine databases, and
K = 50 for the remainder. Both the GIBP and the SIBP have not inferred a number of (binary)
latent features above 25 in any case. Note that in Figure 2e, we only plot the test log-likelihood for
the GIBP and the SIBP because the BPMF provides much lower values. As expected, we observe
in Figure 2 that the average test log-likelihood decreases for the three models when the number of
missing values increases (flat shape of the curves are due to the y-axis scale). In this figure, we also
observe that the proposed general IBP model outperforms the SIBP and the BPMF for four of the
the databases, being the SIBP slightly better for the Internet database. The BPMF model presents
the lowest test-log-likelihood in all the databases.

Now, we analyze the performance of the three models for each kind of discrete and continuous
variables. Figure 3 shows average predictive likelihood per missing value for each attribute in the
table, i.e., for each dimension in X. In this figure we have grouped the dimensions according to the
kind of data that they contain, showing in the x-axis the number of considered categories for the case
of categorical and ordinal data. In this figure, we observe that the GIBP presents similar performance
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for all the attributes in the five databases, while for the SIBP and the BPMF models, the test-log-
likelihood falls drastically for some of the attributes, being this effect worse in the case of the BPMF
(it explains the low log-likelihood in Figure 2). This effect is even more evident in Figures 2b
and 2d. We also observe, in Figures 2 and 3, that both IBP based approaches (the GIBP and the
SIBP) outperform the BPMF, with the proposed GIBP being the one that best performs across all
the databases. We can conclude that, unlike to the BPMF and the GIBP, the GIBP provides accurate
estimates for the missing data regardless of their discrete or continuous nature.

6 Conclusions
In this paper, we have proposed a table completion approach for heterogeneous databases, based on
an IBP with a generalized likelihood that allows for mixed discrete and continuous data. We have
then derived an inference algorithm that scales linearly with the number of observations. Finally, our
experimental results over five real databases have shown than the proposed approach outperforms,
in terms of robustness and accuracy, approaches that treat all the attributes as Gaussian variables.
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(d) Wine quality.
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Figure 3: Average test log-likelihood per missing datum in each dimension of the data with 50% of
missing data. In the x-axis ‘R’ states for real-valued variables, ‘P’ for positive real-valued variables,
‘C’ for categorical variables, ‘O’ for ordinal variables and ‘N’ for count variables. The number that
accompanies the ‘C’ or ‘O’ corresponds to the number of categories.
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