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Abstract

We revisit from a statistical learning perspective the classical decision-theoretic
problem of weighted expert voting. In particular, we examine the consistency
(both asymptotic and finitary) of the optimal Nitzan-Paroush weighted majority
and related rules. In the case of known expert competence levels, we give sharp
error estimates for the optimal rule. When the competence levels are unknown,
they must be empirically estimated. We provide frequentist and Bayesian analyses
for this situation. Some of our proof techniques are non-standard and may be
of independent interest. The bounds we derive are nearly optimal, and several
challenging open problems are posed.

1 Introduction

Imagine independently consulting a small set of medical experts for the purpose of reaching a binary
decision (e.g., whether to perform some operation). Each doctor has some “reputation”, which can
be modeled as his probability of giving the right advice. The problem of weighting the input of
several experts arises in many situations and is of considerable theoretical and practical importance.
The rigorous study of majority vote has its roots in the work of Condorcet [1]. By the 70s, the field
of decision theory was actively exploring various voting rules (see [2] and the references therein).
A typical setting is as follows. An agent is tasked with predicting some random variable Y ∈ {±1}
based on input Xi ∈ {±1} from each of n experts. Each expert Xi has a competence level pi ∈
(0, 1), which is the probability of making a correct prediction: P(Xi = Y ) = pi. Two simplifying
assumptions are commonly made:

(i) Independence: The random variables {Xi : i ∈ [n]} are mutually independent conditioned
on the truth Y .

(ii) Unbiased truth: P(Y = +1) = P(Y = −1) = 1/2.

We will discuss these assumptions below in greater detail; for now, let us just take them as given.
(Since the bias of Y can be easily estimated from data, only the independence assumption is truly
restrictive.) A decision rule is a mapping f : {±1}n → {±1} from the n expert inputs to the agent’s
final decision. Our quantity of interest throughout the paper will be the agent’s probability of error,

P(f(X) 6= Y ). (1)
A decision rule f is optimal if it minimizes the quantity in (1) over all possible decision rules. It
was shown in [2] that, when Assumptions (i)–(ii) hold and the true competences pi are known, the
optimal decision rule is obtained by an appropriately weighted majority vote:

fOPT(x) = sign

(
n∑
i=1

wixi

)
, (2)
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where the weights wi are given by

wi = log
pi

1− pi
, i ∈ [n]. (3)

Thus, wi is the log-odds of expert i being correct — and the voting rule in (2), also known as naive
Bayes [3], may be seen as a simple consequence of the Neyman-Pearson lemma [4].

Main results. The formula in (2) raises immediate questions, which apparently have not previ-
ously been addressed. The first one has to do with the consistency of the Nitzan-Paroush optimal
rule: under what conditions does the probability of error decay to zero and at what rate? In Section 3,
we show that the probability of error is controlled by the committee potential Φ, defined by

Φ =
n∑
i=1

(pi − 1
2 )wi =

n∑
i=1

(pi − 1
2 ) log

pi
1− pi

. (4)

More precisely, we prove in Theorem 1 that log P(fOPT(X) 6= Y ) � −Φ, where � denotes equiva-
lence up to universal multiplicative constants.

Another issue not addressed by the Nitzan-Paroush result is how to handle the case where the com-
petences pi are not known exactly but rather estimated empirically by p̂i. We present two solutions
to this problem: a frequentist and a Bayesian one. As we show in Section 4, the frequentist approach
does not admit an optimal empirical decision rule. Instead, we analyze empirical decision rules in
various settings: high-confidence (i.e., |p̂i − pi| � 1) vs. low-confidence, adaptive vs. nonadaptive.
The low-confidence regime requires no additional assumptions, but gives weaker guarantees (Theo-
rem 5). In the high-confidence regime, the adaptive approach produces error estimates in terms of
the empirical p̂is (Theorem 7), while the nonadaptive approach yields a bound in terms of the un-
known pis, which still leads to useful asymptotics (Theorem 6). The Bayesian solution sidesteps the
various cases above, as it admits a simple, provably optimal empirical decision rule (Section 5). Un-
fortunately, we are unable to compute (or even nontrivially estimate) the probability of error induced
by this rule; this is posed as a challenging open problem.

2 Related work

Machine learning theory typically clusters weighted majority [5, 6] within the framework of online
algorithms; see [7] for a modern treatment. Since the online setting is considerably more adversarial
than ours, we obtain very different weighted majority rules and consistency guarantees. The weights
wi in (2) bear a striking similarity to the Adaboost update rule [8, 9]. However, the latter assumes
weak learners with access to labeled examples, while in our setting the experts are “static”. Still, we
do not rule out a possible deeper connection between the Nitzan-Paroush decision rule and boosting.

In what began as the influential Dawid-Skene model [10] and is now known as crowdsourcing, one
attempts to extract accurate predictions by pooling a large number of experts, typically without the
benefit of being able to test any given expert’s competence level. Still, under mild assumptions it
is possible to efficiently recover the expert competences to a high accuracy and to aggregate them
effectively [11]. Error bounds for the oracle MAP rule were obtained in this model by [12] and
minimax rates were given in [13].

In a recent line of work [14, 15, 16] have developed a PAC-Bayesian theory for the majority vote
of simple classifiers. This approach facilitates data-dependent bounds and is even flexible enough
to capture some simple dependencies among the classifiers — though, again, the latter are learners
as opposed to our experts. Even more recently, experts with adversarial noise have been consid-
ered [17], and efficient algorithms for computing optimal expert weights (without error analysis)
were given [18]. More directly related to the present work are the papers of [19], which character-
izes the consistency of the simple majority rule, and [20, 21, 22] which analyze various models of
dependence among the experts.
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3 Known competences

In this section we assume that the expert competences pi are known and analyze the consistency of
the Nitzan-Paroush optimal decision rule (2). Our main result here is that the probability of error
P(fOPT(X) 6= Y ) is small if and only if the committee potential Φ is large.

Theorem 1. Suppose that the experts X = (X1, . . . , Xn) satisfy Assumptions (i)-(ii) and
fOPT : {±1}n → {±1} is the Nitzan-Paroush optimal decision rule. Then

(i) P(fOPT(X) 6= Y ) ≤ exp
(
− 1

2Φ
)
.

(ii) P(fOPT(X) 6= Y ) ≥ 3
8[1 + exp(2Φ + 4

√
Φ)]

.

As we show in the full paper [27], the upper and lower bounds are both asymptotically tight. The
remainder of this section is devoted to proving Theorem 1.

3.1 Proof of Theorem 1(i)

Define the {0, 1}-indicator variables

ξi = 1{Xi=Y }, (5)

corresponding to the event that the ith expert is correct. A mistake fOPT(X) 6= Y occurs precisely
when1 the sum of the correct experts’ weights fails to exceed half the total mass:

P(fOPT(X) 6= Y ) = P

(
n∑
i=1

wiξi ≤
1
2

n∑
i=1

wi

)
. (6)

Since Eξi = pi, we may rewrite the probability in (6) as

P

(∑
i

wiξi ≤ E

[∑
i

wiξi

]
−
∑
i

(pi − 1
2 )wi

)
. (7)

A standard tool for estimating such sum deviation probabilities is Hoeffding’s inequality. Applied
to (7), it yields the bound

P(fOPT(X) 6= Y ) ≤ exp

(
−

2
[∑

i(pi −
1
2 )wi

]2∑
i w

2
i

)
, (8)

which is far too crude for our purposes. Indeed, consider a finite committee of highly competent
experts with pi’s arbitrarily close to 1 and X1 the most competent of all. Raising X1’s competence
sufficiently far above his peers will cause both the numerator and the denominator in the exponent
to be dominated by w2

1 , making the right-hand-side of (8) bounded away from zero. The inability of
Hoeffding’s inequality to guarantee consistency even in such a felicitous setting is an instance of its
generally poor applicability to highly heterogeneous sums, a phenomenon explored in some depth in
[23]. Bernstein’s and Bennett’s inequalities suffer from a similar weakness (see ibid.). Fortunately,
an inequality of Kearns and Saul [24] is sufficiently sharp to yield the desired estimate: For all
p ∈ [0, 1] and all t ∈ R,

(1− p)e−tp + pet(1−p) ≤ exp
(

1− 2p
4 log((1− p)/p)

t2
)
. (9)

Remark. The Kearns-Saul inequality (9) may be seen as a distribution-dependent refinement of
Hoeffding’s (which bounds the left-hand-side of (9) by et

2/8), and is not nearly as straightforward
to prove. An elementary rigorous proof is given in [25]. Following up, [26] gave a “soft” proof
based on transportation and information-theoretic techniques.

1 Without loss of generality, ties are considered to be errors.
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Put θi = ξi − pi, substitute into (6), and apply Markov’s inequality:

P(fOPT(X) 6= Y ) = P

(
−
∑
i

wiθi ≥ Φ

)
≤ e−tΦEexp

(
−t
∑
i

wiθi

)
. (10)

Now

Ee−twiθi = pie
−(1−pi)wit + (1− pi)epiwit

≤ exp
(

−1 + 2pi
4 log(pi/(1− pi))

w2
i t

2

)
= exp

[
1
2 (pi − 1

2 )wit2
]
, (11)

where the inequality follows from (9). By independence,

E exp

(
−t
∑
i

wiθi

)
=

∏
i

Ee−twiθi ≤ exp

(
1
2

∑
i

(pi − 1
2 )wit2

)
= exp

(
1
2Φt2

)
and hence P(fOPT(X) 6= Y ) ≤ exp

(
1
2Φt2 − Φt

)
.Choosing t = 1 yields the bound in Theorem 1(i).

3.2 Proof of Theorem 1(ii)

Define the {±1}-indicator variables

ηi = 2 · 1{Xi=Y } − 1, (12)

corresponding to the event that the ith expert is correct and put qi = 1− pi. The shorthand w · η =∑n
i=1 wiηi will be convenient. We will need some simple lemmata, whose proofs are deferred to

the journal version [27].
Lemma 2.

P(fOPT(X) = Y ) = 1
2

∑
η∈{±1}n

max {P (η), P (−η)}

and

P(fOPT(X) 6= Y ) = 1
2

∑
η∈{±1}n

min {P (η), P (−η)} ,

where P (η) =
∏
i:ηi=1 pi

∏
i:ηi=−1 qi.

Lemma 3. Suppose that s, s′ ∈ (0,∞)m satisfy
∑m
i=1(si + s′i) ≥ a and R−1 ≤ si/s

′
i ≤ R,

i ∈ [m], for some R <∞. Then
∑m
i=1 min {si, s′i} ≥ a/(1 +R).

Lemma 4. Define the function F : (0, 1)→ R by

F (x) =
x(1− x) log(x/(1− x))

2x− 1
.

Then sup0<x<1 F (x) = 1
2 .

Continuing with the main proof, observe that

E [w · η] =
n∑
i=1

(pi − qi)wi = 2Φ (13)

and Var [w · η] = 4
∑n
i=1 piqiw

2
i . By Lemma 4, piqiw2

i ≤ 1
2 (pi − qi)wi, and hence

Var [w · η] ≤ 4Φ. (14)

Define the segment I ⊂ R by

I =
[
2Φ− 4

√
Φ, 2Φ + 4

√
Φ
]
. (15)

Chebyshev’s inequality together with (13) and (14) implies that

P (w · η ∈ I) ≥ 3
4
. (16)
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Consider an atom η ∈ {±1}n for which w · η ∈ I . The proof of Lemma 2 shows that

P (η)
P (−η)

= exp (w · η) ≤ exp(2Φ + 4
√

Φ), (17)

where the inequality follows from (15). Lemma 2 further implies that

P(fOPT(X) 6= Y ) ≥ 1
2

∑
η∈{±1}n:w·η∈I

min {P (η), P (−η)} ≥ 3/4
1 + exp(2Φ + 4

√
Φ)
,

where the second inequality follows from Lemma 3, (16) and (17). This completes the proof.

4 Unknown competences: frequentist

Our goal in this section is to obtain, insofar as possible, analogues of Theorem 1 for unknown expert
competences. When the pis are unknown, they must be estimated empirically before any useful
weighted majority vote can be applied. There are various ways to model partial knowledge of expert
competences [28, 29]. Perhaps the simplest scenario for estimating the pis is to assume that the
ith expert has been queried independently mi times, out of which he gave the correct prediction ki
times. Taking the {mi} to be fixed, define the committee profile by k = (k1, . . . , kn); this is the
aggregate of the agent’s empirical knowledge of the experts’ performance. An empirical decision
rule f̂ : (x,k) 7→ {±1} makes a final decision based on the expert inputs x together with the
committee profile. Analogously to (1), the probability of a mistake is

P(f̂(X,K) 6= Y ). (18)

Note that now the committee profile is an additional source of randomness. Here we run into our first
difficulty: unlike the probability in (1), which is minimized by the Nitzan-Paroush rule, the agent
cannot formulate an optimal decision rule f̂ in advance without knowing the pis. This is because no
decision rule is optimal uniformly over the range of possible pis. Our approach will be to consider
weighted majority decision rules of the form

f̂(x,k) = sign

(
n∑
i=1

ŵ(ki)xi

)
(19)

and to analyze their consistency properties under two different regimes: low-confidence and high-
confidence. These refer to the confidence intervals of the frequentist estimate of pi, given by

p̂i =
ki
mi

. (20)

4.1 Low-confidence regime

In the low-confidence regime, the sample sizes mi may be as small as 1, and we define2

ŵ(ki) = ŵLC
i := p̂i − 1

2 , i ∈ [n], (21)

which induces the empirical decision rule f̂LC. It remains to analyze f̂LC’s probability of error.
Recall the definition of ξi from (5) and observe that

E
[
ŵLC
i ξi

]
= E[(p̂i − 1

2 )ξi] = (pi − 1
2 )pi, (22)

since p̂i and ξi are independent. As in (6), the probability of error (18) is

P

(
n∑
i=1

ŵLC
i ξi ≤

1
2

n∑
i=1

ŵLC
i

)
= P

(
n∑
i=1

Zi ≤ 0

)
, (23)

2 For mi min {pi, qi} � 1, the estimated competences p̂i may well take values in {0, 1}, in which case
log(p̂i/q̂i) = ±∞. The rule in (21) is essentially a first-order Taylor approximation to w(·) about p = 1

2
.
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where Zi = ŵLC
i (ξi − 1

2 ). Now the {Zi} are independent random variables, EZi = (pi − 1
2 )2 (by

(22)), and each Zi takes values in an interval of length 1
2 . Hence, the standard Hoeffding bound

applies:

P(f̂LC(X,K) 6= Y ) ≤ exp

− 8
n

(
n∑
i=1

(pi − 1
2 )2

)2
 . (24)

We summarize these calculations in

Theorem 5. A sufficient condition for P(f̂LC(X,K) 6= Y )→ 0 is 1√
n

∑n
i=1(pi − 1

2 )2 →∞.

Several remarks are in order. First, notice that the error bound in (24) is stated in terms of the un-
known {pi}, providing the agent with large-committee asymptotics but giving no finitary informa-
tion; this limitation is inherent in the low-confidence regime. Secondly, the condition in Theorem 5
is considerably more restrictive than the consistency condition Φ → ∞ implicit in Theorem 1. In-
deed, the empirical decision rule f̂LC is incapable of exploiting a single highly competent expert in
the way that fOPT from (2) does. Our analysis could be sharpened somewhat for moderate sample
sizes {mi} by using Bernstein’s inequality to take advantage of the low variance of the p̂is. For
sufficiently large sample sizes, however, the high-confidence regime (discussed below) begins to
take over. Finally, there is one sense in which this case is “easier” to analyze than that of known
{pi}: since the summands in (23) are bounded, Hoeffding’s inequality gives nontrivial results and
there is no need for more advanced tools such as the Kearns-Saul inequality (9) (which is actually
inapplicable in this case).

4.2 High-confidence regime

In the high-confidence regime, each estimated competence p̂i is close to the true value pi with high
probability. To formalize this, fix some 0 < δ < 1, 0 < ε ≤ 5, and put qi = 1 − pi, q̂i = 1 − p̂i.
We will set the empirical weights according to the “plug-in” Nitzan-Paroush rule

ŵHC
i := log

p̂i
q̂i
, i ∈ [n], (25)

which induces the empirical decision rule f̂HC and raises immediate concerns about ŵHC
i = ±∞. We

give two kinds of bounds on P(f̂HC 6= Y ): nonadaptive and adaptive. In the nonadaptive analysis, we
show that for mi min {pi, qi} � 1, with high probability |wi − ŵHC

i | � 1, and thus a “perturbed”
version of Theorem 1(i) holds (and in particular, wHC

i will be finite with high probability). In the
adaptive analysis, we allow ŵHC

i to take on infinite values3 and show (perhaps surprisingly) that this
decision rule also asymptotically achieves the rate of Theorem 1(i).

Nonadaptive analysis. The following result captures our analysis of the nonadaptive agent:

Theorem 6. Let 0 < δ < 1 and 0 < ε < min {5, 2Φ/n}. If

mi min {pi, qi} ≥ 3
(√

4ε+ 1− 1
4

)−2

log
4n
δ
, i ∈ [n], (26)

then

P
(
f̂HC(X,K) 6= Y

)
≤ δ + exp

[
− (2Φ− εn)2

8Φ

]
. (27)

Remark. For fixed {pi} and mini∈[n]mi → ∞, we may take δ and ε arbitrarily small — and in
this limiting case, the bound of Theorem 1(i) is recovered.

3 When the decision rule is faced with evaluating sums involving∞−∞, we automatically count this as
an error.
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Adaptive analysis. Theorem 6 has the drawback of being nonadaptive, in that its assumptions
(26) and conclusions (27) depend on the unknown {pi} and hence cannot be evaluated by the agent
(the bound in (24) is also nonadaptive4). In the adaptive (fully empirical) approach, all results are
stated in terms of empirically observed quantities:
Theorem 7. Choose any5 δ ≥

∑n
i=1

1√
mi

and let R be the event where

exp
(
− 1

2

∑n
i=1(p̂i − 1

2 )ŵHC
i

)
≤ δ

2 . Then P
(
R ∩

{
f̂HC(X,K) 6= Y

})
≤ δ.

Remark 1. Our interpretation for Theorem 7 is as follows. The agent observes the committee profile
K, which determines the {p̂i, ŵHC

i }, and then checks whether the event R has occurred. If not, the
adaptive agent refrains from making a decision (and may choose to fall back on the low-confidence
approach described previously). If R does hold, however, the agent predicts Y according to f̂HC.
Observe that the eventR will only occur if the empirical committee potential Φ̂ =

∑n
i=1(p̂i− 1

2 )ŵHC
i

is sufficiently large — i.e., if enough of the experts’ competences are sufficiently far from 1
2 . But if

this is not the case, little is lost by refraining from a high-confidence decision and defaulting to a
low-confidence one, since near 1

2 , the two decision procedures are very similar.

As explained above, there does not exist a nontrivial a priori upper bound on P(f̂HC(X,K) 6= Y )
absent any knowledge of the pis. Instead, Theorem 7 bounds the probability of the agent being
“fooled” by an unrepresentative committee profile.6 Note that we have done nothing to prevent
ŵHC
i = ±∞, and this may indeed happen. Intuitively, there are two reasons for infinite ŵHC

i : (a)
noisy p̂i due to mi being too small, or (b) the ith expert is actually highly (in)competent, which
causes p̂i ∈ {0, 1} to be likely even for large mi. The 1/

√
mi term in the bound insures against

case (a), while in case (b), choosing infinite ŵHC
i causes no harm (as we show in the proof).

Proof of Theorem 7. We will write the probability and expectation operators with subscripts (such
as K) to indicate the random variable(s) being summed over. Thus,

PK,X,Y

(
R ∩

{
f̂HC(X,K) 6= Y

})
= PK,η

(
R ∩

{
ŵHC · η ≤ 0

})
= EK

[
1R · Pη

(
ŵHC · η ≤ 0 |K

)]
.

Recall that the random variable η ∈ {±1}n, with probability mass function
P (η) =

∏
i:ηi=1 pi

∏
i:ηi=−1 qi, is independent of K, and hence

Pη

(
ŵHC · η ≤ 0 |K

)
= Pη

(
ŵHC · η ≤ 0

)
. (28)

Define the random variable η̂ ∈ {±1}n (conditioned on K) by the probability mass function
P (η̂) =

∏
i:ηi=1 p̂i

∏
i:ηi=−1 q̂i, and the set A ⊆ {±1}n by A =

{
x : ŵHC · x ≤ 0

}
. Now∣∣Pη

(
ŵHC · η ≤ 0

)
− Pη̂

(
ŵHC · η̂ ≤ 0

)∣∣ = |Pη (A)− Pη̂ (A)| ≤ max
A⊆{±1}n

|Pη (A)− Pη̂ (A)|

= ‖Pη − Pη̂‖TV ≤
n∑
i=1

|pi − p̂i| =: M,

where the last inequality follows from a standard tensorization property of the total variation
norm ‖·‖TV, see e.g. [33, Lemma 2.2]. By Theorem 1(i), we have Pη̂

(
ŵHC · η̂ ≤ 0

)
≤

exp
(
− 1

2

∑n
i=1(p̂i − 1

2 )ŵHC
i

)
, and hence Pη

(
ŵHC · η ≤ 0

)
≤ M + exp

(
− 1

2

∑n
i=1(p̂i − 1

2 )ŵHC
i

)
.

Invoking (28), we substitute the right-hand side above into (28) to obtain

PK,X,Y

(
R ∩

{
f̂HC(X,K) 6= Y

})
≤ EK

[
1R ·

(
M + exp

(
− 1

2

n∑
i=1

(p̂i − 1
2 )ŵHC

i

))]

≤ EK[M ] + EK

[
1R exp

(
− 1

2

n∑
i=1

(p̂i − 1
2 )ŵHC

i

)]
.

4The term oracle was suggested by a referee for this setting.
5 Actually, as the proof will show, we may take δ to be a smaller value, but with a more complex dependence

on {mi}, which simplifies to 2[1− (1− (2
√
m)−1)n] for mi ≡ m.

6These adaptive bounds are similar in spirit to empirical Bernstein methods, [30, 31, 32], where the agent’s
confidence depends on the empirical variance.
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By the definition of R, the second term on the last right-hand side is upper-bounded by δ/2. To
estimate M , we invoke a simple mean absolute deviation bound (cf. [34]):

EK |pi − p̂i| ≤

√
pi(1− pi)

mi
≤ 1

2
√
mi

,

which finishes the proof.

Remark. The improvement mentioned in Footnote 5 is achieved via a refinement of the bound
‖Pη − Pη̂‖TV ≤

∑n
i=1 |pi − p̂i| to ‖Pη − Pη̂‖TV ≤ α ({|pi − p̂i| : i ∈ [n]}), where α(·) is the func-

tion defined in [33, Lemma 4.2].

Open problem. As argued in Remark 1, Theorem 7 achieves the optimal asymptotic rate in {pi}.
Can the dependence on {mi} be improved, perhaps through a better choice of ŵHC?

5 Unknown competences: Bayesian

A shortcoming of Theorem 7 is that when condition R fails, the agent is left with no estimate of the
error probability. An alternative (and in some sense cleaner) approach to handling unknown expert
competences pi is to assume a known prior distribution over the competence levels pi. The natural
choice of prior for a Bernoulli parameter is the Beta distribution, namely pi ∼ Beta(αi, βi) with

density p
αi−1
i q

βi−1
i

B(αi,βi)
, where αi, βi > 0, qi = 1 − pi and B(x, y) = Γ(x)Γ(y)/Γ(x + y). Our full

probabilistic model is as follows. Each of the n expert competences pi is drawn independently from
a Beta distribution with known parameters αi, βi. Then the ith expert, i ∈ [n], is queried indepen-
dentlymi times, with ki correct predictions andmi−ki incorrect ones. As before, K = (k1, . . . , kn)
is the (random) committee profile. Absent direct knowledge of the pis, the agent relies on an empiri-
cal decision rule f̂ : (x,k) 7→ {±1} to produce a final decision based on the expert inputs x together
with the committee profile k. A decision rule f̂Ba is Bayes-optimal if it minimizes P(f̂(X,K) 6= Y ),
which is formally identical to (18) but semantically there is a difference: the former is over the pi
in addition to (X, Y,K). Unlike the frequentist approach, where no optimal empirical decision rule
was possible, the Bayesian approach readily admits one: f̂Ba(x,k) = sign (

∑n
i=1 ŵ

Ba
i xi), where

ŵBa
i = log

αi + ki
βi +mi − ki

. (29)

Notice that for 0 < pi < 1, we have ŵBa
i −→mi→∞

wi, almost surely, both in the frequentist and

the Bayesian interpretations. Unfortunately, although P(f̂Ba(X,K) 6= Y ) = P(ŵBa · η ≤ 0) is
a deterministic function of {αi, βi,mi}, we are unable to compute it at this point, or even give a
non-trivial bound. The main source of difficulty is the coupling between ŵBa and η.

Open problem. Give a non-trivial estimate for P(f̂Ba(X,K) 6= Y ).

6 Discussion

The classic and seemingly well-understood problem of the consistency of weighted majority votes
continues to reveal untapped depth and suggest challenging unresolved questions. We hope that the
results and open problems presented here will stimulate future research.
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