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Abstract

We provide a general mechanism to design online learning algorithms based on
a minimax analysis within a drifting-games framework. Different online learning
settings (Hedge, multi-armed bandit problems and online convex optimization) are
studied by converting into various kinds of drifting games. The original minimax
analysis for drifting games is then used and generalized by applying a series of
relaxations, starting from choosing a convex surrogate of the 0-1 loss function.
With different choices of surrogates, we not only recover existing algorithms, but
also propose new algorithms that are totally parameter-free and enjoy other useful
properties. Moreover, our drifting-games framework naturally allows us to study
high probability bounds without resorting to any concentration results, and also a
generalized notion of regret that measures how good the algorithm is compared to
all but the top small fraction of candidates. Finally, we translate our new Hedge
algorithm into a new adaptive boosting algorithm that is computationally faster as
shown in experiments, since it ignores a large number of examples on each round.

1 Introduction

In this paper, we study online learning problems within a drifting-games framework, with the aim of
developing a general methodology for designing learning algorithms based on a minimax analysis.

To solve an online learning problem, it is natural to consider game-theoretically optimal algorithms
which find the best solution even in worst-case scenarios. This is possible for some special cases
([7, 1, 3,21]) but difficult in general. On the other hand, many other efficient algorithms with optimal
regret rate (but not exactly minimax optimal) have been proposed for different learning settings (such
as the exponential weights algorithm [14, 15], and follow the perturbed leader [18]). However, it is
not always clear how to come up with these algorithms. Recent work by Rakhlin et al. [26] built a
bridge between these two classes of methods by showing that many existing algorithms can indeed
be derived from a minimax analysis followed by a series of relaxations.

In this paper, we provide a parallel way to design learning algorithms by first converting online
learning problems into variants of drifting games, and then applying a minimax analysis and relax-
ations. Drifting games [28] (reviewed in Section 2) generalize Freund’s “majority-vote game” [13]
and subsume some well-studied boosting and online learning settings. A nearly minimax optimal
algorithm is proposed in [28]. It turns out the connections between drifting games and online learn-
ing go far beyond what has been discussed previously. To show that, we consider variants of drifting
games that capture different popular online learning problems. We then generalize the minimax

analysis in [28] based on one key idea: relax a 0-1 loss function by a convex surrogate. Although

*R. Schapire is currently at Microsoft Research in New York City.



this idea has been applied widely elsewhere in machine learning, we use it here in a new way to
obtain a very general methodology for designing and analyzing online learning algorithms. Using
this general idea, we not only recover existing algorithms, but also design new ones with special
useful properties. A somewhat surprising result is that our new algorithms are totally parameter-
free, which is usually not the case for algorithms derived from a minimax analysis. Moreover, a
generalized notion of regret (e-regret, defined in Section 3) that measures how good the algorithm is
compared to all but the top e fraction of candidates arises naturally in our drifting-games framework.
Below we summarize our results for a range of learning settings.

Hedge Settings: (Section 3) The Hedge problem [14] investigates how to cleverly bet across a set
of actions. We show an algorithmic equivalence between this problem and a simple drifting game
(DGv1). We then show how to relax the original minimax analysis step by step to reach a general
recipe for designing Hedge algorithms (Algorithm 3). Three examples of appropriate convex sur-
rogates of the 0-1 loss function are then discussed, leading to the well-known exponential weights
algorithm and two other new ones, one of which (NormalHedge.DT in Section 3.3) bears some sim-
ilarities with the NormalHedge algorithm [10] and enjoys a similar e-regret bound simultaneously
for all € and horizons. However, our regret bounds do not depend on the number of actions, and thus
can be applied even when there are infinitely many actions. Our analysis is also arguably simpler
and more intuitive than the one in [10] and easy to be generalized to more general settings. More-
over, our algorithm is more computationally efficient since it does not require a numerical searching
step as in NormalHedge. Finally, we also derive high probability bounds for the randomized Hedge
setting as a simple side product of our framework without using any concentration results.

Multi-armed Bandit Problems: (Section 4) The multi-armed bandit problem [6] is a classic ex-
ample for learning with incomplete information where the learner can only obtain feedback for the
actions taken. To capture this problem, we study a quite different drifting game (DGv2) where ran-
domness and variance constraints are taken into account. Again the minimax analysis is generalized
and the EXP3 algorithm [6] is recovered. Our results could be seen as a preliminary step to answer
the open question [2] on exact minimax optimal algorithms for the multi-armed bandit problem.

Online Convex Optimization: (Section 4) Based the theory of convex optimization, online convex
optimization [31] has been the foundation of modern online learning theory. The corresponding
drifting game formulation is a continuous space variant (DGv3). Fortunately, it turns out that all
results from the Hedge setting are ready to be used here, recovering the continuous EXP algorithm
[12, 17, 24] and also generalizing our new algorithms to this general setting. Besides the usual
regret bounds, we also generalize the e-regret, which, as far as we know, is the first time it has been
explicitly studied. Again, we emphasize that our new algorithms are adaptive in ¢ and the horizon.

Boosting: (Section 4) Realizing that every Hedge algorithm can be converted into a boosting algo-
rithm ([29]), we propose a new boosting algorithm (NH-Boost.DT) by converting NormalHedge.DT.
The adaptivity of NormalHedge.DT is then translated into training error and margin distribution
bounds that previous analysis in [29] using nonadaptive algorithms does not show. Moreover, our
new boosting algorithm ignores a great many examples on each round, which is an appealing prop-
erty useful to speeding up the weak learning algorithm. This is confirmed by our experiments.

Related work: Our analysis makes use of potential functions. Similar concepts have widely ap-
peared in the literature [8, 5], but unlike our work, they are not related to any minimax analysis and
might be hard to interpret. The existence of parameter free Hedge algorithms for unknown number
of actions was shown in [11], but no concrete algorithms were given there. Boosting algorithms
that ignore some examples on each round were studied in [16], where a heuristic was used to ignore
examples with small weights and no theoretical guarantee is provided.

2 Reviewing Drifting Games

We consider a simplified version of drifting games similar to the one described in [29, chap. 13]
(also called chip games). This game proceeds through 7" rounds, and is played between a player and
an adversary who controls /V chips on the real line. The positions of these chips at the end of round
t are denoted by s; € R™, with each coordinate s; ; corresponding to the position of chip i. Initially,
all chips are at position 0 so that sy = 0. On every round ¢t = 1,...,T" the player first chooses a
distribution p; over the chips, then the adversary decides the movements of the chips z; so that the



new positions are updated as s; = s, + z;. Here, each 2, ; has to be picked from a prespecified
set B C R, and more importantly, satisfy the constraint p; - z; > 5 > 0 for some fixed constant 3.

At the end of the game, each chip is associated with a nonnegative loss defined by L(st ;) for some
nonincreasing function L mapping from the final position of the chip to R . The goal of the player
is to minimize the chips’ average loss % Zfil L(sr,;) after T rounds. So intuitively, the player
aims to “push” the chips to the right by assigning appropriate weights on them so that the adversary
has to move them to the right by 3 in a weighted average sense on each round. This game captures
many learning problems. For instance, binary classification via boosting can be translated into a
drifting game by treating each training example as a chip (see [28] for details).

We regard a player’s strategy D as a function mapping from the history of the adversary’s de-
cisions to a distribution that the player is going to play with, that is, py = D(z1..—1) where
Z1.4—1 stands for z;,...,2z;_1. The player’s worst case loss using this algorithm is then denoted
by L7(D). The minimax optimal loss of the game is computed by the following expression:

minp L7(D) = minp, eay MaXy, ez, *  Milpreay MaXgrez, | ~ Zivzl L(Zz;l zt.;), where
Ay is the N dimensional simplex and Z, = BY N {z : p-z > [} is assumed to be compact.
A strategy D* that realizes the minimum in minp Ly (D) is called a minimax optimal strategy.
A nearly optimal strategy and its analysis is originally given in [28], and a derivation by directly
tackling the above minimax expression can be found in [29, chap. 13]. Specifically, a sequence of
potential functions of a chip’s position is defined recursively as follows:

Or(s) =L(s), Pi—1(s) = min max(P;(s+ 2) + w(z — 3)). (1)

weRy z€B

Let w; ; be the weight that realizes the minimum in the definition of ®;_;(s;_1 ), that is, wy; €
arg min,, max,(®;(s;—1,; + z) + w(z — B)). Then the player’s strategy is to set p; ; < wy ;. The
key property of this strategy is that it assures that the sum of the potentials over all the chips never
increases, connecting the player’s final loss with the potential at time O as follows:

1Y 1Y 1Y 1 Y
N;L(Sm) < ﬁ;q)T(ST,i) < N ;(I)T—l(ST—l,i) << N;@o(so,i) = $y(0).
2

It has been shown in [28] that this upper bound on the loss is optimal in a very strong sense.

Moreover, in some cases the potential functions have nice closed forms and thus the algorithm can
be efficiently implemented. For example, in the boosting setting, B is simply {—1, +1}, and one can
Verify (I)t(S) = #¢t+1(8+1)+%¢t+1(8— 1) and Wg,5 = % ((bt(stfl,i — 1) — (I)t(stfl’i + 1))
With the loss function L(s) being 1{s < 0}, these can be further simplified and eventually give
exactly the boost-by-majority algorithm [13].

3 Online Learning as a Drifting Game

The connection between drifting games and some specific settings of online learning has been no-
ticed before ([28, 23]). We aim to find deeper connections or even an equivalence between variants
of drifting games and more general settings of online learning, and provide insights on designing
learning algorithms through a minimax analysis. We start with a simple yet classic Hedge setting.

3.1 Algorithmic Equivalence

In the Hedge setting [14], a player tries to earn as much as possible (or lose as little as possible) by
cleverly spreading a fixed amount of money to bet on a set of actions on each day. Formally, the game
proceeds for 7" rounds, and on eachround ¢ = 1, ..., T": the player chooses a distribution p; over N
actions, then the adversary decides the actions’ losses ¢; (i.e. action ¢ incurs loss £, ; € [0, 1]) which
are revealed to the player. The player suffers a weighted average loss p; - £; at the end of this round.
The goal of the player is to minimize his “regret”, which is usually defined as the difference between
his total loss and the loss of the best action. Here, we consider an even more general notion of regret
studied in [20, 19, 10, 11], which we call e-regret. Suppose the actions are ordered according to

their total losses after 71" rounds (i.e. Zthl ; ;) from smallest to largest, and let 7. be the index



Input: A Hedge Algorithm ‘H
for t=1to T do
Query H: Pt = H(El;tfl).
Set: Dr(z1:4-1) = Pi-
Receive movements z, from the adversary.
Set: £y ; = 23 — ming 2 5, Vi.

Input: A DGv1 Algorithm Dg
for t=1toT do
Query Dg: p; = Dr(2Z1:¢—1)-
Set: H(€1.4—1) = ps.
Receive losses £; from the adversary.
Set: Ztq = gt,i — Pt - Et, V1.

Algorithm 1: Conversion of a Hedge Algo-
rithm H to a DGv1 Algorithm Dg

Algorithm 2: Conversion of a DGvl Algo-
rithm Dg, to a Hedge Algorithm H

of the action that is the [ Ne|-th element in the sorted list (0 < ¢ < 1). Now, e-regret is defined

as R%(p1.1,41.7) = ZtT:l p: - & — ZtT:l £, ;.. In other words, e-regret measures the difference
between the player’s loss and the loss of the [ Ne|-th best action (recovering the usual regret with
€ < 1/N), and sublinear e-regret implies that the player’s loss is almost as good as all but the top
e fraction of actions. Similarly, RS.() denotes the worst case e-regret for a specific algorithm .
For convenience, when € < 0 or € > 1, we define e-regret to be co or —oo respectively.

Next we discuss how Hedge is highly related to drifting games. Consider a variant of drifting games
where B = [—1,1],8 = 0 and L(s) = 1{s < —R} for some constant R. Additionally, we impose
an extra restriction on the adversary: |zt,i — 2, j| < 1 for all 7 and j. In other words, the difference
between any two chips’ movements is at most 1. We denote this specific variant of drifting games
by DGvl (summarized in Appendix A) and a corresponding algorithm by Dg to emphasize the
dependence on R. The reductions in Algorithm 1 and 2 and Theorem 1 show that DGv1 and the
Hedge problem are algorithmically equivalent (note that both conversions are valid). The proof is
straightforward and deferred to Appendix B. By Theorem 1, it is clear that the minimax optimal
algorithm for one setting is also minimax optimal for the other under these conversions.

Theorem 1. DGvI and the Hedge problem are algorithmically equivalent in the following sense:
(1) Algorithm 1 produces a DGvI algorithm Dg, satisfying Lt (Dg) < i/N wherei € {0,...,N}

is such that Rgfﬂ)/N(/H) <R< RiT/N(H).
(2) Algorithm 2 produces a Hedge algorithm H with RS.(H) < R for any R such that L1 (Dpg) < €.

3.2 Relaxations

From now on we only focus on the direction of converting a drifting game algorithm into a Hedge
algorithm. In order to derive a minimax Hedge algorithm, Theorem 1 tells us it suffices to derive
minimax DGv1 algorithms. Exact minimax analysis is usually difficult, and appropriate relaxations
seem to be necessary. To make use of the existing analysis for standard drifting games, the first
obvious relaxation is to drop the additional restriction in DGvl1, that is, |z” — Z, j\ < 1 for all ¢
and j. Doing this will lead to the exact setting discussed in [23] where a near optimal strategy is
proposed using the recipe in Eq. (1). It turns out that this relaxation is reasonable and does not give
too much more power to the adversary. To see this, first recall that results from [23], written in our
R
=0 ( J

). Second, statement (2) in Theorem 1 clearly remains valid if the input

notation, state that minp,, L (Dg) < 7+

bounded by 2 exp (— S

of Algorithm 2 is a drifting game algorithm for this relaxed version of DGv1. Therefore, by setting
€ > 2exp (— él(%;i)lz)) and solving for R, we have R%.(H) < O (, /T ln(%)>, which is the known
optimal regret rate for the Hedge problem, showing that we lose little due to this relaxation.

), which, by Hoeffding’s inequality, is upper

However, the algorithm proposed in [23] is not computationally efficient since the potential functions
®,(s) do not have closed forms. To get around this, we would want the minimax expression in Eq.
(1) to be easily solved, just like the case when B = {—1, 1}. It turns out that convexity would allow
us to treat B = [—1,1] almost as B = {—1, 1}. Specifically, if each ®;(s) is a convex function of
s, then due to the fact that the maximum of a convex function is always realized at the boundary of
a compact region, we have

Di(s—1)+P(s+1)
2 b
3

min max (P;(s+2) +wz) = min  max (Pi(s+2) +wz) =

weRy ze[—1,1] weRy ze{—-1,1}




Input: A convex, nonincreasing, nonnegative function ®(s).
for ¢t =7 down to 1 do
Find a convex function ®;_1(s) s.t. Vs, Dy(s — 1) + P¢(s + 1) < 2P;_q(s).
Set: sp = 0.
for t =1to 1 do
Set: /H(El:tfl) =Pt S.t. Py X (bt(stfl,i - 1) — (I)t(stfl,i + 1).
Receive losses £; and set s ; = s¢—1,; + l¢,; — Pt - £y, Vi.

Algorithm 3: A General Hedge Algorithm H

with w = (P4(s — 1) — ®¢(s + 1))/2 realizing the minimum. Since the 0-1 loss function L(s) is
not convex, this motivates us to find a convex surrogate of L(s). Fortunately, relaxing the equality
constraints in Eq. (1) does not affect the key property of Eq. (2) as we will show in the proof of
Theorem 2. “Compiling out” the input of Algorithm 2, we thus have our general recipe (Algorithm
3) for designing Hedge algorithms with the following regret guarantee.

Theorem 2. For Algorithm 3, if R and € are such that ©4(0) < € and ®1(s) > 1{s < —R} for all
s €R then R$:(H) < R.

Proof. 1t suffices to show that Eq. (2) holds so that the theorem follows by a direct applica-
tion of statement (2) of Theorem 1. Let w;; = (®¢(s¢—1; — 1) — P¢(s¢—1: + 1))/2. Then
i Pi(sei) <D0 (Pe(Se—1,5 + 2¢,3) + wei2¢,5) since py; < wy; and py-z; > 0. On the other hand,
by Eq. (3), we have ®;(s; 1 + 2¢,4) + Wy i2¢,i < Minger, max,e(—1,1] (Pe(st-1,i + 2) +wz) =
1 (De(s¢—1,i — 1) + P¢(s¢—1,; + 1)), which is at most ®,_1(s;—1,;) by Algorithm 3. This shows
i:i Dy (s4i) <> Peo1(s¢—1,;) and Eq. (2) follows. O

Theorem 2 tells us that if solving ®¢(0) < ¢ for R gives R > R for some value R, then the regret
of Algorithm 3 is less than any value that is greater than R, meaning the regret is at most R.

3.3 Designing Potentials and Algorithms

Now we are ready to recover existing algorithms and develop new ones by choosing an appropriate
potential ®r(s) as Algorithm 3 suggests. We will discuss three different algorithms below, and
summarize these examples in Table 1 (see Appendix C).

Exponential Weights (EXP) Algorithm. Exponential loss is an obvious choice for ®7(s) as it
has been widely used as the convex surrogate of the 0-1 loss function in the literature. It turns
out that this will lead to the well-known exponential weights algorithm [14, 15]. Specifically, we
pick @7 (s) to be exp (—n(s + R)) which exactly upper bounds 1{s < —R}. To compute ®,(s)
fort < T, we simply let ®;(s — 1) + P¢(s + 1) < 28;_1(s) hold with equality. Indeed, direct

computations show that all ®;(s) share a similar form: ®,(s) = (%) " exp (—n(s+ R)).
Therefore, according to Algorithm 3, the player’s strategy is to set

Pri O Pi(st-15 — 1) — Py(sp—1,i + 1) < exp (—ns¢-14)
which is exactly the same as EXP (note that R becomes irrelevant after normalization). To derive re-
gret bounds, it suffices to require ®4(0) < ¢, which is equivalent to R > % <ln( Y4+ Tl %) .

By Theorem 2 and Hoeffding’s lemma (see [9, Lemma A.1]), we thus know R%.(H) < % In (%) +
Tn

5L = /2T In (1) where the last step is by optimally tuning 7 to be y/2(In 1)/T. Note that this

algorithm is not adaptive in the sense that it requires knowledge of 1" and € to set the parameter 7.

We have thus recovered the well-known EXP algorithm and given a new analysis using the drifting-
games framework. More importantly, as in [26], this derivation may shed light on why this algorithm
works and where it comes from, namely, a minimax analysis followed by a series of relaxations,
starting from a reasonable surrogate of the 0-1 loss function.

2-norm Algorithm. We next move on to another simple convex surrogate: ®r(s) = a[s]> >

1{s < —1/+/a}, where a is some positive constant and [s] - = min{0, s} represents a truncating
operation. The following lemma shows that ®,(s) can also be simply described.



Lemma 1. Ifa > 0, then ®(s) = a ([s]2 + T — t) satisfies ®;(s — 1) + (s + 1) < 24 _1(s).

Thus, Algorithm 3 can again be applied. The resulting algorithm is extremely concise:
Pri o Qu(s—1; — 1) — Pp(sp—1, + 1) o [sp—1, — 12 — [se—1 + 12,

We call this the “2-norm” algorithm since it resembles the p-norm algorithm in the literature when
p = 2 (see [9]). The difference is that the p-norm algorithm sets the weights proportional to the
derivative of potentials, instead of the difference of them as we are doing here. A somewhat sur-
prising property of this algorithm is that it is totally adaptive and parameter-free (since a disappears
under normalization), a property that we usually do not expect to obtain from a minimax analy-
sis. Direct application of Theorem 2 (®y(0) = aT < € & 1//a > /T /¢) shows that its regret
achieves the optimal dependence on the horizon 7.

Corollary 1. Algorithm 3 with potential ®(s) defined in Lemma 1 produces a Hedge algorithm H
such that RG.(H) < /T /e simultaneously for all T and e.

NormalHedge.DT. The regret for the 2-norm algorithm does not have the optimal dependence on
€. An obvious follow-up question would be whether it is possible to derive an adaptive algorithm

that achieves the optimal rate O (/T In(1/¢)) simultaneously for all 7" and € using our framework.
An even deeper question is: instead of choosing convex surrogates in a seemingly arbitrary way, is
there a more natural way to find the right choice of @7 (s)?

To answer these questions, we recall that the reason why the 2-norm algorithm can get rid of the
dependence on e is that € appears merely in the multiplicative constant a that does not play a role
after normalization. This motivates us to let @ (s) in the form of eF'(s) for some F'(s). On the
other hand, from Theorem 2, we also want eF'(s) to upper bound the 0-1 loss function 1{s <

—+/dTIn(1/€)} for some constant d. Taken together, this is telling us that the right choice of F'(s)
should be of the form © (exp(s2 / T)) L. Of course we still need to refine it to satisfy the monotonicity
and other properties. We define ®1(s) formally and more generally as:

Dr(s) :a<exp (%) 71) > I{SS \/dTln((llJrl)},

where a and d are some positive constants. This time it is more involved to figure out what other
®,(s) should be. The following lemma addresses this issue (proof deferred to Appendix C).

2
Lemma 2. Ifb; = 1— % EZ:HJ (exp (%) - 1) ,a>0,d>3and ®i(s) = a (exp (%) - bt)
(define ®o(s) = a(l — by)), then we have Dy(s — 1) + Dy(s + 1) < 2®,_1(s) forall s € R and
t=2,...,T. Moreover, Eq. (2) still holds.

Note that even if @1(s — 1) + ®1(s + 1) < 2®¢(s) is not valid in general, Lemma 2 states that Eq.
(2) still holds. Thus Algorithm 3 can indeed still be applied, leading to our new algorithm:

St—1,i—1 2 St—1,i+1 2
Dri X Py(si—1, — 1) — Dy(s—1,: + 1) x exp (%) — exp (%) .

Here, d seems to be an extra parameter, but in fact, simply setting d = 3 is good enough:

Corollary 2. Algorithm 3 with potential ®(s) defined in Lemma 2 and d = 3 produces a Hedge
algorithm H such that the following holds simultaneously for all T and €:

RE:(H) < \/3TIn (& (/% 1) (T +1) +1) =0 (VT (1)) + TalnT).

We have thus proposed a parameter-free adaptive algorithm with optimal regret rate (ignoring the
InlnT term) using our drifting-games framework. In fact, our algorithm bears a striking similarity
to NormalHedge [10], the first algorithm that has this kind of adaptivity. We thus name our algorithm
NormalHedge . DT?. We include NormalHedge in Table 1 for comparison. One can see that the main
differences are: 1) On each round NormalHedge performs a numerical search to find out the right
parameter used in the exponents; 2) NormalHedge uses the derivative of potentials as weights.

!Similar potential was also proposed in recent work [22, 25] for a different setting.
2“DT” stands for discrete time.



Compared to NormalHedge, the regret bound for NormalHedge.DT has no explicit dependence on
N, but has a slightly worse dependence on 7" (indeed InIn 7" is almost negligible). We emphasize
other advantages of our algorithm over NormalHedge: 1) NormalHedge.DT is more computationally
efficient especially when N is very large, since it does not need a numerical search for each round;
2) our analysis is arguably simpler and more intuitive than the one in [10]; 3) as we will discuss
in Section 4, NormalHedge.DT can be easily extended to deal with the more general online convex
optimization problem where the number of actions is infinitely large, while it is not clear how to
do that for NormalHedge by generalizing the analysis in [10]. Indeed, the extra dependence on the
number of actions NV for the regret of NormalHedge makes this generalization even seem impossible.
Finally, we will later see that NormalHedge.DT outperforms NormalHedge in experiments. Despite
the differences, it is worth noting that both algorithms assign zero weight to some actions on each
round, an appealing property when IV is huge. We will discuss more on this in Section 4.

3.4 High Probability Bounds

We now consider a common variant of Hedge: on each round, instead of choosing a distribution
P, the player has to randomly pick a single action ¢;, while the adversary decides the losses £; at
the same time (without seeing ¢;). For now we only focus on the player’s regret to the best action:
Rr(irr,l17) = Zthl 4 5, —min; EL ¢; ;. Notice that the regret is now a random variable, and
we are interested in a bound that holds with high probability. Using Azuma’s inequality, standard
analysis (see for instance [9, Lemma 4.1]) shows that the player can simply draw 4, according to
p: = H(£1.t—1), the output of a standard Hedge algorithm, and suffers regret at most Rp(#H) +
+/T'In(1/6) with probability 1 — §. Below we recover similar results as a simple side product of
our drifting-games analysis without resorting to concentration results, such as Azuma’s inequality.

For this, we only need to modify Algorithm 3 by setting z;; = ¥¢;; — ¢t ;,. The restriction
pP: - Z; > 0 is then relaxed to hold in expectation. Moreover, it is clear that Eq. (2) also still
holds in expectation. On the other hand, by definition and the union bound, one can show that
> E[L(s74)] = >, Prisri < —R] > Pr[Ryp(ir.7, £1.7) > R]. So setting ®¢(0) = & shows that
the regret is smaller than R with probability 1 — §. Therefore, for example, if EXP is used, then the
regret would be at most /27 In(N/4) with probability 1 —d, giving basically the same bound as the
standard analysis. One draw back is that EXP would need ¢ as a parameter. However, this can again
be addressed by NormalHedge.DT for the exact same reason that NormalHedge.DT is independent
of €. We have thus derived high probability bounds without using any concentration inequalities.

4 Generalizations and Applications

Multi-armed Bandit (MAB) Problem: The only difference between Hedge (randomized version)
and the non-stochastic MAB problem [6] is that on each round, after picking i, the player only sees
the loss for this single action ¢, ;, instead of the whole vector £;. The goal is still to compete with

the best action. A common technique used in the bandit setting is to build an unbiased estimator A
for the losses, which in this case could be ¢; ; = 1{i = i;}-¢; ;, /ps.;,- Then algorithms such as EXP
can be used by replacing £; with £;, leading to the EXP3 algorithm [6] with regret O(v TN In N).

One might expect that Algorithm 3 would also work well by replacing £; with ¢,. However, doing so
breaks an important property of the movements z; ;: boundedness. Indeed, Eq. (3) no longer makes
sense if z could be infinitely large, even if in expectation it is still in [—1, 1] (note that z, ; is now a
random variable). It turns out that we can address this issue by imposing a variance constraint on z; ;.
Formally, we consider a variant of drifting games where on each round, the adversary picks a random
movement z; ; for each chip such that: z;,; > —1,E;[z; ;] < LEt[ZfA <1/p;; and E;[p; - 2] > 0.
We call this variant DGv2 and summarize it in Appendix A. The standard minimax analysis and the
derivation of potential functions need to be modified in a certain way for DGv2, as stated in Theorem
4 (Appendix D). Using the analysis for DGv2, we propose a general recipe for designing MAB
algorithms in a similar way as for Hedge and also recover EXP3 (see Algorithm 4 and Theorem
5 in Appendix D). Unfortunately so far we do not know other appropriate potentials due to some
technical difficulties. We conjecture, however, that there is a potential function that could recover

the poly-INF algorithm [4, 5] or give its variants that achieve the optimal regret O(vTN).



Online Convex Optimization: We next consider a general online convex optimization setting [31].
Let S C R? be a compact convex set, and F be a set of convex functions with range [0, 1] on S. On
each round ¢, the learner chooses a point x; € S, and the adversary chooses a loss function f; € F
(knowing x;). The learner then suffers loss f;(x;). The regret after 7" rounds is Ry (x1.7, f1.1) =

Zthl fe(x¢) — mingeg Zthl fit(x). There are two general approaches to OCO: one builds on
convex optimization theory [30], and the other generalizes EXP to a continuous space [12, 24]. We
will see how the drifting-games framework can recover the latter method and also leads to new ones.

To do so, we introduce a continuous variant of drifting games (DGv3, see Appendix A). There are
now infinitely many chips, one for each point in S. On round ¢, the player needs to choose a distribu-
tion over the chips, that is, a probability density function p;(x) on S. Then the adversary decides the
movements for each chip, that is, a function z;(x) with range [—1, 1] on .S’ (not necessarily convex
or continuous), subject to a constraint Ex..,, [#:(x)] > 0. At the end, each point x is associated with
aloss L(x) = 1{}_, 2:(x) < —R}, and the player aims to minimize the total loss [__¢ L(x)dx.

OCO can be converted into DGv3 by setting z;(x) = fi(x)— f(x;) and predicting x; = Ex~,, [X] €
S. The constraint Ex~,, [2:(x)] > 0 holds by the convexity of f;. Moreover, it turns out that the
minimax analysis and potentials for DGv1 can readily be used here, and the notion of e-regret, now
generalized to the OCO setting, measures the difference of the player’s loss and the loss of a best
fixed point in a subset of .S that excludes the top e fraction of points. With different potentials, we
obtain versions of each of the three algorithms of Section 3 generalized to this setting, with the same
e-regret bounds as before. Again, two of these methods are adaptive and parameter-free. To derive
bounds for the usual regret, at first glance it seems that we have to set € to be close to zero, leading
to a meaningless bound. Nevertheless, this is addressed by Theorem 6 using similar techniques in

[17], giving the usual O(v/dT InT) regret bound. All details can be found in Appendix E.

Applications to Boosting: There is a deep and well-known connection between Hedge and boost-
ing [14, 29]. In principle, every Hedge algorithm can be converted into a boosting algorithm; for
instance, this is how AdaBoost was derived from EXP. In the same way, NormalHedge.DT can be
converted into a new boosting algorithm that we call NH-Boost.DT. See Appendix F for details and
further background on boosting. The main idea is to treat each training example as an “action”, and
to rely on the Hedge algorithm to compute distributions over these examples which are used to train
the weak hypotheses. Typically, it is assumed that each of these has “edge” -y, meaning its accuracy
on the training distribution is at least 1/2 + ~y. The final hypothesis is a simple majority vote of the
weak hypotheses. To understand the prediction accuracy of a boosting algorithm, we often study the
training error rate and also the distribution of margins, a well-established measure of confidence (see
Appendix F for formal definitions). Thanks to the adaptivity of NormalHedge.DT, we can derive
bounds on both the training error and the distribution of margins after any number of rounds:

Theorem 3. After T' rounds, the training error of NH-Boost.DT is of order O(exp(—%Tvg)), and
the fraction of training examples with margin at most 0(< 2v) is of order O(exp(—%T(& —2v)2)).

Thus, the training error decreases at roughly the same rate as AdaBoost. In addition, this theorem
implies that the fraction of examples with margin smaller than 2+ eventually goes to zero as T" gets
large, which means NH-Boost.DT converges to the optimal margin 2+; this is known not to be true
for AdaBoost (see [29]). Also, like AdaBoost, NH-Boost.DT is an adaptive boosting algorithm that
does not require «y or 7" as a parameter. However, unlike AdaBoost, NH-Boost.DT has the striking
property that it completely ignores many examples on each round (by assigning zero weight), which
is very helpful for the weak learning algorithm in terms of computational efficiency. To test this, we
conducted experiments to compare the efficiency of AdaBoost, “NH-Boost” (an analogous boosting
algorithm derived from NormalHedge) and NH-Boost.DT. All details are in Appendix G. Here we
only briefly summarize the results. While the three algorithms have similar performance in terms
of training and test error, NH-Boost.DT is always the fastest one in terms of running time for the
same number of rounds. Moreover, the average faction of examples with zero weight is significantly
higher for NH-Boost.DT than for NH-Boost (see Table 3). On one hand, this explains why NH-
Boost.DT is faster (besides the reason that it does not require a numerical step). On the other hand,
this also implies that NH-Boost.DT tends to achieve larger margins, since zero weight is assigned to
examples with large margin. This is also confirmed by our experiments.
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